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Abstract

A large part of knowledge evolves outside of the
operations of an organization. Question and answer
online social platforms provide an important source
of information to explore the underlying communities.
StackOverflow (SO) is one of the most popular question
and answer platforms for developers, with more
than 23 million questions asked. Organizing and
categorizing data is crucial to manage knowledge
in such large quantities. Questions posted on SO
are assigned a set of tags and textual content of
each question may contain coding syntax. In this
paper, we evaluate the performance of multiple text
representation methods in the task of predicting tags
for SO questions and empirically prove the impact of
code syntax in text representations. The SO dataset
was sampled and questions without code syntax were
identified. Two classical text representation methods
consisting of BoW and TF-IDF were selected along four
other methods based on pre-trained models including
Fasttext, USE, Sentence-BERT and Sentence-RoBERTa.
Multi-label k’th Nearest Neighbors classifier was used
to learn and predict tags based on the similarities
between feature-vector representations of the input
data. Our results indicate a consistent superiority of
the representations generated from Sentence-RoBERTa.
Overall, the classifier achieved a 17% or higher
improvement on F1 score when predicting tags for
questions without any code syntax in content.

Keywords: Text representation, Tag prediction, Q&A
forums, StackOverflow, Knowledge-intensive work

1. Introduction

Modern organizations are increasingly
becoming knowledge-intensive, which means
their success is intertwined with their capacity

to solve complex problems through creative and
innovative solutions, information processing, and
functionalist expertise (Alvesson, 2001; Feldman
and March, 1981). Therefore, gathering, storing
and consuming information is an essential process
for knowledge-intensive organizations (Feldman and
March, 1981), such as companies working in the
field of information technology. Furthermore, as
organizations and organizing are becoming more fluid
and flexible (Schreyögg and Sydow, 2010), a large part
of information and knowledge essential to them might
exist outside their operational boundaries—for example,
on various digital repositories of online collaboration
platforms. As potential extra-organizational sites for
knowledge-based value creation such platforms are of
strategic importance (Laihonen and Huhtamäki, 2020).

One prominent example of such knowledge-creation
sites are crowd-sourced Question and Answer (Q&A)
online platforms, which present an opportunity to
investigate and analyse the organisation of information
as well as communities emerging around them.
Such platforms may consist of millions of questions,
answers and members. Managing large quantity of
information, however, introduces various challenges.
The most well-known Q&A professional online forum,
StackExchange (SE) is a collection of more than 178
Q&A communities. Platforms of all SE communities
follow a similar structure despite the fact that each has
its own topic. Community members are incentivized to
perform various activities such as question answering,
marking duplicate questions etc., using on a reputation
reward system.

One of the first and most popular community
introduced on SE is StackOverflow (SO), which
centers around questions related to programming.
SO is designated for developers and covers multiple
technology-related topics. As such, users asking
questions on this platform are inclined to include coding
syntax, known as code-snippets, in their questions’
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content. More than 23 million questions have been
asked on SO since it was created. Organizing and
categorizing the data is crucial to make an online
platform more usable for its purpose (Alaimo and
Kallinikos, 2020). As other SE communities, SO
platform categorizes questions using keyword labels
known as tags. Each question is assigned a set of tags
that better describe the question’s scope to facilitate
indexing and browsing for other community members
who can provide an answer.

In this work, we assess the quality of multiple
text representation techniques in the task of predicting
question tags. Generally, this task is known as
Multi-Label Classicication (MLC) and it consists in
training a classifier to learn and predict multiple labels
to be assigned to a data entity. Recent approaches
addressing the MLC problem achieve state-of-the-art
performance in terms of accuracy (Jiang et al., 2021;
J. Zhang et al., n.d.). In this study, we employ
the Multi-Label k’th Nearest Neighbors (ML-kNN)
(M. L. Zhang and Zhou, 2007) technique to predict tags
for SO questions. ML-kNN classifier learns and predicts
tags based on the similarities between the feature-vector
representations of the input data. This feature of the
algorithm makes it an appropriate method to assess the
quality of text representation methods, despite the fact
that it is outperformed by other models (Skenderi et al.,
2021).

