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Abstract

The integration of converter-interfaced generation
into our power systems is changing how we control
and operate these networks. While these fast-acting
resources are more controllable than conventional
synchronous machines, this additional controllability
presents some challenges. One of these challenges
is the increased cyber-physical attack surface arising
from interactions among the numerous digital control
loops of these devices. In this work, we present
a supervisory adaptive controller that temporarily
increases the outer-loop controller bandwidth of these
devices in the event of sustained oscillatory behavior.
We design this controller to inherently remain inactive
during normal operation and only become active during
sustained abnormal operating conditions. We show how
this proposed controller can mitigate a cyber-physical
attack, even when the attacker has full knowledge of the
network model and access to real-time state information
for state-feedback control.

Keywords: Cyber-physical security, adaptive control,
stability, defensive controller, microgrid

1. Introduction

As our power systems shift from centralized
synchronous machine-based systems to more
geographically dispersed converter-interfaced
generation (CIG) networks, the stability properties
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and dynamical response of these systems are
also changing. These fast-acting power electronic
connected resources, and their multiple layered digital
control loops, have a significantly larger control
bandwidth relative to conventional synchronous
machines [Hatziargyriou et al., 2021]. This increase in
controllability allows us greater flexibility in shaping the
dynamical response of these resources. However, it also
brings new challenges and vulnerabilities, for example,
in cyber-physical security [Sahoo et al., 2021].

Traditionally, cyber-physical security for power
systems has been primarily focused on protecting
individual devices against attacks by securing
communication channels, ensuring data integrity,
and restricting access, both physical and remote, to
these devices. While these approaches are critical,
they are not exhaustive. These devices are connected
through a dynamical network which can result in
unexpected controller coupling, particularly with
CIG [Cheng et al., 2022]. This unexpected dynamic
controller coupling can be coincidental or can result
from malicious control of a device by an adversary.

Malicious control of dynamical devices in power
systems is a research area which has received
some attention over the years. Some of the early
work in this space studied the potential for a
malicious actor to control a subset of synchronous
generators to destabilize other generators on the
system [DeMarco et al., 1996, DeMarco, 1998].
This work was motivated by considering the
potential competitive advantage of such an approach
in a market environment. More recent work
examined how an aggregation of loads providing
emulated inertia as a system service might be
maliciously controlled to cause unstable oscillatory
modes in the system [Brown and Demarco, 2018].
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Similarly, the introduction of electric vehicles,
and manipulation of their charging behavior, has
also been considered as a destabilizing resource
in [Acharya et al., 2020]. Other works have
considered discrete switching loads and how they
may be maliciously controlled [Hammad et al., 2018,
Wu et al., 2018, Hammad et al., 2015]. In each of these
cases, the resource under the control of the adversary
was being controlled to cause an electromechanical
instability, i.e., the adversary was causing synchronous
machines to oscillate against each other.

The continual integration of CIG into our networks
requires a revisiting of these types of malicious
attacks. These resources are introducing new
dynamical modes into the system that are currently
significantly less well understood [Cheng et al., 2022]
and invalidating classical timescale separation
assumptions we have used to understand these
systems [Markovic et al., 2021]. These new modes
have been observed as abnormal sustained oscillations
in weak grid conditions [Cheng et al., 2022] and have
been shown to be vulnerable to attack at high CIG
penetration, assuming sufficient knowledge of the
system [Roberts et al., 2021].

In this work, we consider an isolated microgrid
where an adversary controls an active load, i.e., a
load connected to the grid through power electronics.
These loads introduce additional dynamics into the
system that can destabilize an otherwise stable
network [Bottrell et al., 2013]. We adapt the attack
vector from [Roberts et al., 2021] and target the CIG by
destabilizing an electromagnetic mode in which the CIG
participates. We propose a local supervisory controller
that observes the states of the CIG and adaptively
changes the control logic of the converter to desensitize
it against the malicious attack while continuing to
deliver its normal grid services. Specifically, we
adaptively increase the filter frequency of the low-pass
filter in the CIG outer-loop control block. This rate
of increase is sampled from a pre-defined normal
distribution and, consequently, helps mitigate the
adversarial attack by invalidating any deterministic
state-space model used to design the destabilizing
controller. The proposed controller is designed to
inherently remain inactive during normal operation and
only alter the converters control logic in the event
of sustained abnormal oscillatory behavior. Similar
approaches have already been shown to mitigate
oscillatory behavior due to poorly designed DER
volt-var droop curves [Arnold et al., 2022]. In this work
we focus on a much more severe attack where we
assume the adversary has access to both a system model
and real-time state information to carry out their attack.

