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Abstract
Open source software relies on the contributions of

developers who participate voluntarily in projects.
While prior research has investigated social
characteristics, relations, and connections that
influence a developer’s participation, we argue that the
technical relations and connections of projects, which
emerge through dependencies between packages in
software ecosystems, play a focal role in that decision
as well. We empirically test these assertions by
applying stochastic actor-oriented models to an
affiliation network in the JavaScript software
ecosystem. Our results show that while the number of
dependencies of a project does not influence
participation, developers are more likely to participate
in projects to which their own projects have
dependency relations. This study thereby contributes to
the understanding of antecedents that influence
developers’ participation decisions by highlighting the
importance of project interdependencies in software
ecosystems.

Keywords: Open Source Software, Software
Ecosystems, Longitudinal Network Analysis, Dynamic
Network Evolution, Affiliation Networks.

1. Introduction

Unlike software development in organizations,
open source software (OSS) projects are usually
undertaken by a decentralized community of
developers who collaborate via development platforms
to produce the software (Fang & Neufeld, 2009;
Lindberg et al., 2016). Often, these developers are not
paid (Crowston, 2011; Roberts et al., 2006), although a
fraction is employed by companies specifically to help
in OSS development (von Krogh et al., 2012). Thereby,
OSS projects depend on the continuous, voluntary

participation of distributed developers (Mockus et al.,
2002; Roberts et al., 2006).

Previous research has therefore investigated what
factors influence a developer’s decision to participate
in a project. In doing so, studies have focused on
individual-related factors that lead to intrinsic and
extrinsic motivations (von Krogh et al., 2012), as well
as project-related factors, such as organizational
sponsorship or license restrictions (Stewart et al.,
2006). Researchers also have taken the social structure
of projects and their community into account by
applying techniques from social network analysis (e.g.,
Grewal et al., 2006; Hahn et al., 2008; Oh & Jeon,
2007).

While prior research has shown that social
relations and connections are important antecedents of
participation, existing studies have ignored another
essential component: technical relations and
connections, that is, dependencies that arise in software
ecosystems through the reuse of software packages
(Decan et al., 2019; Haefliger et al., 2008). We argue
that these technical connections play an important role
in developers’ participation decision due to four key
reasons.

First, packages that are reused extensively by
others are important for the health and stability of the
entire ecosystem, making them more attractive for
developers who want to gain reputation and become
visible in the community (Hu et al., 2012). Second, by
reusing packages, developers can work on tasks they
actually enjoy working on (Haefliger et al., 2008),
therefore making packages with more reuse more
attractive for potential participants. Third, developers
tend to support other projects that depend on their
provided package (Bogart et al., 2016). In some cases,
the provided packages are even spun off from larger
projects, which are then maintained by the same
developers (Valiev et al., 2018). Fourth, developers
tend to participate in projects that they use themselves
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(Shah, 2006), which is reflected in a dependency
towards the used package.

The aim of this study is to empirically test these
assertions. To do so, we theorize the role of
dependency networks for developers’ decisions based
on prior literature. Then, we adopt a dynamic network
modeling approach and analyze the affiliation network
of packages in a large OSS ecosystem over a period of
four months. We apply stochastic actor-oriented
models (Snijders, 1996) to investigate the effect of
software dependencies on the evolution of affiliation
networks between developers and OSS projects. We
find that while the number of up- and downstream
dependencies of a project does not affect its ability to
attract participants, developers tend to contribute to
projects that are either up- or downstream
dependencies of that particular project. These findings
contribute to the literature on developer participation in
OSS projects by focusing on the technical connections
in the form of package interdependencies of OSS
projects in software ecosystems. This offers a more
complete view than the prevailing focus on social
relations and connections only.

The remainder of this paper is structured as
follows. In Section 2, we provide an overview of
related work on developer participation and
dependency networks in OSS ecosystems, and we
develop our hypotheses. In Section 3, we describe our
data collection process and network construction, and
give a brief overview about stochastic actor-oriented
models. In Section 4, we report the results of our
analysis. Finally, in Section 5, we discuss our results,
implications, and limitations.