Text representation methods enable the conversion
of textual information into a machine readable format
which can then be used to analyse and process the
extracted information by the use of algorithms. For
this work, we employed two classical text representation
techniques consisting of the Bag of Words and TF-IDF.
In addition, we used Fasttext as a word2vec (Mikolov
et al., 2013) inspired text embedding model and three
other transformer-based (Vaswani et al., 2017) models
consisting of: Universal Sentence Encoder (Cer et al.,
2018), Sentence-BERT and Sentence-RoBERTa (Liu
et al., 2019; Reimers and Gurevych, 2019).

We sampled the SO questions dataset to include
47,698 questions. The attributes of each question
include title, question’s body and a list of up to 5
tags. In our experiment, we extracted the information
contained within the title and body of a question and
used it to generate representations from the selected
text representation techniques. Questions without a
code-snippet in their body are identified and used
separately. In our experiment, we employ a set of
metrics to measure the performance of ML-kNN using
using as input features obtained from each selected text
representation technique.

Such experimentation is necessary in order to define

best solutions to build algorithmic systems to organize
data in knowledge-creation systems. Further, while text
representation methods might have shown to work in
one context, they might not perform as good in a other
context or with different data. Thus, the contributions
of this work are to 1) evaluate the performance of
multiple text representation methods in the context of
StackOverflow for the tag-prediction task 2) measure the
impact that code snippets have over text representations,
if present in a question’s textual content.

The rest of this paper is organized as following.
In Section 2, we describe multiple text representation
methods and define the ones that are evaluated in
this work. In section 3, we provide an overview of
the StackOverflow dataset and specific details for the
data pre-processing stage that we employed prior to
evaluation. The multi-label classification task and model
that we selected for our experiment are described in
section 4. In section 5 we provide details on the
experiment setup, evaluation metrics and disseminate
the evaluation results. The experiment results and
corresponding implications are discussed in section
6. Finally, in section 7 we provide the conclusions
and suggest various methodological improvements to
consider in future work.

2. Text Representation Methods

Text representation refers to a set of methods
which enable the conversion of textual information
into a machine readable format which can then be
used to analyse and process textual data further with
algorithms. Specifically, machine learning algorithms
require machine readable input that is usually comprised
of numerical values. Text representation methods
can be roughly divided to classical baseline methods
and more novel word embedding techniques that use
pre-trained language models. In this section we explain
the differences between these approaches and provide
the definitions of the representation methods that were
evaluated in this work.

Our selection includes the Bag of Words and Term
Frequency-Inverse Document Frequency as baselines,
Fasttext (Bojanowski et al., 2017), Universal
Language Encoder (Cer et al., 2018), Sentence-BERT
(Reimers and Gurevych, 2019) and an approach
based Sentence-BERT using a refined RoBERTa model
(HuggingFace, 2021; Liu et al., 2019).

2.1. Classical baselines

Bag of Words (BoW) is one of the simplest text
representation techniques and could be considered a
baseline. This technique consists in counting the word
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occurrences of a text and providing a vector of counts
as the text representation. BoW ignores any potential
information included in the grammar or in the order of
words comprising the text. The list of counts is provided
as a vector of natural numbers where each position in
the vector corresponds to a distinct word. The length
of a BoW representation vector equals the number of
distinct words in the corpus. BoW representations do
not consider the order of the words nor their frequency
over all corpus.

Term Frequency - Inverse Document Frequency
(TF-IDF) is a popular text representation technique
which provides weighted scores for each distinct word
comprising a text. This technique adjusts the frequency
of each specific term in the represented document by
using the total number of documents in the corpus in
which the term appears. The TF-IDF score for a single
word w in a text t ∈ T is defined as:

Score(w, t) = tf(w, t) ∗ log( |T |
df(w, T )

). (1)

Similar to BoW representations, the length of TF-IDF
representations equals the number of distinct words
appearing on the corpus of texts.

The subset of words appearing in a single text is
usually much smaller than the size of the entire corpus.
Hence, the representation vectors generated from BoW
and TF-IDF techniques have a relatively small number
of non-zero values and are known as sparse vector
representations. BoW and TF-IDF are used on multiple
works as relatively strong baselines or as textual input
vectorizers for various machine learning architectures
(Prabhu et al., 2018; Singh et al., 2020; Skenderi et al.,
2021; You et al., 2018).