We show how our proposed controller can introduce a
minimal amount of stochastic behavior to invalidate the
state-space model used by the attacker, and ultimately,
mitigate the impact of the attack.

2. Power System Models

We consider a CIG plant, in Fig. 1, with its
active power controller operating in grid-following
mode and its reactive power controller in droop mode.
Grid-following mode is commonly associated with
real-world recorded oscillatory behavior when operating
under weak grid conditions, primarily due to the
phase-lock loop (PLL) [Cheng et al., 2022].

All control loops in Fig. 1 operate in the dq frame,
which is achieved by a linear transformation, Tdq in
(1), from the 3-phase instantaneous voltage and current
values, where θc is an internal state of the converter,
discussed in Section 2.3.

Figure 1. Grid-following control structure

Tdq =

√
2

3

[
cos(θc) cos(θc − 2π/3) cos(θc + 2π/3)

sin(θc) sin(θc − 2π/3) sin(θc + 2π/3)

]
(1)

In this work, our analysis will be carried out in the
dq reference frame. We denote complex vectors using
bold lowercase symbols as in (2).

x = xdq = xd + jxq (2)

2.1. Electrical Interface and Power
Calculation

The CIG is interfaced to the grid in Fig. 1 through
an RLC filter (rf , lf , cf ) for harmonic filtering, and
a transformer, with resistance and inductance rt and lt
respectively. The differential equations describing its
electrical variables are given by (3):

Page 2662



i̇f =
ωb

lf
(vm − eg)−

(
rf
lf

ωb + jωbωc

)
if (3a)

i̇g =
ωb

lt
(eg − vp)−

(
rt
lt
ωb + jωbωc

)
ig (3b)

ėg =
ωb

cf
(if − ig)− jωcωbeg (3c)

where if is the current through the filter inductance, ig
is the current injected into the grid, eg is the voltage
across the filter capacitance, vm is the modulated
voltage at the terminals of the CIG, vp is the voltage at
the point-of-connection to the grid, ωc is the frequency
of the internal synchronously-rotating reference frame
(SRF) in per-unit (p.u.) and ωb is the base system
frequency. The converter active and reactive power is
then calculated from (4):

pc = ℜ(egi⋆g) qc = ℑ(egi⋆g) (4)

where i⋆g denotes the complex conjugate of the
current vector, and ℜ(.) and ℑ(.) are the real and
imaginary part respectively. These active and reactive
power measurements, along with the estimated system
frequency from the PLL, are then passed into the
outer-loop control block.

2.2. Phase-lock loop

The purpose of the PLL is to track the frequency
and phase of the externally measured grid voltage. It
does so by aligning the d−axis of the internal SRF with
the externally measured voltage vector, resulting in its
q− vector component of the internal SRF being equal to
zero. Its dynamics are given by (5):

êg = ege
−jθpll (5a)

θ̇pll = ωpllωb (5b)
ε̇ = êqg (5c)

ωpll = ω0 +Kpll
p êqg +Kpll

i ε (5d)

where ε is the integrator state of the PLL, ωpll is

the estimated frequency, and Kpll
p and Kpll

i are the
proportional and integral gains respectively of the PI
control loop in (5d). One difficulty with parameterizing
the control gains of a PLL is the requirement that
it produces an accurate and stable estimation of the
grid-frequency across all grid operating conditions, i.e.,
a weak and strong grid, while also not being overly

sensitive to natural grid-disturbances, e.g., faults. This
is one of the reasons why the PLL is often identified
as one of the contributors to undesirable oscillatory
behavior [Cheng et al., 2022].