2. Theoretical Background

2.1. Developer Participation in Open Source
Software Projects

OSS development is driven by a decentralized
community of developers that mostly contribute
voluntarily to projects and collaborate via online
development platforms and management software such
as GitHub (Fang & Neufeld, 2009; Roberts et al.,
2006). OSS projects rely on the continuous
participation of their community members (Roberts et
al., 2006; Shah, 2006) and need to attract and retain
developers (Butler, 2001; Crowston et al., 2003) in
order to stay viable. Therefore, the question of what
motivates developers to participate in a particular OSS
project has been central to OSS research (Roberts et
al., 2006).

Previous research has focused on individual
characteristics of developers as well as project-related
aspects that influence developers’ participation
decisions, and various project- and individual-related
factors have been identified. For example, project
factors include license restrictions (Stewart et al.,
2006), organizational sponsorship (Shah, 2006; Stewart
et al., 2006), and the modularity of a project’s codebase
(Baldwin & Clark, 2006). Individual factors that drive
participation include fun or enjoyment (Shah, 2006),
learning and developing skills (von Hippel & von
Krogh, 2003), or increasing reputation (Hu et al., 2012)
and career advancements (Lerner & Tirole, 2002).

Moreover, due to the community-based model of
developing OSS and the importance of social relations,
connections, and structures (Grewal et al., 2006),
researchers early on have adopted a network
perspective on OSS and have investigated the effect of
network structures on participation. Related to the
social network of developers, for example, previous
collaborations with the project initiators increase the
likelihood of joining a project (Hahn et al., 2008), and
the decision to remain involved in a project is
influenced by other neighboring developers (Oh &
Jeon, 2007).

While these network studies highlight the
importance of social interactions of developers, they
largely neglect the technical relations and connections
in the form of package interdependencies between
projects. In the following, we focus on these
interdependencies that arise in projects embedded in
software ecosystems.

2.2. Dependency Networks in Software
Ecosystems

OSS is not built from scratch but relies on reuse of
code and already implemented functionality (Haefliger
et al., 2008; Sojer & Henkel, 2010). This functionality
is typically provided via packages, which are “reusable
code or set of components that can be included in other
applications by using dependency management tools”
(Kikas et al., 2017). Modern programming languages
ease the process of reuse by providing package
managers that allow developers to publish and use
packaged software components (Cox, 2019). Adding a
package to a project creates a dependency relationship,
making the project dependent on the package to
function (Bogart et al., 2016). This practice results in
so-called software ecosystems, “large collections of
interdependent software components that are
maintained by large and geographically distributed
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communities of collaborating contributors” (Decan et
al., 2019).

From a package’s perspective, dependency
relationships exist in two directions. In the ecosystem,
the package has other packages depending on it,
so-called downstream dependencies, and it might also
depend on other packages itself, which results in
upstream dependencies (Valiev et al., 2018).

The reuse of packages allows developers to save
time and to implement proven solutions to their
software (Haefliger et al., 2008; von Hippel & von
Krogh, 2003). The functionality provided by the reused
package enables them to focus on tasks they actually
like to work on (Haefliger et al., 2008). Therefore,
projects with extensive reuse of packages, reflected in
the number of upstream dependencies, should become
more attractive for developers, which leads to our first
hypothesis:

H1a: Developers tend to participate in packages
with more upstream dependencies.

Furthermore, the number of downstream
dependencies reflects the importance and value of a
package in the software ecosystem. This is because the
more other packages depend on the focal package, the
higher the number of downstream dependencies, which
also makes it a proxy for a package’s user base (Valiev
et al., 2018). Since one driving factor of developer
participation is the potential gain in reputation (Hu et
al., 2012), important and valued packages in the
software ecosystem should become more attractive to
participate in. Hence, we propose:

H1b: Developers tend to participate in packages
with more downstream dependencies.

However, dependencies can create issues in case
of breaking changes (i.e., a change in a package that
potentially causes other packages to fail). In order to
counter breaking changes, package providers usually
support and coordinate with their dependents by
announcing changes or helping to migrate to another
version (Bogart et al., 2016). Moreover, smaller
packages are often split off from larger projects, which
are then maintained by the same developers (Valiev et
al., 2018). Therefore, developers also become affiliated
with a package’s upstream dependencies. Hence, we
propose:

H2a: Developers tend to participate in a package
when they are also affiliated with its upstream
dependencies.

