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Abstract 

Banks hold a societal responsibility and 

regulatory requirements to mitigate the risk of 

financial crimes. Risk mitigation primarily happens 

through monitoring customer activity through 

Transaction Monitoring (TM). Recently, Machine 

Learning (ML) has been proposed to identify 

suspicious customer behavior, which raises complex 

socio-technical implications around trust and 

explainability of ML models and their outputs. 

However, little research is available due to its 

sensitivity. We aim to fill this gap by presenting 

empirical research exploring how ML supported 

automation and augmentation affects the TM process 

and stakeholders’ requirements for building 

eXplainable Artificial Intelligence (xAI). Our study 

finds that xAI requirements depend on the liable party 

in the TM process which changes depending on 

augmentation or automation of TM. Context-relatable 

explanations can provide much-needed support for 

auditing and may diminish bias in the investigator’s 

judgement. These results suggest a use case-specific 

approach for xAI to adequately foster the adoption of 

ML in TM. 

 

Keywords: High stakes decisions, AML (Anti-Money 

Laundering), Decision-Making, Machine Learning, 

Explainable AI, xAI, Automation, Augmentation 

1. Introduction  

Reporting money laundering and terrorist 

financing activities is a relatively new practice that 

began in the 1970s. Statistical methods for detecting 

money laundering were not put in place until the late 

1990s (Alsuwailem & Saudagar, 2020). Today, we 

still mainly rely on the same anti-money laundering 

(AML) process whereof rule-based scenarios are 

essential. The scenarios are general if-then rules based 

on results falling above or below certain thresholds, 

which makes them inflexible in a fluctuating world. 

This leads to an estimated 95-98% of false positive 

alerts manually handled and only estimated 5% of all 

money laundering and terror financing cases 

proceeding to authorities (Han et al., 2020). In our 

digitally and globally connected world, the challenges 

are keeping track of the increasing transaction flow 

and identifying new forms of illicit or illegal activities. 

Money laundering activities varies in shape and size, 

generating a scaling challenge of volume, velocity, 

and variety. Moreover, financial institutions risk harsh 

sanctions, monetary fines, and reputational damage, if 

they do not meet the requirements and expectations of 

regulators. Therefore, banks invest heavily in costly 

AML activities that are fast becoming insufficient for 

the technological advancements and growing 

transaction volumes, while human resources to 

investigate transactions are decreasing (Chen et al., 

2018). Many approaches to adopting ML in AML 

practices have been proposed, but few reach empirical 

testing and implementation due to the inherent 

complexity of AML. With respect to transaction 

monitoring (TM), ML has the possibility to soften the 

hard-set if-then rules and take many more variables 

into account when evaluating a single transaction and 

provide a more nuanced view of a transaction. 

Moreover, criminal activities stem from behavioral 

patterns, which ML is often used to uncover. Because 

of the sensitivity of TM, a tendency towards using 

credit card fraud cases have been undertaken and the 

literature on ML in transaction monitoring (TM) is 

very sparse, fragmented, and poor in quality (Al-

Suwaidi & Nobanee, 2020). Only a handful of recent 

papers discuss the relevant debate on the ability to 

provide explanations for models operating in high-risk 

areas such as AML/TM (Han et al., 2020; Jullum et al., 

2020). The need for knowing more about how to 

ensure adoption, correct use of ML in TM and provide 

an output for understanding and validation should be 

possible to remain compliant. We conducted an action 

research project in collaboration with a European 

bank, over the course of two years exploring 

stakeholder needs and how xAI can positively affect 

the adoption of their transaction monitoring model 

(TMM). In the effort to determining information 

provided by xAI outputs as viable information, 

common struggles revolve around model accuracy vs. 

interpretability (Gilpin et al., 2018; Z. C. Lipton, 

2018), completeness vs. interpretability (Alvarez-

Melis & Jaakkola, 2018; Gilpin et al., 2018; Z. C. 

Lipton, 2018), trust (Shin, 2021), human vs. machine 

(Scantamburlo et al., 2018), objective/goal alignment 
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from problem formulation to model output, and 

applicability/context creating bias in the decision-

making process (Páez, 2019). The most prominent 

dilemmas related to the case will be addressed through 

the following research question: “How can xAI assist 

the transition from traditional rule-based 

transaction monitoring to machine learning-based 

monitoring?” To answer this question, the study 

identifies key stakeholders in the TM process involved 

with two models tested for automation TMM (A) and 

augmentation TMM (B). Thereafter, we analyze the 

stakeholders’ information need derived from the 

changes in the process when testing the two different 

approaches. Lastly, we assess the two model 

objectives compared to stakeholders’ information 

need to evaluate the usefulness of xAI frameworks.  