2.2. Pretrained Text Embeddings

Text representation techniques, such as BoW and
TF-IDF, utilise word frequencies only and therefore do
not capture the semantic meaning of the represented
text, i.e. they do not account for word positions
in sentences or relations between words. The
representation techniques that enclose the syntactic and
semantic meaning of words in a text are known as word
embedding techniques. A representation generated
by such techniques usually consists of a vector of
real numbers r ∈ R and it is known as a dense
representation.

Specific language models are trained on usually
large corpus of text data to learn patterns emerging
from the co-occurrence of words (Bengio et al.,
2003; Mikolov et al., 2013; Mikolov et al., 2017).
Such pre-trained models can be used to generate text

representations across domains, avoiding the need to
train from scratch. Generally, the language models are
implemented using neural-networks based architecture.

Word2vec embedding model was introduced by
Mikolov et al. (2013). Their language model is
well-known for it’s novel architecture which consists
of a shallow neural network with a single hidden
layer. The authors proposed two learning approaches for
Word2vec: the Continuous Bag Of Words (CBOW) in
which given a set of context words, the model learns to
predict a target word and Skip-gram in which the model
predicts the set of context words, when the target word
is provided as input. One disadvantage of the Word2vec
model is its inability to generate embeddings for words
which are not included in the vocabulary used during the
training stage.

Fasttext model addressed the problem of providing
embeddings for out-of-vocabulary words (Bojanowski
et al., 2017). In their work, authors represented each
word as a bag of character n-grams, including the
word itself. During the inference stage, the Fasttext
model sums up the corresponding n-gram representation
vectors of a word and provides the result as an output.
When generating the representations in the sentence or
paragraph level, individual text representation vectors
are normalized using the L2-norm and their average is
output as an embedding. The Fasttext representation
of a text consists of a vector of 300 real numbers.
To overcome issues with expensive training resources
needed, a list of Fasttext models, pre-trained on data
from multiple languages, were presented by Mikolov
et al. (2017). Due to its architecture, Fasttext provides
static text representations, disregarding the text context.

Context-aware text representations can be obtained
from transformer-based language models. The
transformer architecture was introduced by Vaswani
et al. (2017) as an approach to the machine translation
problem. Nevertheless, their proposed architecture
has become popular in many NLP applications since
it is more efficient than previous models used for
language modeling (Naseem et al., 2020). Transformers
consist of an encoder-decoder structure using attention
mechanisms which allow the model to focus more on
certain components of text. In their work, the authors
provide an exhaustive description of the transformer’s
architecture and implications.

Universal Sentence Encoder (USE) model is a
transformer-based text representation method that was
introduced by Cer et al. (2018). The USE approach
consists of a sentence embedding model that learns
and generates text embeddings by using the encoder
component of the transformer. Authors use the attention
mechanism of the transformer’s encoder to calculate
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context-aware representations for individual words of
a sentence. These representations are summed for
each word position which enables the model to output
a sentence representation vector with 512 dimensions.
The USE representation of a text consists of a vector
with 512 real numbers.

The transformer’s encoder component was also used
by Devlin et al. (2019) to introduce the Bidirectional
Encoder Representation (BERT) model. In contrast
to the previous models which processed text from the
left to the right, BERT considers the context in both
directions, left and right simultaneously. Originally,
authors released two pre-trained model versions with
varying number of parameters, namely bert-base and
bert-large. Although superior on multiple Natural
Language Procesing (NLP) tasks, the pre-trained
models under-performed in the text embedding task
(Reimers and Gurevych, 2019).

Sentence-BERT approach was presented from
Reimers and Gurevych (2019) as a solution to
BERT models shortcomings on providing good quality
text embeddings . Sentence-BERT employs a
siamese network architecture and optimizes the output
embeddings so they can be compared with ordinary
similarity metrics to facilitate various text classification
tasks. Although authors suggest fine-tuning the
proposed models when performing other tasks, in
their approach they show superior results on multiple
embedding evaluation benchmarks on which the models
were not previously trained. The representations
generated from the Sentence-BERT model for a single
text consist of a vector of 1024 real numbers.