Furthermore, existing studies have shown that
developers tend to participate in projects that they use
themselves (Shah, 2006). These developers, often

referred to as “peripheral developers”, are thereby
motivated to improve the package for their own use
and are important for the quality assessment and
enhancement of a project (Setia et al., 2012). For
example, developers participate by submitting bug
reports or pull requests to the dependent package (Setia
et al., 2012). Hence, we propose that this also holds
true for the reuse of packaged software components:

H2b: Developers tend to participate in a package
when they are also affiliated with its downstream
dependencies.

3. Research Method

3.1. Data and Network Construction

In order to test our hypotheses, we focus on the
JavaScript ecosystem, which is one of the largest
software ecosystems in the world (Decan et al., 2019).
Data was collected from two data sources to construct
the dependency network between packages and capture
the development activities. Meta and dependency data
was collected from the npm registry , whereas1

development activities were collected from GitHub for
the package-related repositories. Due to API
restrictions, we used the event archives provided by
GHArchive . Both datasets were linked by matching2

repository URLs provided in the packages’ metadata.
In network studies, setting boundary conditions is

important (Marsden, 2005). For our boundary
specification and sampling strategy, we followed the
“expanding selection” approach (Doreian and
Woodard, (1992), which starts with a fixed set of nodes
and adds further nodes linked to the initial set. Thus,
we started our data collection with the selection of
3,000 packages identified from Libraries.io’s list of top
ranked packages in March 2022. Based on that initial3

set, we added packages to the set that were listed as a
runtime dependency between 2019 and 2022. This time
restriction helped in avoiding adding abandoned or by
now irrelevant packages. The process was repeated for
every newly identified package which allowed us to
identify all relevant packages further down the
dependency tree. In sum, this resulted in a total of
12,678 packages.

To reduce the number of nodes and thereby make
the size of the network feasible for the analysis, we
performed additional steps for the selection of our final
sample of packages and related developers. First, we

3 libraries.io/search?order=desc&platforms=npm&sort=rank
2 gharchive.org
1 registry.npmjs.org
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excluded all packages that shared a repository with
other packages to make sure that developer activities
were specifically targeted at a particular package.
Second, we checked for the development activity
during the observation and only included packages
with activity in every period. From the resulting set of
packages, we randomly selected 250 packages. Third,
we collected all developers participating in the sampled
packages and only included developers with at least 5
activities (i.e., comments, commits, actions related to
issues and pull requests) during the observation. This
resulted in a set of 1,172 developers.

Based on the selected packages and identified
developers, we constructed the affiliation network
between developers and packages. An affiliation
network, also referred to as two-mode or bipartite
network, is a graph with two distinct node types (i.e.,
developers and packages), where edges are only
allowed between different types of nodes (Koskinen &
Edling, 2012). To construct the network, we collected
all activities of the selected developers towards the
sampled packages for each observation period and
created edges between developer and package in case
there existed an activity in the particular period.4

We observed the affiliation network from February
until May 2021. We opted for the four-month window
to reduce time heterogeneity and keep the amount of
change between periods at a sufficient level for
analysis, which is also consistent with previous
research (e.g., Hahn et al., 2008; Tang et al., 2020).
Thereby, we created snapshots of the network state at
the beginning of each month. This resulted in a total of
four observations. Figure 1 shows the state of the
affiliation network at the last observation point. The
layout was generated using the Fruchterman-Reingold
algorithm (Fruchterman & Reingold, 1991).

Figure 1. Affiliation network at observation t4
(developers as red circles; packages as blue

squares).

4 All data and scripts to construct the data as well as the analysis
results can be found here: https://tinyurl.com/2p9avyrp

3.2. Data Analysis

We applied stochastic actor-oriented modeling
(SAOM) (Snijders, 1996, 2001, 2005) by using the R
package RSiena (Ripley et al., 2022). In the following,
we briefly summarize the underlying assumptions
behind SAOMs. For a detailed description, we refer to
Snijders (1996, 2001) and Snijders et al. (2010).

