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Abstract

Novel technologies have great potential to improve
the treatment of individuals with substance use disorder
(SUD) and to reduce the current high rate of relapse
(i.e. return to drug use). Wearable sensor-based systems
that continuously measure physiology can provide
information about behavior and opportunities for
real-time interventions. We have previously developed
an mHealth system which includes a wearable sensor,
a mobile phone app, and a cloud-based server
with embedded machine learning algorithms which
detect stress and craving. The system functions
as a just-in-time intervention tool to help patients
de-escalate and as a tool for clinicians to tailor
treatment based on stress and craving patterns
observed. However, in our pilot work we found
that to deploy the system to diverse socioeconomic
populations and to increase usability, the system must be
able to work efficiently with cost-effective and popular
commercial wearable devices. To make the system
device agnostic, methods to transform the data from a
commercially available wearable for use in algorithms
developed from research grade wearable sensor are
proposed. The accuracy of these transformations in
detecting stress and craving in individuals with SUD is
further explored.

Keywords: Machine Learning, Substance Use
Disorder, Wearable Computing, Stress, Drug Craving

1. Introduction

1.1. Wearable Sensor Applications in
Substance Use Disorder

Substance use disorder (SUD) is defined as the
repeated use of alcohol and/or drugs that causes
significant impairment and negative health, social,
and/or legal consequences (SAMHSA, 2022). The
adverse outcomes of SUD pose a major public health
problem with nearly 92,000 drug overdose deaths in
the year 2020 alone (Volkow & Collins, 2017; Center
for Disease Control and Prevention, 2022). Current
treatment options for SUD rely on behavioral and
pharmacological interventions. Some interventions are
targeted toward managing high-risk states, such as
episodes of drug cravings (strong desires to use a
drug, specific for an individual’s drug of choice (Sinha,
2001)) and stress (perception of a situation as harmful,
threatening, or challenging (Tiffany & Wray, 2012)).
Both stress and craving (which are related constructs)
have been linked to poor outcomes in SUD treatment
and increase rates of return to drug use (Sinha, 2009;
Sinha, 2001; Tiffany & Wray, 2012).

Retrospective self-reporting provides a subjective
estimate of when an individual experiences cravings or
stress, however, it is unreliable and tedious. Ecological
momentary assessment (EMA) involves collecting
experiential data from individuals in near real time
and in their natural environment in order to improve
reporting efficacy and to diminish recall bias (Shiffman
et al., 2008; Marciniak et al., 2020). Ecological
momentary assessment can be used to identify risk
states for individuals with SUD in the real world and
deliver ”just-in-time” and ”just-in-space” interventions
(Carreiro et al., 2020).

Recent advances in wearable sensor technology have
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resulted in a paradigm shift in healthcare monitoring
(E. J. Wang et al., 2017; Y. Wang et al., 2022; Wu et al.,
2021). Moving a step beyond EMA (which requires
active participation), wearable technologies that can
passively and non-invasively detect digital biomarkers
of behavioral and physiological events in real-time
have enabled clinicians to assess underlying medical
conditions remotely. In the SUD treatment space, the
ability to identify digital biomarkers of cravings and
stress have the potential to revolutionize clinical care.

Remote monitoring of craving and stress
experienced by patients with SUD provides crucial
information during their recovery (Carreiro et al.,
2020). Continuous monitoring of objective markers
of craving and stress can help clinicians to provide
appropriate just-in-time interventions to prevent these
patients from return to drug use. In addition, such
remote monitoring can help understand patterns of
contextual information surrounding behavioral states
(e.g. the time of day, social circumstances).

1.2. Previous Work

In our previous work (Carreiro et al., 2020), we
conducted a pilot study to assess the acceptability and
feasibility of using wearable sensor-based detection
of stress and cravings in patients with SUD. Thirty
individuals in treatment for SUD were asked to use
a wearable sensor to continuously record physiologic
data, and annotate self-reported episodes of stress and
craving. The pilot study was conducted using a research
grade device- the Empatica E4 (Empatica, Milan,
Italy). The E4 provides tri-axial (3-axis) accelerometry,
electrodermal activity, skin temperature, heart rate,
and heart rate variability. The machine learning
classifier models developed on E4 accelerometer data
(MLE4) could differentiate stress from no-stress with an
accuracy of 74.5% and craving from no-craving with an
accuracy of 75.7% on a 10-fold cross validation data set.
Adding additional features from electrodermal activity
and heart rate provided a modest increase in accuracy
of slightly more than 5% for each of the conditions.
Thus, 3-axis accelerometer data was found to the most
important data stream to detect stress and craving.