2.3. Outer-loop control

Once the PLL estimates the grid frequency, ωpll

in (5d), this estimation is passed to the outer-control
loop. This control loop is responsible for determining
control set-points to achieve a desired active and reactive
power injection. It is typically one of the slower control
loops of the CIG and can also contribute to undesirable
oscillatory behavior [Cheng et al., 2022]. Within the
outer-control loop, the CIG first low-pass filters the
measured active and reactive power in (6a) and (7a)
respectively. The filter frequency, ωz , determines
the bandwidth of the outer-loops. In this work, we
will consider ωz as a state within our supervisory
controller and adjust it to change the outer-loop control
bandwidth of the CIG during sustained abnormal
behavior. The specific control structure to achieve this
will be introduced in Section 3.2.

˙̃pc = ωz(pc − p̃c) (6a)
ωc = ωpll +Rp(p

⋆
c − p̃c) (6b)

θ̇c = ωcωb (6c)

The output of these low-pass filters, p̃ and q̃, are then
used to determine the control set-points ωc and vc in (6b)
and (7b) respectively, where Rp and Rq are the active
and reactive power droop gains respectively.

˙̃qc = ωz(qc − q̃c) (7a)
vc = v⋆c +Rq(q

⋆
c − q̃c) (7b)

The angular frequency, ωc, also determines the angle
θc, in (6c), for the linear transformation, Tdq in (1).

2.4. Virtual Impedance

These outer-loop control set-points are then passed
to the virtual impedance control block in Fig. 1,
with a virtual resistance and inductance, rv and lv
respectively. This additional degree of freedom is
used for active stabilization and disturbance rejection
[Wang et al., 2015].

v̄dc = vc − rvi
d
g + ωclvi

q
g (8a)

v̄qc = −rvi
q
g − ωclvi

d
g (8b)
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Additionally, the use of a virtual impedance can
increase the apparent X/R ratio of the network and
improve the small-signal stability of the system by
strengthening the p/f and q/v coupling of the system.

2.5. Inner control loop

Finally, a dual-loop PI controller is used in the
inner-loop for reference tracking. The output of the
virtual impedance control block, v̄c is first passed to a
PI voltage controller in (9)

īf = Kv
p (v̄c − eg) +Kv

i ξ + jωccfeg +Kv
f ig (9a)

ξ̇ = v̄c − eg (9b)

whose output, īs, is then passed into another PI control
loop, in (10), to determine the output voltage reference
used for the averaged modulated signal.

v̄m = Ki
p(īf − if ) +Ki

iγ + jωccf if +Ki
feg (10a)

γ̇ = īf − if (10b)

In both (9) and (10), the controller gains Kv
p/K

i
p and

Kv
i /K

i
i are the proportional and integral gains of the PI

loop respectively and Kv
f /K

i
f is a binary feed-forward

term.

3. Methodology

Prior to introducing the proposed defensive
controller in Section 3.2, we first begin with a brief
overview of the attack model. Understanding the attack
methodology of the adversary, and how they develop
a destabilizing controller, is necessary to motivate the
formulation of the proposed defensive controller.

3.1. Attack model

Our model of the adversary follows the approach
of [Roberts et al., 2021] and is summarized here. We
assume that the adversary has access to both 1) a
detailed model of the system and 2) real-time state
information to build a state-feedback controller. During
the attack, this real-time state information can come
directly from measurements or can be estimated using
a state-observer, assuming sufficient observability of the
system, i.e., the adversary has access to high-rate current
and voltage data.

Under these assumptions, the goal of the adversary is
to design a destabilizing state-feedback controller such
that an eigenvalue of the linearized state-space model is

in the right-half plane, i.e., the system is unstable. That
is, given a linearized model of the system in (11)

∆ẋ = A∆x+B∆u, (11)

the adversary seeks to design a controller of the form
u = −F∆x such that the closed loop system in (12)
has at least one eigenvalue whose real part is positive.