2. Theoretical Background 

Transaction monitoring is regarded as a highly 

sensitive area for financial institutions. It is 

extensively regulated and in high risk of sanctions and 

reputational damage if things go wrong. Moreover, 

AML represents an area of competitive advantage 

reflected in customer satisfaction (Canhoto, 2021; Han 

et al., 2020; Jullum et al., 2020). Due to the sensitivity 

of the topic and risk of criminals gaming the system, 

limited research has been done on the topic, results are 

fragmented and wide-ranging in quality (Canhoto, 

2021; Han et al., 2020). Due to these circumstances, it 

is difficult for banks to share information with 

researchers and other groups (Canhoto, 2021; Jullum 

et al., 2020) in order to improve practices and generate 

a united front against money laundering (DFSA, 

2021).  

2.1. Money Laundering 

Money laundering is defined as the process of 

concealing the illegal origin of any income or 

transaction in any form (primarily monetary funds or 

crypto valuta), leaving almost no visible trails besides 

the transaction statements in accounts at financial 

institutions. Money laundering is different from fraud, 

which is defined as the action of intentionally 

deceiving someone to gain a personal or financial 

advantage (Sabau, 2012). Detecting money laundering 

or terror financing transactions has become a near-

impossible task for banks and regulators due to three 

main factors: 1) exponential growth in transactions; 2) 

a manual labor-intensive AML processes; and 3) a 

reliance on rigid, inflexible rule-based scenarios to 

produce an excessive number of transaction alerts for 

manual investigation (Jullum et al., 2020; Leo et al., 

2019). Only a small percentage (~5%) of these 

investigations lead to SARs (Suspicious Activity 

Reports) handed over to governmental institutions. 

Here, only 10% of SARs result in investigation by law 

enforcement (Han et al., 2020; Weber et al., 2018). 

Failing to comply with AML regulations, reporting 

suspicious activities, and monitoring transactions have 

resulted in billions of dollars’ worth in fines 

(Viswanatha & Wolf, 2012). This underlines banks’ 

difficulties balancing legislators’ requirements with 

the growing number of transactions in a volatile 

environment. In the EU, compliance includes 

implementation of a transaction monitoring system 

that screens all transactions and report suspicious 

activities (FATF, 2012). Moreover, banks are 

expected to account for technological advancements in 

their system, which is one of the main drivers towards 

ML. New elements of regulation from the Court of 

Justice of the European Union’s (CJEU’s) case law 

and Article 23(2) of GDPR come into play when using 

ML for high-stakes decisions such as TM, along with 

the increasing societal pressure of model monitoring 

and transparency to avoid the risk of models going 

haywire (Bertrand et al., 2021; Canhoto, 2021; 

European Commision, 2021; Han et al., 2020).  This 

creates a problem that is not only a matter of 

automation and efficiency but also one of improving 

detection and effectiveness in existing systems. To 

address these areas, an ever-growing number of banks 

are considering ML solutions for assistance. 

2.2. Transaction Monitoring and Machine 

Learning 

AML can be seen as a two-sided approach 

following the FATF (Financial Action Task Force) 

objectives, with the first side centering around KYC 

(knowing your customer), customer patterns, their 

networks, and using this information to identify 

suspicious behavior (FATF, 2012). The second part of 

AML is centered around TM and reporting suspicious 

transactions, wherein ML efforts have been addressed 

with both supervised (known target variable) and 

unsupervised (pattern revelation) ML methods. This 

research focuses on the screening of transactions in 

TM based on scenario-generated alerts. The existing 

body of literature in this area lacks depth, concrete 

empirical analysis, and data foundations due to the 

sensitivity of the topic (Al-Suwaidi & Nobanee, 2020; 

Canhoto, 2021; Han et al., 2020; Jullum et al., 2020). 

Moreover, the spectrum of money-laundering 

activities is wide-ranging, creating a very broad list of 

ML objectives and approaches (Alsuwailem & 

Saudagar, 2020; Chen et al., 2018; Han et al., 2020). 

(FATF, 2012)There has been considerable debates on 

applying supervised or unsupervised methods for TM, 
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due to the outcome of SARs rarely being known to 

banks. Governmental investigations can take months 

to reach a definitive conclusion. Therefore, supervised 

learners are often discarded (Jullum et al., 2020). 

However, the framing of the target variable is up for 

discussion, since according to FATF, the objective is 

to report suspicious transactions, not identify the 

outcome of SARs. Instead, the issue seems to be a 

question of specifically describing the intent and 

purpose of a model (Canhoto, 2021; Han et al., 2020). 

Developing ML to improve the TM process creates a 

tradeoff between risk and cost (Han et al., 2020). 

Automating for improved efficiency in TM will result 

in fewer human resources, lower costs, and faster 

processes. On the other hand, the risk of missing SARs 

is a concern, as humans will no longer oversee every 

step of the process (Han et al., 2020). Improving 

effectiveness creates a tradeoff of time where the 

process will be lengthier and more costly but with a 

human-in-the-loop to interpret added information 

from ML methods such as graph analytics and link 

analysis (Han et al., 2020). 