Based on data from the pilot study, an mHealth
system was developed. The system, Realize Analyze
Engage or RAE Health (ContinueYou, LLC) includes
a mobile app that streams wearable sensor data via
a Bluetooth connection and then transmits data to
a secure cloud-based served where the MLE4 for
stress and craving are embedded. If either stress or
craving is detected, the user receives a mobile phone
notification and is given an opportunity to engage in

several de-escalation tools including mindfulness-based
breathing exercises, journaling exercises, or a call for
help for a support person. The RAE system also has
a clinical portal to aggregate data, provide monitoring
capabilities and provide actionable insight to treatment
providers. The RAE systems (app and clinical portal)
are HIPAA, HITECH Act, and CFR 42 part 2 compliant
(Carreiro et al., 2021).

The E4 provided excellent data quality for the
purposes of algorithm development. There were
however several practical barriers noted during our pilot
study with usage of a research grade device for a long
term, real-world application, including:

• Lack of standard smart watch features: Wearing
a research device on the wrist would interfere
with devices normally worn by study participants,
such as traditional watches and smart watches.
Participants suggested adding additional features
to the sensor, such as a clock and fitness tracking
capability, in order to reduce the interruption
that the sensor had on their daily activities
(Carreiro, et. al, 2020) As an even more
desirable alternative, study participants requested
the system work with their own smartwatch of
choice.

• Price-point: Due to its research grade nature,
the E4 has a price value of more than 1500 US
dollars, which makes this device inaccessible to
the general population. In order to realistically
reach the target population of individuals in SUD
recovery, optimizing the platform to function with
less expensive wearable sensors is necessary.

• Size and Aesthetic: To facilitate long-term wear,
study participants indicated that a lower-profile
sensor would be necessary. Study participants
also had different aesthetic preferences, with
some wanting more ”fashionable” and ornate
devices while others wanted more neutral
appearing devices. Because SUD recovery is a
long-term process, it is critical that patients will
comfortably wear the device long-term in order to
maintain the operability of the stress and craving
detection system, and having a variety of sensor
options will be critical to achieve this goal.

Because of the reasons listed above, we sought to
incorporate other devices with 3-axis accelerometry to
increase options available to target end-users. Most
wearable devices provide some form of accelerometer
data, albeit formatted differently than that of a research
grade device. Hence, to determine whether other cost
effective, widely available, and light-weight wearable
sensors can be used for the detection of stress and
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craving, experiments were performed with the Garmin
Vı̀vosmart 4 (GV4), which fits these requirements.

1.3. Need for Data or Feature
Transformations

Since the accelerometer data from E4 and the GV4
are formatted and recorded differently, the originally
developed MLE4 algorithm cannot be directly used on
alternate devices. Ideally, a new machine learning model
would need to be trained on annotated data obtained
from the alternate device. However, it is expensive
and time consuming to repeat a previous experiment by
recruiting new subjects using the original experiment
protocol and using the GV4 instead of the E4, and
thereby develop the machine learning models using the
features derived from GV4 data. Furthermore, this
would be impractical to do for every new compatible
candidate device in order to make the platform more
device agnostic.

To circumvent this problem, the process of
developing an appropriate transformation of 3-axis
accelerometer data can be obtained that can either
map the raw GV4 accelerometer data to raw E4
accelerometer data, or map the features derived from
GV4 data to the features derived from E4 data.

To verify the utility of these transformations,
the performance of the following models with
transformations were evaluated:

• MLE4 algorithm with raw data transformation
applied (MLE4DT)

• MLE4 algorithm with derived feature
transformation applied (MLE4FT)

The method to find appropriate transformations of
raw data or derived features from a commercial device,
such as the GV4, to a research-grade device, such as
the E4, could be extended to any other devices where
raw accelerometer data is accessible. By developing
transformations for multiple devices, this approach will
make the detection of stress and craving, using MLE4,
device agnostic.