∆ẋ = (A−BF )∆x (12)

Additionally, we assume the adversary minimizes its
own participation in this unstable mode. Simply put,
the adversary seeks to excite the system to cause other
devices on the grid to oscillate against each other. The
measure of participation of a state i in a system mode j
is given by (13)

pij =
wijvij
wT

j vj
, (13)

where wij and vij are the ith elements in the left and
right eigenvector respectively associated with the jth

eigenvalue. This adversarial destabilizing controller
design is mathematically expressed in (14) and admits
a closed form solution [Roberts et al., 2021]:

min
F

∑
pij ∀i ∈ Γ (14a)

s.t. ∃ ℜ(λj) > 0 (14b)
(A−BF )vj = λjvj (14c)

where vj is the eigenvector associated with λj and
Γ denotes the set of states indices for the active load
under control of the adversary. This closed form
solution is summarized in Appendix A for the reader.
In [Roberts et al., 2021], the authors identified both an
electromechanical and electromagnetic mode that the
adversary could seek to destabilize. In this work, we
focus on the attack that destabilizes the electromagnetic
mode, as this is the most damaging attack for CIG.

The proposed attack model assumes a
significant level of system knowledge to carry-out.
An alternative attack model is a data-driven
approach that estimates vulnerable system modes
based on measurement data during disturbances
[Hammad et al., 2018, Hammad et al., 2015], e.g.,
measurement data during faults. The adversary then
designs a local controller to try to destabilize these
estimated modes. In both cases, model-based or
measurement-based, the adversary seeks to design a
destabilizing controller based on their understanding
of the system. Our proposed approach is motivated by
invalidating their understanding of the system during
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sustained abnormal oscillatory behavior. Therefore,
the proposed controller is not tailored to mitigate the
specific attack vector considered here, but rather any
attack vector that relies on a fixed understanding of the
system. Due to the stochastic nature of our controller,
designed to remain inactive during inherent system
transients, the proposed approach will remain effective
in mitigating the severity of the attack for both model
and measurement-based attacks.

3.2. Defensive controller

One commonality across all prior work
that has considered destabilizing adversarial
attacks is the requirement of a deterministic
state-space model to build a state-feedback
controller [Roberts et al., 2021, DeMarco, 1998,
Brown and Demarco, 2018, Acharya et al., 2020].
This state-space model allows the adversary to
identify vulnerable system modes to destabilize with
state-feedback control. As a last line of defense
against these types of attacks, we propose a non-linear
supervisory controller that introduces a small amount
of stochastic behavior into the system to invalidate the
state-space model the adversary used in its controller
design. This controller, in (15), is designed to
inherently remain inactive during normal operation
and only become activated during sustained abnormal
oscillatory behavior. Therefore, the CIG will respond as
expected to normal grid disturbances, e.g., faults, line
trips and frequency events.

The proposed controller uses an observer, shown
in Fig. 2, to estimate the energy of the observed
oscillation, similar to [Arnold et al., 2022]. It monitors
the integrator state of the PLL, ε, and uses a
high-pass filter in (15a) to remove any DC offset, or
low-frequency behavior, in the signal. We choose
the integrator state of the PLL based on analysis
in [Roberts et al., 2021] and due to the PLL being
identified as being a major cause of instability in
real-world observed oscillations [Cheng et al., 2022].
Once the low frequency behavior has been removed,
we multiply the resultant signal, εh, by a normalization
constant, c, then square it and pass it through a low-pass
filter in (15b) to obtain a stable control signal. This
low-pass filter also desensitizes the proposed controller
to naturally occurring system transients, e.g., faults and
line trips. By first removing the low-frequency content
and then squaring the signal, we are estimating the
energy of the oscillation in the PLL integrator state,
ε. We then use this measure of energy to increase the
outer-control loop filter frequency, ωz , in (15c) where
α ∼ N (µ, σ2).

Figure 2. Estimating energy of oscillation.

ε̇h =
τhε̇− εh

τh
(15a)

ε̇l =
(cεh)

2 − εl
τl

(15b)

ω̇z = ω⋆
z − ωz + αεl (15c)

This proposed controller runs continuously on the
CIG. It is not threshold activated but instead uses the
high- and low-pass filters to reject normally occurring
disturbances on the external grid.

As previously discussed, this filter frequency, ωz ,
determines the bandwidth of the outer-control loops
of the CIG. By temporarily increasing the controller
bandwidth of the outer-loop, we are breaking any
controller coupling that the adversary is seeking to
exploit. The structure of (15c) also ensures that when the
oscillation is mitigated, the filter frequency returns to its
normal operating point, ω⋆

z . The stochastic nature of α,
not remotely accessible via communication and updated
at a low frequency, e.g., seconds or minutes, ensures
that the adversary never has access to a deterministic
state-space model to build a state-feedback controller.