2.3. Explanations in high-stakes decisions 

Prior research has approached the concept of a 

“good explanation” as a human-agent interaction 

problem (Miller, 2019), wherein context is essential to 

the person interacting with the explanation. Miller 

explains that we are only interested in a subset of 

relevant information depending on our context (Miller, 

2019). Moreover, there is a growing need to 

understand different stakeholder requirements from 

ML, where xAI is evolving in response to this need 

(Arrieta et al., 2019). Other researchers have 

addressed the origins of what stakeholders want from 

an explanation (Brennen, 2020; P. Lipton, 2001). 

Originating from DARPA, the purpose of xAI was to 

enable human users to understand, appropriately trust, 

and effectively manage AI (Gunning, 2017).  To 

address this ambitious quest, research into 

stakeholders’ needs regarding xAI, is developing a 

common understanding that no one size fits all. 

Though, there is still a dominance of xAI built by and 

for data science elicit groups. However, HCI (Human-

Computer-Interface) and socio-technical angles are 

emerging to evaluate the potential of xAI in 

application (Gerlings et al., 2021; Miller, 2019). 

Common struggles within explainability are seen as 

dilemmas of completeness vs. interpretability 

(Alvarez-Melis & Jaakkola, 2018; Gilpin et al., 2018; 

Z. C. Lipton, 2018) wherein generating or extracting 

information from models might be useful to 

stakeholders despite not generating a complete picture 

of the model. Trust (Adadi & Berrada, 2018; Shin, 

2021) is another highly debated issue, with xAI aiming 

to enhance trust in AI on the part of end-users. 

Moreover, xAI is a response to goal alignment from 

problem formulation to model output and applicability 

creating biases in decision-making (if information is 

not used as intended) (Páez, 2019). Global model 

explanations, general rule extraction, additive models, 

and interpretability designs have all been discussed to 

concur implementations that deviate from the intended 

use (concept drift), which can cause great chaos for the 

affected individuals (Adadi & Berrada, 2018; Doshi-

Velez & Kim, 2017). Additionally, xAI might even 

add to the overall model complexity, demonstrating 

that xAI is not always the right solution (Rudin, 2019). 

Choosing an xAI solution is, among other things, 

dependent on the people’s illiteracy in the fields of 

both ML and the application field where the model is 

implemented (Doshi-Velez & Kim, 2017; Gerlings et 

al., 2021; Gilpin et al., 2018). Recently, the demand 

for explainability has increased, following the use of 

ML in sensitive high-risk areas such as healthcare and 

finance. Furthermore, the European Union has 

proposed regulation of AI which also puts heavy 

weight on explainability (De-Arteaga et al., 2019; 

Doshi-Velez & Kim, 2017; Zytek et al., 2021). More 

pragmatic approaches have surfaced to address the 

‘best’ fit of model explanation and understandability 

(Páez, 2019), few of which have addressed contextual 

factors such as how much a ML model is automating. 

Zytek et al. (2021) address the influence of the degree 

of automation a model has on the existing workflow to 

understand the context of user needs and address the 

challenges of trust and confusion with SHAP 

(SHapley Additive exPlanations) (Lundberg & Lee, 

2017). However, they also recognize the pitfall of 

displaying too much information and using 

terminology from data science that the intended user 

of the explanation may not be familiar with (Zytek et 

al., 2021). Specifically for high-stakes decisions, 

Rudin (2019) argues that explainable models do not 

make sense as they leave out information that the 

decision-maker normally incorporate when making a 

decision (Rudin, 2019). 

3. Research Methods 

This empirical case study is part of a larger action 

research study still ongoing, in collaboration with a 

European bank. Interviews we conducted in 2020 and 

2021 along with observations of the development and 

testing of TMM. The aim of the study is to investigate 

the influence ML has on high-stakes decision-making 

by key stakeholders. This study forms its qualitative 

rigor through inductive research for the purpose of 

generating new theory and discovering new concepts, 
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where the interpretivist stance supports the idea of 

gaining a deep understanding of the social actors 

involved in the phenomenon (Gioia et al., 2013).  

3.1. Data collection 

Data has been collected by the first author through 

semi-structured interviews, meetings, observations, 

daily stand-ups, e-mails, and chat messages, all of 

which laid the foundation for the understanding of 

workflows, the inner workings of TMM, and the daily 

operations of key stakeholders. In total, 23 interviews 

were conducted in the period from August 2020 to 

August 2021 with key stakeholders in the development 

department, model validation, transaction monitoring 

with investigation, risk assessment and management. 