2. Methods

The study protocol has been previously described
in Carreiro et al. (2020) and Carreiro et al. (2021).
However, because of the propriety nature of the GV4
device, the data collection procedure is different from
E4. The data analysis, feature selection, and machine
learning training and testing procedures are kept as close
as possible as the original work.

2.1. Study Protocol

The study protocol was approved by the institutional
review board (IRB) at the University of Massachusetts
Chan Medical School. Informed consent was obtained
from all participants.

Prior to the actual experiments, a healthy volunteer
was asked to wear both the E4 and GV4 on the
non-dominant wrist for one hour while doing extraneous
tasks. Tri-axial accelerometer data were collected from
both devices and downloaded for deriving appropriate
transformations.

For the experimental study, a convenience sample
of 60 participants was recruited from outpatient SUD
treatment recovery programs. Potential participants
were identified by treatment providers, and those that
opted to participate were enrolled by study staff during
routine treatment visits. The inclusion criteria were:
age 18 years or older, enrollment in an outpatient
treatment program for SUD, ability to speak English,
own a smartphone, and the ability to provide informed
consent. Exclusion criteria included: physical inability
to wear a wrist-mounted sensor (i.e. upper extremity
amputation or fracture), prisoner status (including use
of court-mandated tracking device), or pregnancy.

2.2. Wearable Sensor System

The wearable sensor used for the experiment is the
commercially available Garmin Vı̀vosmart 4 (Garmin,
Olathe, KS, USA), referred to as GV4. The GV4
can collect and stream data continuously via Bluetooth
connection to a mobile app. The GV4 retails around 100
US dollars, which makes it a cost effective option.

The GV4 has a touch screen interface, up to 7 days
of battery life, is waterproof, and also functions as a
standard fitness tracker. The GV4 is equipped with
a barometric altimeter, 3-axis accelerometer, heart rate
monitor, and pulse oxygenation sensor. While users
can easily download raw sensor data from the E4 using
a web portal, such capability is not available for GV4
because of the propriety nature of the device. The
data from GV4 is obtained using the RAE Health data
acquisition system (developed by ContinueYou, LLC)
(Carreiro et al., 2021).

2.3. Data Collection

Each participant was enrolled in the study for 30
consecutive days. During the enrollment visit, a
training session to demonstrate the proper techniques for
wearing, using, and charging the sensor was provided.
Participants were also given a tutorial on how to operate
the RAE app. Participants were then instructed to wear
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the GV4 on their non-dominant wrist at all times for
the duration of the study period and to only remove
the sensor for charging. Additionally, participants were
instructed to keep the app open in the background of
their phone to maintain pairing between the app and
the sensor. When participants experienced a stress or
craving, they were instructed to self-report this through
the RAE mobile app.

Data collected by the GV4 was streamed via
Bluetooth to the RAE app, which then stores data on
the cloud-based server. Data are collected as five-minute
segments. The E4 collects data continuously and can be
obtained through a web portal developed by Empatica
(Emaptica Connect).

Two sets of data were collected: calibration data
and annotated time series data. Calibration data was a
pair of time series data collected from both an E4 and a
GV4 taken concurrently from a healthy individual with
no prior history of SUD. Calibration data was used to
find the transformations of raw data and derived features
from GV4 to E4. Annotated time series data was the
3-axis accelerometer data, annotated with stress and
craving timestamps designated by and collected from
patients with SUD.

2.4. Feature Extraction

Features required for the original machine learning
model (MLE4) were derived from the instantaneous
amplitude of the 3-axis accelerometer data. Each
five-minute segment of E4 data is subjected to
the Hilbert transformation. This is a powerful
technique in signal processing to estimate the
amplitude instantaneously from rapidly fluctuating
(non-stationary) data (Benitez et al., 2001; Hahn, 1996).
The estimated amplitude corresponding to each axis was
non-Gaussian. Thus, the instantaneous amplitude values
were fitted to the gamma distribution characterized by
the parameters: shape (Sh) and scale(Sc).