SAOMs are the most advanced predictive models
for dynamic networks that allow the testing of various
mechanisms influencing the evolution of a network
(Cornwell, 2015). SAOMs assume a continuous change
process of the network structure, which is represented
by Markov chain models (Holland & Leinhardt, 1977)
with a continuous-time parameter, although the
network is observed at discrete points in time (Snijders,
1996, 2001). The change process consists of two
sub-processes: the (1) change opportunity process and
the (2) change determination process (Snijders et al.,
2010). Thereby, when an actor has the opportunity to
change ties, determined by the rate function, the
probabilities of change are determined by the
evaluation (or objective) function (Snijders et al.,
2010). The evaluation function thereby represents the
relative attractiveness of establishing a tie (Conaldi et
al., 2012). The evaluation function includes effects
related to the structural properties of the network
(endogenous effects) and effects based on the attributes
of an actor in the network (exogenous effects) (Snijders
et al., 2010).

3.3. Model Development

We followed the guidelines for model
development provided by Snijders et al. (2010) and
Ripley et al. (2022). Thereby, we specified the model
for the dynamics in the affiliation network via forward
selection of theoretically grounded effects and tested
these effects using the score-type test proposed by
Schweinberger (2012). During the selection process,
we checked the t-ratios for convergence for each effect,
which indicate the stability of parameter estimates
across simulations and should be below an absolute
value of 0.1 (Kalish, 2020; Snijders et al., 2010).
Furthermore, we checked the overall maximum
convergence of the estimated models during the
selection process, which should be below the threshold
of 0.25 (Ripley et al., 2022). We started with
endogenous effects, followed by exogenous effects.
Results were then validated by performing a backward
selection. We also tested for time heterogeneity (J. A.
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Lospinoso et al., 2011) and accounted for the
composition change of developers (Huisman &
Snijders, 2003).

In terms of endogenous effects, by default, an
effect for outdegree (density), which represents the
tendency of an actor to have ties at all, is included in
the model (Snijders et al., 2010). Also, an effect for the
tendency toward transitivity should be included in the
model (Snijders et al., 2010). In two-mode networks,
transitivity is expressed by the number of four-cycles
(Robins & Alexander, 2004). This effect reflects the
extent to which actors make the same choices as their
peers (Ripley et al., 2022). Another set of effects that
should be accounted for during the model selection
process are degree-related effects (Snijders et al.,
2010). Both in- and out-degree are important positional
characteristics of nodes that drive network dynamics
(Snijders et al., 2010) and should be included when
high dispersion in in- and out-degrees is present
(Ripley et al., 2022). Based on our theoretical
foundation, we included the in-degree popularity
effect, which accounts for the tendency of dispersion in
in-degrees of packages (i.e., number of participating
developers). The out-degree activity effect, which
reflects the tendency of dispersion in out-degree of
developers (i.e., the number of packages a developer
participates in), was also significant and contributed to
the convergence of the overall model and was therefore
also included.

Furthermore, we included several exogenous
actor-specific effects. We started by including control
effects. Related to packages, we controlled for
community interest (measured as the number of GitHub
stars given to a package during a period), release
activity (measured as the number of version releases of
a package during a period), license restrictiveness (by
adopting the categorization of Lerner and Tirole (2005)
into (1) permissive, (2) restrictive, and (3) highly
restrictive licenses), and age ( measured as the number
of months from the package’s creation date until the
end of a period). These effects were modeled as
receiver effects, which means that actors with higher
values of the covariate tend to have higher in-degrees
(Snijders et al., 2010). Related to developers, we
controlled for the overall activity of a developer by
measuring the number of activities a developer
performed during a period. These include comments
made on issues or pull requests, status changes of
issues or pull requests (e.g., opening or closing), and
pushing commits to the repository. This effect was
modeled as a sender effect, which means that actors
with higher covariate values tend to have higher
out-degrees (Snijders et al., 2010).

Finally, we included exogenous actor-specific
receiver effects as well as dyadic effects for the
influence of the dependency network. First, we
measured the number of up- and downstream
dependencies of a package in a period. Second, we
included dyadic effects accounting for the relation
between a developer and a package. The dyadic
covariate thereby reflects if the developer also
participates in an upstream or downstream dependency
of the targeted package in the period. Therefore, the
effect expresses the extent to which participation
becomes more likely if a developer also participates in
an upstream or downstream dependency.

Because the estimation operations of RSiena are
not scale-independent, it is advised to scale covariates
to achieve standard deviations between 0.1 and 10
(Ripley et al., 2022). Therefore, we log-transformed
the values of our actor-specific covariates. Table 1
summarizes the relevant effects used in this study.