3.2. Data Analysis  

The interviews were analyzed and coded through 

open coding and axial coding to identify the 1st order 

information centric dimensions derived directly from 

interview quotes, 2nd order labelling themes derived 

from the analysis, and lastly, the 3rd aggregated 

dimensions were based on grouped themes (Corbin & 

Strauss, 2012; Gioia et al., 2013). In an iterative 

manner, we utilized the interpretive ‘insider-outsider’ 

method (Gioia et al., 2013)  by establishing an insider 

perspective from the first authors’ ‘insider view’ of 

how automation and augmentation changes the need 

for explanations amongst stakeholders. The second 

author approached the data after collection with an 

‘outsider’ perspective on both the phenomenon itself 

as well as the case setting, allowing for new ways of 

theorizing and identifying alternative patterns in the 

data. Thereafter, we initiated a more abstract ‘outsider’ 

level of analysis in order to generate a link between the 

1st order codes from the interviewees and 2nd order 

theoretical concepts. Concepts were finally distilled 

into the 3rd order aggregated dimensions presenting 

the discovered grounds for new theory development 

(Benbasat et al., 1987; Gioia et al., 2013). The final 

data structure entails the emergence of three 3rd-order 

themes when implementing ML in high-risk decision-

making processes: Efficient optimization (the 

underlying elements of understanding TMM (A) in 

general, the validation and reliability of its 

performance, and the debate of providing further 

explanations for TMM), Diverse explanations for 

taking into account the effect more or no information 

has on key stakeholders’ work, and Effective 

optimization as the biases in augmented decision-

making, revealing a need for more information on the 

TMM (B) output.  

4. Case  

The financial institution in scope follows the 

industry standards presented in Jullum et al., Han et al. 

and Bertrand et al. (Bertrand et al., 2021; Han et al., 

2020; Jullum et al., 2020) for the AML practices of 

manually handling scenario-based alerts. Currently, a 

widely regarded problem across the sector is the fact 

that over 90% of all alerts generated are false positives 

(Han et al., 2020), meaning investigators spend their 

time going through an exceedingly high number of 

false-positive (FP) alerts. In 2018, The bank initiated 

a ML project to address the challenges of managing 

the increasingly large number of FP alerts, with a focus 

on critical alerts and handling cases in a timely 

manner. The project has been tested in a monitored 

environment over the past few years as the TMM has 

undergone iterations of improvements and feedback 

from key stakeholders. In 2020, the bank initiated a 

research initiative to identify the information needed 

from key stakeholders of TMM and to begin a 

transition toward AI-based AML approaches. The aim 

of TMM is to optimize manual investigation time for 

human investigators and minimize the time spent 

investigating FP alerts generated by scenarios. The 

time spent on investigating alerts and eventually 

reporting a SAR is referred to as time-to-SAR, which 

is essential for banks to remain compliant with 

regulations. Currently the bank is testing a set-up 

wherein the transaction monitoring process starts with 

the incoming transactions being sent through 70-100 

rule-based scenarios. Only transactions that fall within 

the scope of the scenarios generate alerts. Alerts are 

then saved to a database for investigation. Here, the 

random forest-based TMM analyzes alerts from 

specifically selected scenarios with less complexity 

than others. These alerts are provided with a risk score 

(unusualness) of 1-100, which is generated by TMM. 

Next, the bank has tested two approaches: 

A) Lowest-scoring alerts (FP), within the bank’s 

risk appetite are auto-closed. As a result, investigators 

do not encounter these alerts, as they are to them 

closed. However, a dedicated team evaluates the alerts 

closed by TMM. 

B) The risk score is used by capacity planners to 

prioritize alerts deemed high-risk. Score is visible in 

the interface for capacity planners and investigators. 

4.1. The scope and value of Transaction 

Monitoring Model 

Many different factors come into play when 

determining the risk tolerance in TM. In this case, the 

bank has decided to maintain the essential scenarios in 

the process around the ML model. This decision was 
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made to accommodate the risk appetite of the bank and 

ensure minimal obstruction of the alert investigation. 

Internal experiments have determined a positive 

impact on the alert handling, but some challenges were 

also observed during testing. As one investigator put 

it: “I think that the main risk is that we have to 

reinvestigate [alerts]in case investigations that have 

been closed by TMM...On the other hand, TMM 

basically saves us a lot of resources when it comes to 

alert investigation in the first part of the process and 

helps us to mitigate the risk of us having too many 

people […] during the first 10-12 days and idle for the 

rest of the month, because there will be no work for 

them. So, TMM takes care of this ‘over capacity’ issue 

that we might have. (Investigator).  Based on the 

results of internal experiments, the bank wanted to 

further explore the effect of the ML model in the 

transaction monitoring framework in order to better 

understand complications and how to improve the 

unified performance of human and machine. 