As features, the gamma distribution parameters:
Sh and Sc were calculated in five-minute windows.
Furthermore, the mean (M) and variance (V) of
the sensor data for each five-minute window were
calculated. In addition, the distance measure, Dk =√

S2
c + S2

h was defined. Thus, for each segment,
five characterizing parameters M, V, Sh, Sc and Dk

were calculated for each axis. This yielded a total of
fifteen features. The obtained features were cleaned
by removing non-numeric values, empty values, values
outside of physiologic range, and opcode values based
on the software platform.

2.5. Calibration

For developing the data transformation, each
segment of 3-axis accelerometer data from the GV4 is
matched with the same time interval of continuously
collected data from the E4. Thus, time matched
five-minute segments were obtained from the GV4 as
well as the E4.

2.5.1. Data Transformation To develop a
transformation from the raw GV4 accelerometer
data to the raw E4 accelerometer data format required
by the MLE4 algorithm, the GV4 data had to be
adjusted to match the same accelerometry unit scaling
and axis positioning as the E4 data, due to the signal
differences shown in Figures 1, 2, and 3.

(a) E4 X-axis accelerometer reading

(b) GV4 X-axis accelerometer reading

Figure 1: Accelerometer X-axis data comparison

Specifically, the raw E4 data values are signed
8-bit integers ranging from -128 to 127 representing an
accelerometry range of -2g to 1.98g, while the GV4,
whose raw data is recorded units of milli-gs, exceeds the
E4 range. To correctly scale the GV4 data to the E4’s
scale, the milli-g units were converted to gs (divided
by 1000), and any resulting value higher than 1.98gs
or less than -2gs from the GV4 was capped to 1.98 or
-2 respectively. Then, the values were multiplied by 64
and cast as integers to map to the -128 to 127 range of
the E4.

Then, axial comparisons between each axis’s data
were performed to determine if like axes corresponded
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(a) E4 Y-axis acceleromter reading

(b) GV4 Y-axis acceleromter reading

Figure 2: Accelerometer Y-axis data comparison

(a) E4 Z-axis acceleromter reading

(b) GV4 Z-axis acceleromter reading

Figure 3: Accelerometer Z-axis data comparison

to each other between the E4 and GV4 (i.e. determine
if the X-axis of the E4 is the same axis position as the
X-axis as the GV4). After inspection, the X axis of the
E4 corresponded to the Y-axis of the GV4, the Y-axis of
the E4 corresponded to an inverted X-axis of the GV4,

and the Z-axis of the E4 corresponded to the inverted
Z-axis of the GV4.

2.5.2. Feature Transformation On each of the
fifteen features derived from the GV4 accelerometer
data, linear regression was employed to find a linear
mapping from GV4 features to E4 features. This
mapping can be defined using equation 1.

FeatureE4 = α× FeatureGV 4 + β (1)

2.6. Testing of Machine Learning Models

For the model MLE4DT, the transformed raw data
from the GV4 is used to derive the features. These
features were used as input to the MLE4 model to detect
stress and craving. Whereas for the model MLE4FT,
the features are derived from raw GV4 data and then
those features are transformed and used as an input to
the MLE4 model. All data analysis was performed using
MATLAB (version 2020b, MathWorks, Natick, MA).

To compare these transformations of the MLE4
model to a native implementation on GV4 devices, a
new set of classifier models, MLGV4, was developed
to distinguish between the following classes: craving
vs. no craving, stress vs. no stress, and craving vs.
stress. In all, twenty-five classification models were
tested from the following categories: decision trees,
discriminant analysis, logistic regression, naı̈ve Bayes
classifiers, support vector machines, nearest neighbor
classifiers, and ensemble classifiers using the MATLAB
classification learner app.

For these analyses, the data set was not split into
a training set and testing set because of the limited
amount of user-reported stress and craving instances (40
craving, 60 stress instances, and 100 baseline/no stress
instances). Instead, to avoid over-fitting the model,
the data set was subjected to 10-fold cross validation
(separated into 10 folds, trained with nine folds, and
tested on the other fold until each fold was used as a test
set). Each classification algorithm was evaluated with
the following standard metrics: sensitivity, specificity,
accuracy, and area under the curve (AUC) of the receiver
operating characteristic (ROC) curve.