In their work, Liu et al. (2019) found that the original
proposed BERT model was significantly under-trained
and proposed a set of configurations for BERT’s
pre-training process. The authors named their technique
as Robustly optimized BERT approach (RoBERTa).
Their modifications improved the model’s performance
on multiple NLP tasks.

Sentence-RoBERTa was another model trained
and evaluated from Reimers and Gurevych (2019)
who found that using the original RoBERTa model
instead of BERT for their approach didn’t provide
significant improvements in performance. A superior
RoBERTa model was released as part of a project
organized by HuggingFace (HuggingFace, 2021).
They trained various models, including RoBERTa,
with 1 billion training pairs of textual data and
achieved state-of-the-art performance on multiple
benchmark tasks. Similar to Sentence-BERT’s, the
text representation obtained from Sentence-RoBERTa
consists of a vector of 1024 real numbers.

3. StackOverflow Dataset

StackOverflow (SO) is one of the first and most
popular community introduced on StackExchange. As
of March 2022, this Q&A site consists of a combined
number of +56 Million questions and answers posted.
SO is designated for programmers and it is voluntarily
moderated by users based on an incentive system. Each
question is manually assigned by the author at least one
and up to five tags. A tag consists of keywords that
represents a specific topic of the respective question.
Tags are used to organize the questions and enable other
expert users to browse and provide answers for them.
Community members can propose and approve new tags
according to a privilege reward system based on user’s
reputation.

Recently, the SO community is being studied from
various angles such as Expert Finding (Dargahi Nobari
et al., 2020), Duplicate Question Identification (Silva
et al., 2018)

and Tag Suggestion (Beyer and Pinzger, 2015).
In addition, multiple works have also been presented
for the Tag Prediction task. For example, (Saini and
Tripathi, 2018) tested various classifiers to predict tags,
given the TF-IDF extracted features. Singh et al. (2020)
proposed a tag association system which predicts the
tags assigned to a question by employing code analysis
and a tag sampling strategy. In another work, Moreno
and Camargo (2020) presented a tag recommendation
model intended as a tool to suggest tags for newly
created questions.

Data dumps of the SO community are released
quarterly by InternetArchive1. We imported the
data dump released on March 2022 and loaded the
SO community dataset in a non-relational database.
SO is a particularly dynamic community with new
technologies emerging constantly. Hence, to ensure
more homogeneous data, we sampled our dataset to
include questions posted from the beginning of 2022.
Initially, the raw data consisted of 47,698 questions. We
used the title, body and tags attributes of each question
to evaluate our methods. The body attribute consisted of
raw Hypertext Markup Language (HTML) and the tags
were formatted as a list of keywords. We converted the
body of each question to raw text and applied a series of
pre-processing actions that consisted on removing urls,
newlines, tabs and replacing the consecutive multiple
white-spaces with a single one. When users ask a
question on SO, they could provide code-snippets to
illustrate the issue that they are facing. Since one of
the goals of this work is to evaluate the impact of
code-snippets on a question’s textual content, we split

1https://archive.org/download/stackexchange
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the dataset into two groups corresponding to questions
with and without a code-snippet in their body.

Each question could be assigned up to 5 tags and
from our data, we observed that most of them were given
2 or 3 tags. In Figure 1, we provide the distribution of
the number of tags allocated to every question.

Figure 1. Distribution of the Number of Tags

Assigned to Each Question.

There were 10,135 distinct tags in the dataset. The
overall tag frequency distribution is illustrated in Figure
2.

Figure 2. Overall Tag Frequency Distribution.

We observed a right skewed distribution with a
long tail toward high frequencies to the right. The
most popular tag is python which was assigned to
9,754 questions followed by javascript, assigned to
6,976 questions. The majority of tags only appear
once or a few times. In our analysis, we used 5 fold
cross validation to train a supervised learning algorithm.
Given our use case, we filtered out all of the tags that
appeared less than 5 times in our dataset to maximize
the algorithm’s learning potential. This filtering step
reduced the number of distinct tags to 2024 and had a
minimal effect over the number of questions in our data
by reducing it by less than 0.5%. An overview of the
filtered dataset, is provided in Table 1.