4.2. The role of TMM key stakeholders 

The key stakeholder groups in this research are 

defined by working in the near environment of TMM 

and being either indirectly or directly affected by 

TMM in the decision making and work around TM. 

Capacity planners, also referred to as Coordinators, 

plan the production of incoming alerts with the 

optimal number of employees. Alerts are produced in 

batches. For each batch, they estimate the number of 

alerts across scenarios and the necessary resources. 

Coordinators often have a background as investigators 

themselves and are now senior specialists with 

knowledge in specific fields, acting as a point of 

contact for investigators if they are doubting a 

decision. Furthermore, their role is to keep track of 

production (how many alerts are escalated/closed per 

investigator and per scenario). Coordinators prioritize 

and distribute alerts based on scenario types and time 

(urgency). TMM is set up to run through the batches 

of alerts, generate the risk scores, and/or auto-close the 

lowest-scoring alerts. When closing alerts (A), the 

model reduces the workload of investigators by ~20%. 

Coordinators are affected by the model’s closing 

performance in their planning of production as the 

model alleviates the workload on more simple cases 

and thereby ensure more high-risk alerts get addressed 

within the required timeframe. Moreover, TMM (A) 

reduces the resources needed for alert handling. When 

augmenting (B), capacity planners utilize the risk 

scores to prioritize and distribute more suspicious 

alerts first to minimize the time-to-SAR ratio. 

Investigators work in teams, oftentimes centered 

around specific types of scenarios or local regulatory 

knowledge. Their role as investigators is sometimes 

split, so they have other responsibilities as well, such 

as specialist roles, scenario development or risk 

evaluations, depending on their seniority and skillset. 

Therefore, capacity planners need to know which 

investigators they need for an upcoming batch of alerts 

and when they need them. Investigators each get a list 

of alerts from their team coordinator, which they are 

expected to handle within a given timeframe to ensure 

compliance and time for extended alert investigation 

for alerts sent further on to case investigation. Case 

investigation takes place in more advanced teams, 

where multiple alerts can be compiled into one case 

investigation. If cases are not closed, they are 

eventually reported as SARs to authorities. The 

timeframe investigators operate within is very tight 

and can have tremendous consequences for the bank if 

they fail to comply, so TMM’s reduction of FP alerts 

was welcomed. When TMM (A) closes alerts, it does 

not directly impact the workflow for the investigators, 

as they never see the closed alerts, but only sense the 

reduction in their workload and the increased 

complexity of the remaining alerts they do handle.  

Model Validation Unit. An internal model validation 

team is actively working with the development team 

in the development and testing of approaches for 

TMM. The purpose of the model validation team is to 

validate all risk-related models in the bank. Together 

with the model owner at the management level and a 

risk committee, the departments establish the desired 

risk appetite for the TMM. Thereafter, it is the model 

validation unit’s task to validate the model based on 

the logic behind the problem formulation to the model 

selection, set-up, feature engineering, implementation, 

and monitoring.  

Development Team. The development team includes 

specialists from the industry who understand the TM 

process, regulations and risk assessments needed, in 

addition to data scientists, full-stack developers, 

architects and physicists who are working on 

developing and improving TMM. During the 

development stages, they have been testing different 

approaches, models and set-ups to ensure the best 

reliability and working performance under the given 

circumstances. Moreover, they have developed a 

monitoring model with extended information on 

model performance and data consistency. This allows 

the team to identify any inconsistency in data flow or 

outliers in predictions. The last key stakeholder group 

is a combination of internal auditors and external 

regulators, such as the FSA (financial supervisory 

authority). These stakeholders take client samples and 

inquire about anything from how the AML process is 

working to the explanation behind a single alert 
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outcome. Their questions must be answered to stay 

compliant.  

5. Findings  

Figure 1: TMM (A) and TMM (B) 

The analysis of the interviews showed a 

divergence in explainability needs stemming from the 

underlying shift between the objectives of automation: 

TMM (A) – reducing alert volume and augmentation: 

TMM (B) – reducing time-to-SAR while preserving 

the end-to-end process goal of detecting financial 

crime. The following section will present in further 

detail the essential differences in terms of information 

need between the two approaches, starting with 

automation of closing low-risk alerts. 

5.1. Automation of low-scoring alerts 

 The purpose of the first model TMM (A), is to 

remove unproductive work for the investigators and 

make them spend less time on FP alerts, illustrated in 

the Figure 1: TMM (A)  TMM(A). The key 

stakeholders interacting with the model, from left to 

right, illustrate how model validation and developers 

work together to develop a sound model. The darkened 

arrows emphasize increased interest from key 

stakeholders in knowing details about how the model 

operates and decides whether to close/not close an 

alert. To ensure model performance, the development 

team has developed a monitoring framework 

displaying various performance metrics and data 

statistics for their own use. This displays data for test 

comparison, data drift and statistics from alerts closed 

by TMM. The monitoring framework is mainly 

intended to generate information for the developers to 

rely on and validate the scope of closed alerts. 