3. Results

The performance of the original machine learning
algorithm, which was developed using E4 sensor
data, was studied with transformed data as well as
transformed features of GV4. The three sets of machine
learning models, MLE4 (original), MLE4DT (with GV4
data transformation), and MLE4FT (with GV4 feature
transformation) were evaluated and compared using
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sensitivity, specificity, and accuracy metrics.

3.1. Data Transformation of GV4

Figures 1, 2, and 3 represent the GV4 3-axis
accelerometer data from X, Y, and Z axes collected
simultaneously with E4 data from a healthy individual.
By applying the accelerometry unit scaling and axial
comparisons between the E4 and GV4 data, the
following per-axis raw data transformations were
determined as outlined in Table 1.

Table 1: GV4 to E4 Per-Axis Data Transforms

E4 Axis Data Transforms

E4x 0.064 ∗GV 4y
E4y −0.064 ∗GV 4x
E4z −0.064 ∗GV 4z

Using these data transformations, the raw
accelerometer data collected from GV4 devices
was then able to be transformed to the E4 formatting for
use in the MLE4 algorithm, as shown by the sample in
Figure 4.

(a) E4 X-axis accelerometer reading

(b) Transformed GV4 Y-axis accelerometer reading

Figure 4: Transformed E4 X-axis data comparison

3.2. Feature Transformation of GV4

The original MLE4 algorithm requires fifteen
features which were obtained from five characterizing
parameters for each of the axis. These features
from GV4 were transformed to E4 using a linear
transformation defined by equation 1. The (α, β) values
of each feature are shown in Table 2.

Table 2: Coefficients after Linear Transformation

Features α β

M x 1.907703 8.044723
M y 1.979138 -1.050642
M z 2.000000 -4.000000
V x 3.802909 14.763977
V y 4.300000 -2.968212
V z 3.250000 4.642617
Sh x 0.900000 0.000000
Sh y 0.900000 0.000000
Sh z 0.840000 0.000000
Sc x 2.150000 0.000000
Sc y 2.150000 0.000000
Sc z 2.000000 0.000000

Using these feature transformations, the features
extracted from the raw accelerometer data collected
from GV4 devices was then able to be fed to the original
MLE4 algorithm.

3.3. GV4 Based Machine Learning

To provide a GV4 based comparison for the MLE4
transformations, a set of classifiers were trained to
develop a new GV4 based algorithm (MLGV4) utilizing
the same fifteen accelerometer data features as MLE4.
The confusion matrices and ROC curves of the best
classifiers developed for differentiating between stress,
craving, and no stress are detailed below.

Using a Gaussian SVM for the craving vs. no
craving analysis (CvNC), with craving set as the positive
class, the sensitivity was 69.8% and the specificity was
72.1%. The AUC of the model’s ROC was 0.74, and the
model’s accuracy was 71.0% (Figure 5).

Using an ensemble bagged tree classifier for the
stress vs. no stress analysis (SvNS), with stress set as
the positive class, the sensitivity was 76.0% and the
specificity was 67.2%. The AUC of the model’s ROC
was 0.78, and the model’s accuracy was 71.6% (Figure
6).

Using an ensemble bagged tree for the craving vs.
stress analysis (CvS), with craving set as the positive
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Figure 5: CvNC confusion matrix and ROC

Figure 6: SvNS confusion matrix and ROC

class, the model had a sensitivity of 85.0% and a
specificity of 55.0%. The model’s AUC was 0.75, and
its accuracy was 70.0% (Figure 7).

Figure 7: CvS confusion matrix and ROC

3.4. Model Performance Comparison

After obtaining the trained and tested machine
learning model for GV4 data, the aggregated
performance metrics of these models were compared
with the metrics of the models that employed GV4
transformations. Table 3 provides the sensitivity,
specificity, and accuracy of the MLE4DT and MLE4FT,
along with the original MLE4 and the newly developed
MLGV4 by considering the average of all three models
(stress vs no stress, carving vs no craving, and stress vs
craving) to account for the performance as a whole.