Table 1. Summary of endogenous network
effects and exogenous actor-specific covariates.

Parameter Description
Outdegree
(Density)

Tendency of developers to participate in
packages.

Transitivity Tendency of developer pairs to participate
in the same package.

Package
Popularity

Tendency of popular packages to attract
more developers.

Developer
Participation

Tendency for developers that participate in
more packages to engage in extra packages.

Package
License

Tendency of developers to participate in
packages with specific license
restrictiveness.

Developer
Activity

Tendency of developers with a higher level
of activity to participate in more packages.

Community
Interest

Tendency of packages with higher
community interest to attract more
developers.

Release
Activity

Tendency of packages with more releases to
attract more developers.

Package Age Tendency of packages with higher age to
attract more developers.

Package
Upstream
Dependencies

Tendency of packages with more upstream
dependencies to attract more developers.

Package
Downstream
Dependencies

Tendency of packages with more
downstream dependencies to attract more
developers.

Participation in
Upstream
Dependency

Tendency of developers to participate in a
package if they also participate in an
upstream dependency of that package.

Participation in
Downstream
Dependency

Tendency of developers to participate in a
package if they also participate in a
downstream dependency of that package.
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4. Results

First, Table 2 summarizes network descriptives.
Over all periods, the network’s density is relatively
low. During all four periods, the network’s density, and
its average degree declines. This is a result of the
joining actors in periods 2 to 4. Therefore, the number
of possible ties increases, but the number of ties that
are actually established does not increase accordingly.

Table 2. Network descriptives.

Period 1 2 3 4
Density 0.005 0.004 0.003 0.003
Avg. Degree 1.211 0.909 0.736 0.647
No. Ties 758 807 788 758
Miss. Fraction 0.466 0.242 0.087 0.000
Joined Actors – 262 182 102

Second, we report the tie changes of the networks
in subsequent observations (Table 3). For example,
between observation 1 and 2 (1 → 2), 88 developers
newly participated in packages (0 → 1), 325
developers discontinued their participation (1 → 0),
and 433 developers continued to participate in the
related packages. The Jaccard index represents the
amount of change between two observations (Snijders
et al., 2010). For SAOMs, the suggested value is
between 0.2 and 0.9 (Conaldi et al., 2012). In our case,
the values of the Jaccard coefficients for tie changes
between observations are between 0.45 and 0.51.

Table 3. Network tie changes between periods.

0 → 0 0 → 1 1 → 0 1 → 1 Distance Jaccard
1 → 2 155654 88 325 433 413 0.51
2 → 3 221043 150 362 445 512 0.47
3 → 4 266517 195 345 443 540 0.45

4.1. Model Estimates

We estimated the models using the procedure of
method of moments (Snijders, 1996). Table 4 presents
the results of the models. We report parameter
estimates and standard errors for rate effects,
endogenous network effects, actor-specific and dyadic
covariates. Model 1 includes the effects of the
endogenous network structure. Model 2 adds to Model
1 the effects of exogenous actor-specific covariates for
our control variables. Model 3 adds to Model 2 the
effects of the dependency network related covariates
(i.e., our hypotheses). All models were run for 3,000
iterations in phase 3. In all models, t-ratios for
convergence for each effect are below the suggested
threshold of |0.1| (Kalish, 2020; Snijders et al., 2010)
and the overall maximum convergence ratios are below
the suggested value of 0.25 (Ripley et al., 2022).

In the following, we report the estimates for Model
3 in more detail. In general, the rate function indicates
the expected number of opportunities that developers
have to change their affiliation with a project (Conaldi
et al., 2012). Hence, the parameter estimates can be
interpreted as the number of changes developers make
regarding their affiliations over time. For example,
developers make on average 0.8 changes in the last
period. This rate remains relatively stable over time
and indicates that developers are reluctant to change
their affiliation with a project. Furthermore, the
developer’s activity level has a positive and significant
effect on the number of change opportunities (0.05; p <
0.01), indicating that more active developers tend to
change their affiliation more often.