However, for now, auto-closed alerts are checked by 

dedicated investigators and risk owners to ensure the 

model is operating according to the agreed risk 

appetite. “During the period of testing, there is a test 

report that tells us if it is actually performing as 

expected or not.” (Developer). On the other side of the 

model in the figure, the coordinator receives statistics 

on closed alerts per batch, which they use to predict 

their upcoming planning and production of batches. 

However, they are not provided with extended 

information on the model’s performance, accuracy, or 

ratios to give them some context on the model’s 

performance. At the same time, investigators are taken 

out of the information loop, as they are not interacting 

directly with the automation model and should be able 

to form their own decisions on the prioritized human 

alert investigation. “…the current setup is meant for 

the model to be completely invisible to investigators. 

This is to reduce the volume. It doesn't really matter 

whether investigators understand it or not, despite us 

having many talks with them saying that they would 

like to understand it more. What we focus on now is 

decreased volume.” (Data Scientist). Moreover, 

investigators are not accountable for the auto-closed 

alerts made by TMM. “The biggest problem for 

[Investigators] is not correct decisions made by 

software. It's only correct decisions made by humans, 

right? So, they have their own policies and training. 

We have extremely good capabilities for this, so the 

main concern of their department is FTEs” (Data 

Scientist). This highlights the effect (or the lack 

thereof) it has on investigators, leaving them to focus 

on more complex alerts that have not been closed by 

TMM. However, it also leaves the reliability of auto-

closed alerts to the development team for the closing 

of alerts. Alerts closed by investigators have a written 

closing comment from the investigator describing the 

outcome of the individual alert. In contrast, alerts 

closed by TMM are accompanied by the model risk 

score. The explanation for closing an alert is written in 

natural language, whereas the score generated by 

TMM is open to interpretation and does not provide a 

sufficient explanation for auditors or case 

investigators who might have to include auto-closed 

alerts later in the investigation phases. This can 

eventually become an issue or a source of additional 

work if an alert becomes a part of an internal audit or 

the FSA requires information on a case where alerts 

have been auto-closed by TMM. When asked about 

what information is important during audits and alert 

investigation, a capacity planner answered: “All the 

reasoning behind actions taken with alerts is 

important. We might as well be asked for data analysis 

and then, for example, look into statistics of how many 

others get generated... For example, the TMM-based 

closure ratios based on scenarios” (Capacity 

Planner). Requesting the reasoning behind the closure 

of alerts is understandable as the current score does not 

provide any relatable information on the close, and 
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capacity planners become responsible for the entire 

production of alert investigation for a specific country. 

The risk score from TMM (B) and metrics from the 

monitoring will not be able to satisfy the auditors’ or 

regulators’ requirements in these cases. However, a 

full explanation might not be possible due to the 

complex AML environment the model operates 

within. “It's also a risk of explainability. It's that the 

environment we have this model in is quite complex. I 

think that is a risk, that we might not be able to fully 

explain why the model auto-closed some alerts and 

didn't close other alerts. I don't think anyone can 

really say OK it closed because of this and that. That's 

a risk.” (Data Scientist). In the case of complexity in 

ML models, it is in the eyes of the beholder, where 

different stakeholders having their own prerequisites 

for understanding and interpreting the model results. 

The information required for an explanation designed 

to the developers lies in the monitoring framework, 

with metrics ranging from statistical information on 

data and eventual imbalances on features to ROC 

curves and confusion matrices. The information 

requested by the coordinators and investigators is 

centered around business rules and their everyday 

context, which relates to their specialty. This becomes 

clear when discussing the pros and cons of manual and 

automated alert handling. “…manual investigation 

makes sense as it will give a broader picture of the 

customers and not just the transactions that TMM is 

probably looking into. So where is the customer 

living? What is the pattern of the customers, which 

stores do the customers go into…” (Investigator). 

Though unsure of what data TMM is operating with, 

this underlines the information the investigator uses to 

identify a suspicious transaction, whereof not all data 

is available for TMM. From a data scientist 

perspective, an explanation for why an alert was 

closed might not be in line with what investigators are 

used to seeing. “It's an alert closed. We have an 

explanation that would be good for auditing purposes 

in case someone asks us: why did the model close this? 

But it wouldn't be useful for investigators.” (Data 

Scientist). Acknowledging the differences between the 

fields of AML and ML, this quote from a data scientist 

is consistent with the following quote from a 

developer asked if investigators would benefit from 

knowing more about TMM. “So, should the 

investigators know more about it? I don't know. 

Precision, accuracy scores, ROC curves, or instance-

based explanations? …I don't think that will be very 

informative. So, there is definitely the chance to bring 

something understandable.” (Developer). 