Table 3: Machine Learning Performance Metrics

Algorithm Sensitivity Specificity Accuracy

MLE4 75.3% 76.0% 75.7%
MLE4DT 72.6% 71.8% 73.5%
MLE4FT 71.5% 72.6% 70.0%
MLGV4 76.9% 64.8% 70.9%

4. Discussion

In this work, we demonstrate that the data collected
from the commercially available GV4 device can be
employed for the detection of stress and craving in
individuals with SUD. Our approaches, with data as
well as feature transformations, provided an accuracy
comparable to the original machine learning model
developed with the FDA approved E4. The performance
differences were minor for the small data samples tested,
and these may be attributed to other inherent differences
between the E4 and GV4, such as a difference in
accelerometry sampling rates (32Hz for the E4 and
25Hz for the GV4) and data ranges, differences in
susceptibility to signal noise, or sensitivity to specific
types of motion by the different devices’ accelerometers.

While the transformations derived in this research
for the MLE4 model to use GV4 data are specific to GV4
devices, similar techniques can be employed to adapt
the original algorithms to other commercial wearables.
This allows for greater accessibility to the stress and
craving detection capabilities of the MLE4 algorithm
with little loss to its detection accuracy. Additionally,
the utilization of commercial devices over a research
grade device would increase accessibility (due to lower
cost and ease of access).

The benefits of using a commercial sensor over
a research grade sensor can also be viewed in terms
of participant acceptability. Participants consistently
report that they preferred consumer grade wearbles
due familiarity and decreased concern for stigma. An
important consideration for the RAE system is that it
maintain user privacy by not be readily identifiable as
related to SUD. Many research participants also report
that they enjoy the interactive features of their own
smart watches such as the step tracking and watch face
functionalities. Moreover, the majority of participants
stated that they would be willing to use the RAE app for
a longer period of time if compatible with a commercial
grade sensor.

By determining the data accuracy, cost feasibility,
and participant acceptability of the GV4, data collection
can be expanded to additional populations and tested
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more widely. Future work will include validating
algorithms in a variety of popular off-the-shelf wearable
sensors, evaluating end-user experiences with the RAE
system coupled with commercially available devices,
and clinical trials to evaluate the impact of the RAE
system on key outcomes (clinical progress, quality of
live, and economic impact).

5. Conclusion

The ability to apply transformations to data
collected from a commercial wearable device for
use in algorithms and tools developed for separate
research-grade devices allow for higher user
engagement, as well as time and cost savings for
researchers. In this regard, access can be extended
to intervention aiding tools, such as the MLE4 stress
and craving detection algorithms, thereby benefiting a
wider range of patients in SUD recovery while reducing
device per-user cost of the intervention. Future research
is needed to ensure the transformations can maintain
algorithm performance in a larger population and to
develop further transformations for other commercially
available wearable devices.

References

Benitez, D., Gaydecki, P., Zaidi, A., & Fitzpatrick, A.
(2001). The use of the hilbert transform in
ecg signal analysis. Computers in biology and
medicine, 31(5), 399–406.

Carreiro, S., Chintha, K. K., Shrestha, S., Chapman, B.,
Smelson, D., & Indic, P. (2020). Wearable
sensor-based detection of stress and craving
in patients during treatment for substance use
disorder: A mixed methods pilot study. Drug
and alcohol dependence, 209, 107929.

Carreiro, S., Taylor, M., Shrestha, S., Reinhardt, M.,
Gilbertson, N., & Indic, P. (2021). Realize,
analyze, engage (rae): A digital tool to support
recovery from substance use disorder. Journal
of psychiatry and brain science, 6.

Center for Disease Control and Prevention. (2022).
Death rate maps and graphs: Drug overdose
deaths remain high. https : / / www. cdc . gov /
drugoverdose/deaths/index.html

Hahn, S. (1996). The instantaneous complex phase and
complex frequency, hilbert transforms in signal
processing. Arthech House, Boston, MA, 48.

Marciniak, M. A., Shanahan, L., Rohde, J.,
Schulz, A., Wackerhagen, C., Kobylińska, D.,
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