Table 1. Dataset Overview.
# of Questions # of TagsWith Code Without Code

Raw 42,213 5,485 10,135
Filtered 41,965 5,341 2,024

4. Methodology

In this section, we provide an overview of the
multi-label classification (MLC) problem, describe the
classification model that we employed for this work
and provide details on how it enabled us to evaluate
the performance of text representation methods while
predicting the tags of questions.

4.1. Multi-label Classification

MLC is the task of predicting zero or more labels to
be assigned to a target data entity and has been applied
in multiple domains. In this work (Loza Mencı́a and
Fürnkranz, 2008), authors proposed EUR-Lex which is
a database comprised of legal documents, each labeled
with a number of labels. Multiple works in the context of
MLC dataset (Chalkidis et al., 2019; Prabhu et al., 2018;
You et al., 2018) have used EUR-Lex as a benchmark
dataset. The authors of this work (Papanikolaou et al.,
2017) evaluated an ensemble of methods to predict
labels of 12 million bio-medical papers. Fiallos and
Jimenes (2019) proposed a technique which consisted
on training a multi-label classifier on data obtained from
Reddit social network and test the model’s performance
at predicting the topics of interest on another dataset
comprised of Twitter posts.

The solutions for the MLC problem usually
employ at least one of these techniques: problem
transformation and algorithm adaptation. The problem
transformation approach consists in the transformation
of MLC task into multiple single-label classification
tasks. Usually, the predictions obtained from the
single-label classifiers are merged together. Binary
relevance was among the first solutions that was based
on the problem transformation principle (Boutell
et al., 2004). Other works such as (Hüllermeier
et al., 2008) provided alternative implementations of
the single-label classifiers while following the same
problem transformation logic.

Other solutions for the MLC problem focus on
modifying a single-label classification model to support
MLC. This technique is known as algorithm adaptation.
Among the first proposed approaches following this
method was introduced by Schapire and Singer (1999),
who modified the original algorithm of AdaBoost
(Freund and Schapire, 1997) to perform MLC.
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4.2. ML-kNN method

The Multi-Label k-Nearest Neighbors (ML-kNN)
approach proposed from M. L. Zhang and Zhou (2007),
follows the algorithm adaptation principle . This method
builds on top of the k-Nearest Neighbors algorithm to
provide a solution for the MLC task. On the training
stage, k clusters are identified based on the euclidean
distances between the feature vector representations
of each data point in the training set. For our
specific tag-prediction application, the tags assigned to
a question q are represented through a vector defined
as Tags(q) = (1, 0, ..., 1), where each binary value
corresponds to a distinct tag. For each tag, ML-kNN
counts the number of neighbours which have selected
it. The counts are used to calculate the prior and the
likelihood probabilities for every single label.

During the inference stage, the ML-kNN model is
provided a set of features. First, the algorithm tries
to identify top k entities with the most similar set
of features from the training data. The probabilities
learned during the training stage are used to produce the
tag-predictions by employing the maximum a posteriori
(MAP) estimation. MAP assigns a probability value
to each tag available, based on the prior probabilities
measured during the training phase and the tag
distributions of the identified k nearest neighbours.

ML-kNN’s algorithm predicts the tags based on the
similarity between the feature-vector representations of
the training data. This feature of the algorithm makes
it an appropriate method to use in our experiment.
By implementing ML-kNN for the tag-prediction task
we evaluated the quality and performance of the text
representation methods that we selected.

The similarity scores of the representation vectors
are calculated by measuring the euclidean distance.
This metric performs well when comparing the text
representation features of underlying texts that have
similar lengths. In our case, the textual content of
questions is not identical. We addressed this issue by
performing L2 normalization over each representation
vector. This technique scales the values comprising
a vector such that the sum of their squares equals 1.
The euclidean distance computed from the normalized
vectors is proportional to the cosine distance which
performs well in various text mining tasks (M.K and
K, 2016).

5. Experimental Evaluation

In this section, we describe the evaluation of
the ML-kNN model using the selection of text
representation methods. In Table 2 we provide details on

the properties of each method. We used three evaluation
metrics to provide insights on the performance ML-kNN
combined with each representation method. A
description of the experiment setup is provided to
facilitate reproducing of this work. Next, we provide
details on the evaluation process and disseminate the
results.