Acknowledging that the usual performance metrics 

used in ML will be of no use to the investigators, the 

developer also sees the possibility of creating 

something that would be understandable from 

investigators point of view. 

5.2. Augmentation of alert prioritization  

To accommodate challenges around information 

need from the auto-closing model, an augmentation 

approach was tested. TMM (B) made the risk score 

available to capacity planners and investigators and 

shifted the responsible party of the final decision to 

close or escalate an alert. Now, alerts are not closed 

but given a score of high, medium, or low risk, leaving 

investigators to make the final decision. The change in 

objective leaves a risk of biased decisions emerging 

and a remaining need for further information on model 

performance persists. As shown in Figure 1, 

investigators receive information directly from the 

model, which they convey in their alert investigation. 

“The thing is…I never actually looked specifically at 

these numbers, but I know that alerts have this low, 

medium, high priority. This influences me quite a bit… 

if I see a high priority, then I think this is something 

that I should take into consideration. So, yes, knowing 

about this scale absolutely influences the way I would 

treat an alert ...” (Investigator). Another investigator 

and risk specialist share this concern but also point out 

the duality of the situation: “This might give some 

indication to the investigator that there's a high 

chance that this alert will be closed. I'm just 

wondering if it might be good. It might help some 

people with the decision. On the other hand, it might 

create a mental bias toward the decision generated by 

the investigator themselves. So, like, every stick has 

two ends, right?” (Investigator). To address this bias, 

capacity planners pitch in and argue for more 

information about why the TMM scores are the way 

they are, both for the sake of the investigators and the 

capacity planners themselves. “I don't know the 

meaning of the scores, so it was maybe mentioned 

somewhere, but I don't recall such documentation. So, 

the low score. What does it mean?...[]…with capacity 

planners, I think it will be good to know [more]. 

They're actually always asking about the numbers, 

why they are so low, for example, and they will also 

understand the investigation point of view” (Capacity 

Planner). Furthermore, a concern over the time spent 

investigating the alert score emerges, as well as a 

desire to understand why TMM has produced a high 

or low score: “…but when it comes to the ones that 

TMM is saying are really high-risk… further 

information can direct the investigator into why TMM 

has given it a high score. I think that would be good, 

because otherwise there is a risk that the 

[investigators] spend time scratching their heads over 

why TMM gave a high score” (Capacity Planner). On 
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the other hand, capacity planners use the risk scores 

from TMM to prioritize incoming alerts, so the ones 

with the highest scores are handled first in an effort to 

decrease time-to-SAR. When informed about an 

upcoming update to the interface that might exclude 

the TMM (B) risk score, a capacity planner expressed 

its importance for their work. “No, it is important! 

Don't take it away. I don’t have the power to decide 

anything …but if we see that some scenario is 

producing more [potential] SARs, then we need to take 

them first instead of those that are creating zero SARs. 

It is beneficial to know that.” (Capacity Planner). In 

conclusion, investigators’ access to the current 

information generated by TMM (B) highlights a 

potential risk of the investigators being negatively 

affected and biased by the alerts score due to 

investigation bias or unproductive time spent trying to 

understand why a certain score was given. This 

suggests that hiding the score or removing the model 

scoring in favor of a more informative explanation for 

investigators, such as LIME or general feature 

importance methods, should be evaluated further. As 

the risk score is currently disclosed to both capacity 

planners and investigators, a strong tendency towards 

requiring more information was apparent in both 

stakeholder groups. Moreover, the need for showing 

the model reasoning to audit remained in moth cases. 

6. Discussion 

The divergence between the model objective of 

automation and augmentation approach to optimizing 

the TM process has shown to cause various concerns 

regarding key stakeholders’ interaction with TMM. 

From the analysis, a few specific areas stand out when 

differentiating between automation and augmentation. 

First, contrary to why many studies argue for xAI, no 

lack of trust (Ribeiro et al., 2016; Shin, 2021) or 

algorithm aversion (Burton et al., 2019; Lee, 2018) 

was discovered for investigators or capacity planners 

when analyzing both versions of TMM. This may be 

due to the reduction of FP without their intervention 

and decreasing the time-to-SAR by prioritization of 

alerts with no influence on their work. Moreover, it is 

only when audits occur or when case investigators 

need to re-open alerts during case investigation that 

more information from TMM (A) is required. Here, 

the information goal is to justify or verify the decision 

for auditors (Arrieta et al., 2019; Samek et al., 2017) 