The evaluation function controls for the subjective
utility for developers when changing their affiliation
(Conaldi et al., 2012). In terms of endogenous network
effects, we observe that the estimate for the out-degree
of the developers is negative and highly significant
(-5.52; p < 0.001). This indicates that developers show
a lower tendency to participate in new packages over
time. Also, package popularity has a small but positive
and significant effect (0.04; p < 0.001), which indicates
that already popular packages are more likely to attract
additional developers. Transitivity is positive but not
statistically significant (0.52; p < 0.1), which does not
indicate a significant tendency towards clustering in
the network. Thus, developers do not seem to follow
their previous collaborators to new packages in the
future. The parameter estimate for developer
participation is not significant.

In terms of exogenous effects of actor-specific
covariates, we first focus on the effects of interest
related to the effect of a package’s dependency network
on developer participation. We find that the number of
up- and downstream dependencies of a package does
not influence its ability to attract developers, with both
estimates being not significant (both H1a and H1b are
not supported). However, the estimates for both dyadic
effects of up- (1.93; p < 0.001) and downstream
dependencies (1.34; p < 0.01) are both positive and
significant. This indicates that developers are more
likely to participate in a package if they also participate
in another package that is a down- or upstream
dependency of that specific package. Hence, we
observe support for both H2a and H2b.

We conclude by reporting estimates for our control
variables. For packages, the estimates for community
interest (0.20; p < 0.001) and package age (-0.20; p <
0.01) are significant. Furthermore, the estimate for
developer activity is positive and highly significant
(0.47; p < 0.001), which indicates that developers with
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Table 4. Estimated stochastic actor-oriented models for affiliation networks.

Model 1 Model 2 Model 3
Effects Estim. S.E. Estim. S.E. Estim. S.E.
Rate Function
Rate of Network Change 1 0.72*** (0.04) 0.77*** (0.04) 0.77*** (0.04)
Rate of Network Change 2 0.74*** (0.04) 0.81*** (0.04) 0.81*** (0.04)
Rate of Network Change 3 0.70*** (0.04) 0.80*** (0.04) 0.80*** (0.04)
Effect of Dev. Activity on Rate -0.10*** (0.02) 0.05* (0.02) 0.05** (0.02)

Evaluation Function
Endogenous Network Effects
Outdegree (Density) -5.27*** (0.14) -5.48*** (0.12) -5.52*** (0.13)
Transitivity (Four-Cycles) 0.50 (0.38) 0.54* (0.25) 0.52† (0.29)
Package Popularity 0.05*** (0.00) 0.04*** (0.00) 0.04*** (0.01)
Developer Participation 0.27*** (0.04) 0.05 (0.04) 0.04 (0.04)

Exogenous Actor-specific Covariates
Developer Activity 0.49*** (0.04) 0.47*** (0.04)
Community Interest 0.19*** (0.04) 0.20*** (0.05)
Release Activity 0.12 (0.08) 0.13† (0.08)
License Restrictiveness 0.31 (0.33) 0.31 (0.33)
Package Age -0.18* (0.08) -0.20** (0.08)
Upstream Dependencies 0.05 (0.05)
Downstream Dependencies 0.08 (0.06)

Dyadic Covariates
Participation in Upstream Dependency 1.93*** (0.56)
Participation in Downstream Dependency 1.34** (0.46)

Wald 𝜒2 Statistics (df) 320.19*** (4) 231.63*** (5) 14.64*** (4)
Gen. score 𝜒2 Statistics (df) 394.84*** (4) 198.98*** (5) 19.20*** (4)
† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Convergence t-ratios for all effects < |0.1|. Overall maximum convergence ratios < 0.13

Figure 2. Goodness of fit of Model 3 for indegree and outdegree distributions.

a higher level of activity tend to participate in more
packages. In contrast to prior findings, both release
activity (0.13; p < 0.1) and license restrictiveness
(0.31; p > 0.1) of a package are not significantly
influencing a package’s ability to attract developers.

4.2. Goodness-of-Fit

The simulation-based goodness-of-Fit (GOF) test
for the estimated models tests the hypothesis that the
model which generated the observed data is equal to
the fitted model (J. Lospinoso & Snijders, 2019). The
approach implemented in RSiena takes an auxiliary
statistic, that is, a feature of the data not included in the

model and therefore not a function of the estimation
and compares it with the observed data and their
distribution (J. Lospinoso & Snijders, 2019). We tested
auxiliary statistics for outdegree and indegree
distributions. Both Model 1 and 2 performed poorly for
both in- and outdegree distributions, but the fit for
Model 3 meets the criteria of p > 0.05 for the
Mahalanobis distance-combination, indicating a good
model fit (Kalish, 2020; J. Lospinoso & Snijders,
2019).