Fig. 3 shows how increasing the outer-loop
bandwidth can temporarily move a pair of system
eigenvalues, and consequently, mitigate any attack
that specifically targets these eigenvalues based on a
model or measurement data. The specific eigenvalues
highlighted in Fig. 3 have high state-participation from
both the PLL and outer-loop controls and can move
towards the right-half plane during weak grid conditions
and/or because of inter-IBR controller coupling.

The proposed adaptive control loop, shown in Fig. 4,
should be parameterized to ensure sufficient timescale
separation between the proposed controller and existing
control loops of the CIG. This will help ensure that the
controller does not increase the oscillations during the
attacks considered here.

4. Results

To demonstrate the effectiveness of the proposed
controller we consider the 3-bus microgrid in Fig. 5.
This system has a synchronous generator (SG), a
grid-following (Gf) converter, an active load (AL)
and a constant impedance load. The adversary has
control over the active load and designs a state-feedback
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Figure 3. Changing eigenspectrum during attack

Figure 4. Grid-following control structure with

proposed control loop

controller for modulating active and reactive power
demand to cause the system to become unstable.
The parameters of the synchronous-machine and
grid-following converter are from [Markovic, 2020] and
the details of the AL and the destabilizing adversarial
controller can be found in [Roberts et al., 2021].
The steady-state active and reactive power operating
conditions are summarized in Table 1.

Table 1. Steady-state operating conditions.

P [p.u.] Q [p.u.]
SG 0.32 0.14
Gf 0.70 0.12
AL 0.05 0.0
rl load 0.97 0.11

The proposed defensive controller from Section 3.2,
with experimental parameters in Table 2, is deployed on
the grid-following converter and monitors the integrator
state of the PLL.

Figure 5. Three-bus mixed source microgrid

Table 2. Supervisory Controller Parameters.

τh τl c µ σ
0.795 0.159 1 × 104 15 2

Fig. 6 shows the active power injection from the
grid-following converter in the case of no attack
and during an attack with and without the proposed
supervisory controller. Without the proposed controller,
we see that the CIG is exhibiting unstable oscillatory
behavior. With the proposed supervisory controller,
however, we see that the unstable behavior is mitigated
within seconds following its onset.

0 5 10 15
0.64

0.66

0.68

0.7

0.72

0.74

0.76

Time [s]

A
ct

iv
e

Po
w

er
[p

.u
.]

No defense
Adaptive controller

No Attack

Figure 6. Grid-following converter active power

Contrasting the active and reactive power demand
from the adversary controlled active load in Fig. 7
to the oscillatory active power injection from the
grid-following converter in Fig. 6, we see that the
adversary has exerted minimal observable control effort
to destabilize the system. The amplitude of its load
modulation is under 2% of the total microgrid load.
This level of load modulation is consistent with prior
work on adversarial load control for destabilizing
electromechanical modes on the transmission
grid [Brown and Demarco, 2018]. Additionally, this
load oscillatory amplitude is significantly smaller than
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the amplitude of the oscillatory behavior in the active
power behavior of the CIG in Fig. 6. This additional
oscillatory active power from the CIG is being absorbed
primarily by the constant impedance, due to oscillations
in the nodal voltages, and the synchronous machine.

0 5 10 15

−0.05

0.0

0.05

0.10

Time [s]

A
L

Po
w

er
[p

.u
.]

Active power
Reactive power

Figure 7. Adversary load power

To understand the behavior of the supervisory
defensive controller we examine the behavior of both
the observer, for estimating the energy of the oscillation,
and the filter frequency ωz . Fig. 8 plots the time-series
of εl, the output of a low-pass filter from (15b). Initially,
we see relatively large values for εl as the amplitude of
the oscillations grow in Fig. 6. With the inclusion of
the proposed controller, we see these oscillations decay
until they settle around constant oscillatory amplitude.

0 2 4 6 8 10

0

1

2

3

Time [s]

ε l
[p

.u
.]