Table 2. The properties of the selected text

representation methods.

Representation Sparsity Dimensions Context
Aware

Bag of Words Sparse 41,579 No
TF-IDF Sparse 41,579 No
Fasttext Dense 300 No
USE Dense 512 Yes
Sent-BERT Dense 1024 Yes
RoBERTa Dense 1024 Yes

5.1. Evaluation Metrics

The ML-kNN model provides the predicted tags of
a question as a multi-hot numbered vector comprised of
1’s (select) and 0’s (do not select) where each position
corresponds to a distinct tag. The order of the predicted
tags was not of concern to our evaluation. Ideally, the tag
predictions for a question in our dataset should include
all of the actually assigned tags and avoid selecting
the non-assigned ones. Evaluating the performance
of our classifier by using the simple accuracy metric
would not be feasible given the class imbalances. We
selected the Precision, Recall and F1 scores to evaluate
the performance of the multi-label predictions, based on
related work (M. L. Zhang and Zhou, 2014). In Table
3, we provide the binary confusion matrix to illustrate
the definitions of the selected metrics where positive and
negative terms correspond to a tag being selected and
not selected, respectively.

Table 3. Binary Confusion Matrix.
Ground Truth

Positive(1) Negative(0)

Predicted Postive(1) TP FP
Negative(0) FN TN

Given two vectors, one representing the actual tags
and the other containing the predicted ones, the totals for
true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) are calculated.

The precision score measures the proportion of
positive predicted tags that are actually positive over all
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tags predicted as positive and it is defined as:

Precision =
TP

TP + FP
. (2)

With Recall we compute the proportion of positive
predicted tags that are actually positive over all tags that
are indeed positive. The Recall score is defined as:

Recall =
TP

TP + FN
. (3)

Our selected model can achieve a high precision by
only predicting positive tags on which it has the highest
confidence i.e. with highest probability.

The F1 score is used as a balancing measure between
the precision and recall scores, and is defined as follows:

F1 score = 2 ∗ Precision ∗Recall

Precision+Recall
. (4)

There are two main methods to aggregate precision,
recall and F1 scores: macro and micro-averaging (M. L.
Zhang and Zhou, 2014). With the macro-averaging, the
scores are calculated independently for each tag and the
average overall tags is computed. In micro-averaging
technique the true positives, false positives and false
negatives for each tag are summed up and the resulting
values are used to calculate the precision, recall and F1
scores. We choose the micro-averaging method since it
provides better overview for datasets with imbalanced
labels, such as ours (M. L. Zhang and Zhou, 2014).

5.2. Experiment Setup

The experiment was run on a single computing
instance2 to keep the evaluation reproducible and
congruous across the multiple combinations. We choose
the scikit-multilearn python library’s implementation of
the ML-kNN model (Szymański and Kajdanowicz,
2017). We used the tensorhub3 library to generate the
text representations for USE and SentenceTransformers4

to generate representations from Sentence-BERT and
Sentence-RoBERTa pre-trained models.

ML-kNN model is initialized with two parameters:
number of neighbors k and smoothing parameter s. We
performed a grid-search parameter optimization with 3
folds of cross validation and found k=3 and s=1.0 to
be the configurations yielding the best performances in
our dataset. Given the imbalanced distribution of tags

2CPU: Intel Xeon Processor (Skylake, IBRS) 10 cores ,RAM:
42.1GB

3https://www.tensorflow.org/hub
4https://www.sbert.net/

in our dataset, we performed a 5 fold cross validation
evaluation of ML-kNN for each of our selected text
representation methods. The results were computed
separately for questions with and without a code snippet
in their textual content.

5.3. Evaluation Results

To assess the performance of each combination of
ML-kNN model with the selected text representation
methods, we provide the evaluation results in Table
4. The evaluation results are assessed for questions
with and without code-snippet(s) in their textual content.
Each score is computed by performing micro-average
aggregation of the corresponding scores obtained from
evaluating the model on 5 cross-validation folds.