Figure 2 shows the results of the GOF tests for
Model 3. Observed values are indicated by the number
connected by the red line. The simulated statistics are
represented by the violin plots. The dotted lines
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represent the 95th percentile bands. Wald-type tests
and score-type tests for the joint significance of the
added effects as reported in Table 4 also indicate an
improvement of model fit and strong significance of
the added effects (p < 0.001).

5. Discussion

In this study, we developed and estimated a
dynamic network model for the analysis of the
evolution of an affiliation network in a large OSS
ecosystem. With this model and the test of associated
hypotheses, we contribute to the literature on the
participation decisions of developers by focusing on
the role of technical relations and connections in the
form of package interdependencies, thus introducing
(package-based) project dependencies as important
antecedents for developer participation decisions.

Our results show that developers not only
contribute to packages they use themselves (H2b), but
also to packages that make use of their own packages
(H2a). This shows that projects benefit from their
dependencies in both directions through contributions
made by developers of interdependent projects. While
previous research already mentioned need-driven
motivation as one antecedent for participation (Shah,
2006), this empirically shows for the first time that
users of a package do not free-ride but also contribute
back. Moreover, our findings show that package
providers contribute and provide help to their
dependent packages. Even though we find that the
likelihood of contribution increases, the actual type of
the contribution remains an open question and provides
opportunities for future research. However, the number
of dependencies by themselves do not influence a
developer’s decision; a large number of up- or
downstream dependencies does not equal more
attractiveness, thus we did not find support for H1a and
H1b.

Furthermore, our results show that developers only
rarely change affiliations, as reflected in the rate
effects. Given that the participation in a new project
comes with associated costs related to required
knowledge, skill, and necessary time to get involved
and familiar with a project (von Krogh et al., 2003),
this is not surprising.

In comparison to prior studies, our results support
previous findings related to the influence of
community interest on a project’s attractiveness
(Subramaniam et al., 2009) and its decreasing ability to
attract developers with growing age (Chengalur-Smith
et al., 2010). Interestingly, we did not find an effect of
license restrictiveness. This might be related to the fact

that most of the analyzed packages are released under
the MIT license and, in general, we did not see a great
variety of used licenses in the overall JavaScript
ecosystem.

From a research perspective, our study
demonstrates the benefits and potential insights that
can be gained by applying dynamic network models to
affiliation networks in OSS projects. From a practical
perspective, our results highlight that community
efforts should be directed not only towards a project
itself, but also to interdependent projects that build
upon or are used by the focal project. This may also
help to counter negative effects such as breaking
changes.

As with all research, this study has several
limitations. First, we did not include all available
packages in the JavaScript ecosystem. However, by
following the selected sampling approach, we were
able to identify and analyze the most important and
used packages during our observation. Furthermore, we
only focused on one specific ecosystem. Hence, future
research could analyze if the shown mechanisms are
also present and influential in other software
ecosystems.

Second, we focused only on effects driving the
structural evolution and formation of the affiliation
network and neglected the co-evolutionary aspect of its
structure on potential outcomes, such as a project’s
sustainability and success. Hence, future research
should build upon this study by including
project-related outcomes and their interplay with both
social and technical network structures.

Third, the dependency network has only partially
been included in our analysis by projecting it as actor
and tie variables. Future research could therefore
explicitly include its structure by investigating the
co-evolution of the dependency and affiliation network.

Fourth, we used digital trace data, which entails
potential validity problems (Howison et al., 2011).
Even though we performed several checks to increase
our data’s confidentiality, we cannot ensure complete
accuracy due to the secondary nature of our data
sources.

6. Conclusion

In sum, our study theoretically and practically
contributes to our understanding of antecedents of
developer participation in OSS by introducing and
highlighting the role of technical interdependencies of
projects in a software ecosystem. Thereby, we
underline the importance of a socio-technical lens on
the OSS phenomena that considers the social as well as
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technical structures and provide several opportunities
and directions for future research.
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