and explain the “why” to case investigators, which is 

seen as more challenging as they require more 

contextual information in language they can relate to 

from their work (Arrieta et al., 2019; Doshi-Velez & 

Kim, 2017; Miller, 2019; Zytek et al., 2021). The 

evaluation metrics capacity planners and investigators 

ask for weigh more heavily on the interpretability end 

of the completeness-interpretability scale (Gilpin et 

al., 2018). Hence, using the monitoring framework to 

deliver information and explanations would 

potentially impose a risk of ‘inmates running the 

asylum’ (Miller et al., 2017) as the context of the 

information is far from what they are familiar with and 

would potentially increase time spent figuring out 

what the information and numbers represent. Hence, 

TMM (A) causes the investigators and, to some 

degree, capacity planners to perform their work 

without much concern for being liable for the model’s 

performance; the liability here lies in the hands of the 

developers and data scientists. Holding the data 

scientists accountable when automating the auto-

closing of alerts enables them to utilize more advanced 

and closer-to-completeness tools for explainability 

together with the monitoring framework when 

ensuring a properly performing model. Here, 

explainability methods such as PDP (Partial 

Dependency Plots) (Goldstein et al., 2015) and SHAP 

(Lundberg & Lee, 2017) can be utilized for 

exploration and improvement of the model (Samek et 

al., 2017). Changing the scope from automation to 

augmentation of TMM may not seem that significant, 

but it shifts the liability of closing alerts back to the 

investigators, who now face the challenge of 

interpreting the model output, as it is visible in their 

interface. A crucial finding here is the risk of biased 

investigation based on the risk score produced by 

TMM (B) and the risk of unproductive time spent on 

understanding the score in its current form. Therefore, 

the information requirements and needs that were 

previously reserved for auditors and case investigators 

are now required for investigators as well. Otherwise, 

the score could be removed altogether from the 

investigators’ interface, to avoid model biases. 

However, both capacity planners and investigators 

articulate the benefits of knowing more about the 

score, as it can be used to point the investigator in the 

right direction during an investigation and reduce 

time-to-SAR.  

7. Conclusion 

The financial sector is under significant pressure 

to optimize their AML practices, specifically TM. Due 

to the outdated, labor-intensive process of reviewing 

alerts, a European bank has initiated a project for 

optimizing the process with machine learning. Two 

designs were built based on a random forest model and 

utilized for automation (A) and augmentation (B). As 

part of the project, this action research was initiated to 

explore which information was required by different 

stakeholders to ease the shift towards machine 
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learning-based TM. It was found that depending on the 

design and objective of the models tested, explanation 

and information needs varied among key stakeholders, 

which argues for building stakeholder-specific 

explanations not only focusing on the end-user. In 

TMM (A) the objective of which was to auto-close 

low-scoring alerts, investigators were not affected by 

the model and had a limited need for information. 

Moreover, they did not display any trust-related 

concerns regarding the model (A), which could be 

because of their limited involvement and the positive 

effect it has on their work. Capacity planners were able 

to reduce the resources needed for handling incoming 

alert batches and reduce unproductive work. However, 

when audits occurred or case investigations were 

extended, these capacity planners required reasoning 

and validation for why alerts had been auto-closed. 

This type of explanation was articulated as a need for 

context-relatable explanations that are different from 

model performance metrics provided in the 

monitoring framework. Therefore, explanations for 

capacity planners should focus on interpretability 

rather than completeness, to generate understanding 

and trust. The objective of TMM (B) is to score 

incoming alerts for prioritization purposes and thereby 

minimize time-to-SAR but risk increasing it without 

contextual explanations. While developers were once 

reliable for the auto-closed alerts, while capable of 

interpreting the monitoring framework, they now 

provide a score to capacity planners for prioritizing 

production. Since the scoring is also visible to the 

investigators, it creates a risk of biased investigation. 

If the score is low, effort is low and vice versa. 

Additionally, the risk of investigators spending time 

on interpreting the score and figuring out why it is the 

way it is adds to unproductive work and increase time-

to-SAR contrary to the bank’s objective. To solve 

these issues, the score could either be removed from 

the investigator’s view, or more contextual 

explanations could be added to point the investigator 

in the right direction of the issue with an alert. 

Moreover, auditors may still require information on 

the model logic and its operation for compliance, 

which argues for exploring global explanations. 

Contributions from this paper add to the sparse 

literature on machine learning in AML, especially in 

TM (Canhoto, 2021), adding a socio-technical 

perspective on an empirical case. Moreover, the paper 

sheds lights on different stakeholder needs as the 

objectives of machine learning models changes. It also 

proposes the need to address requirements for xAI in 

automation and augmentation processes differently as 

the liable party of the outcome shifts and is not always 

the end user. The paper responds to the call for more 

interdisciplinary work in explainable AI and identifies 

the stakeholder requirements for building xAI. For 

future work, there is a demonstrated need for further 

empirical research on the shift in stakeholder 

information and explanation needs, depending on 

automation or augmentation. Moreover, empirical 

research testing xAI frameworks to satisfy 

stakeholders needs and concerns are called for. 
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