Table 4. Evaluation results of the text

representation methods for questions with and

without a code snippet in their textual content.
Precision Recall F1 score

Questions with
code snippets
BoW 0.25 0.54 0.34
TF-IDF 0.28 0.59 0.38
Fasttext 0.19 0.47 0.27
USE 0.39 0.65 0.49
Sentence-BERT 0.17 0.51 0.25
Sentence-RoBERTa 0.48 0.70 0.57
Questions without
code snippets
BoW 0.39 0.76 0.51
TF-IDF 0.40 0.78 0.53
Fasttext 0.32 0.73 0.44
USE 0.50 0.80 0.61
Sentence-BERT 0.27 0.75 0.39
Sentence-RoBERTa 0.58 0.82 0.68

6. Discussion

Based on the computed F1 scores during the
evaluation, the overall performance of ML-kNN
classifier was similar to other approaches using datasets
with similar properties (Singh et al., 2020; Skenderi
et al., 2021).

From our results, we observe that the recall
score is consistently higher than precision among
all of the evaluated combinations. Hence, ML-kNN
predicts most of the correct tags, regardless of which
representation method was used. The classification
model achieved highest scores when using the
Sentence-RoBERTa representations. Presumably, the
excessive pre-training of the RoBERTa model on data
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from multiple domains (HuggingFace, 2021) improved
the quality of its representations. The runner-up text
representation method according to our results is the
Universal Sentence Encoder (USE) model. In terms
of precision and recall scores, the performance of
USE representations was up to 0.08 points off the
Sentence-RoBERTa representation’s performance.
Overall, both BoW and TF-IDF classical text
representation methods consistently outperformed the
Fasttext and Sentence-BERT generated representations.

All of our selected text representation methods
perform better when ML-kNN predicts tags of
questions without code-snippets in the textual content.
On questions without code-snippets the respective
evaluation scores increase by more than 17%. Even
though the syntax of most high-level programming
and scripting languages may mimic specific natural
language words and structure, our results indicate that
they introduce an additional noise to text data.

7. Conclusions and Future Work

Managing valuable information generated on social
platforms is important for knowledge workers and
knowledge-intensive organizations. Text representation
methods enable the conversion of textual information
into a machine readable format which can then be
used to analyse and process text data further by
using algorithms. This work presented a quantitative
evaluation study of text representation methods in
the multi-label classification task. We employed the
Question and Answer StackOverflow (SO) community
data to run our experimental evaluations. SO community
maintains a list of available tags that are used to label
and categorize each question. The potential presence
of code-snippets in a questionis one specific property
of the StackOverflow questions. Our filtered dataset
comprised of 41,965 questions with code-snippets and
5,341 questions without a code-snippets in their body.

The Multi-label k’th Nearest Neighbors (ML-kNN)
method was used to learn and predict tags for each
question. This specific multi-label classifier considers
the euclidean distance of the feature representations of
the input data when learning and inferring labels. We
selected the Bag of Words, Term Frequency-Inverse
Document Frequency, Fasttext (Bojanowski et al.,
2017), Universal Language Encoder (Cer et al., 2018),
Sentence-BERT (Reimers and Gurevych, 2019) and
Sentence-RoBERTa model (HuggingFace, 2021; Liu
et al., 2019) as text representation techniques. The
ML-kNN classifier was evaluated in the tag prediction
task for each representation type by employing a 5-fold
cross validation scheme. We used precision, recall

and F1-scores to assess the predictive performance
of the classifier for each run. Our findings show
a superiority of the representations generated from
Sentence-RoBERTa in terms of predictive performance.
The classifier achieved +17% improvement of the
predictive performance when predicting the tags
of questions without code-snippets, for all of the
representation techniques.

In future work, we will consider running the
experiment with the full StackOverflow dataset. In
addition, models such as Code-BERT (Feng et al., 2020)
and BERTOverflow (Tabassum et al., 2020), that were
specifically trained on code textual data, may be used
to generate the text representations. Using such models
may convert the noise introduced from code-snippets
into additional information that may improve the quality
of text representations in various tasks. Fine-tuning
the pre-trained models to learn textual representations
specifically for SO dataset is another aspect which
may enable the ML-kNN classifier to achieve a higher
performance.
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