No defense
Adaptive controller

Figure 8. εl time series during attack

This filtered signal, εl, in Fig. 8 is a stable control
signal that is then used to adaptively increase the
outer-loop filter frequency, as shown in Fig. 9.

0 5 10 15

32

34

36

38

Time [s]

ω
z

No defense
Adaptive controller

Figure 9. Time series of ωz during attack

The filter-frequency, ωz , is only marginally
increased in this case to mitigate the attack. This
helps limit the randomness introduced by the defensive
controller and ensures that, even during a sustained
adversarial load attack, the CIG exhibits largely
deterministic behavior. Additionally, we see that once
the oscillatory amplitude in Fig. 6 decays, ωz tends back
towards its set-point, ω⋆

z , in Fig. 9. Once the adversarial
controller is deactivated, either by the adversary
themselves or a higher-level intrusion detection scheme,
the proposed controller ensures that ωz returns to its
normal operating value, ω⋆

z .
In this work, we demonstrated our proposed

controller on a simple 3-bus microgrid. Recent analysis
has shown how electrically close CIG can adversely
interact with each other in larger systems [Fan, 2022].
This presents an alternative attack vector for adversaries
to destabilize local CIG. Future work will examine how
the proposed controller performs under such an attack.

5. Conclusions

In this work we presented a local supervisory
controller designed to be the last line of defense against
a destabilizing cyber-physical attack against CIG within
a micro-grid. This defensive controller was designed to
stochastically increase the outer-loop bandwidth of the
CIG to invalidate any deterministic state-space model
that an adversary may have used to design their attack.
A key design feature of the proposed controller is that is
does not impede normal operation of the CIG and is only
activated in the event of sustained oscillatory behavior.

With the continual proliferation of microgrids,
coupled with the control complexity of the
CIG, the attack surface of these systems is
increasing [Sahoo et al., 2021]. Hardening these
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systems against adversarial attacks, both direct and
indirect, will require a cross-disciplinary approach with
multiple fail-safe systems. This work was a first step
at designing a last line of defense that would allow
the CIG to remain online and delivering its required
grid services while protecting itself against a targeted
attack. The hope is that this last line of defense would
mitigate any adverse physical impacts of the attack, e.g.,
damaging equipment, as well as allow operators and/or
other defensive layers additional time to respond.

Further work is required to further analyze, and test,
the proposed controller and its stability properties to
guarantee its satisfactory performance. Additionally, we
will consider the effectiveness of the proposed controller
under different attack models, including attacks that
attempt to be robust with respect to uncertainties in
the system model. These more sophisticated attacks
may require adjusts to the proposed controller, e.g.,
saturating the value of the filter frequency, ωz , to
ensure that the proposed controller does not increase
the bandwidth of the outer-loop such that it adversely
interacts with the inner-control loop.

Appendix A

We assume the adversary has a linear state-space
model of the form

∆ẋ = A∆x+B∆u, (16)

with x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m and u ∈
Rm. To design a destabilizing feedback controller,
we first identify a suitable mode of the linearized
matrix A to destabilize. Following this, we seek to
design a feedback controller that achieves a desired
closed-loop unstable eigenvalue λ̂. In addition to
meeting the eigenvalue specification criteria, we seek
to design the corresponding eigenvector v̂ to minimize
the participation of the states of the control group in
the unstable mode. To achieve this, we seek to design
an eigenvector v̂ that maximizes the participation of
the target group (relative to the control group) in the
unstable mode. We then begin by constructing the
corresponding Hautus matrix Sλ̂ given by (17)

Sλ̂ = [(λ̂I −A) B] (17)

where I is the identity matrix. We then determine the
matrix Kλ̂ of the form

Kλ̂ =

[
N λ̂
M λ̂

]
, (18)

whose columns form a basis for nullspace of Sλ̂. Note

that the rows of Kλ̂ ∈ R(n+m)×m are partitioned in a

similar manner to the columns of Sλ̂, i.e. N λ̂ ∈ Rn×m

and M λ̂ ∈ Rm×m. The dimension, m, of the input
vector, u, will determine the dimension of the nullspace
and consequently the degree of flexibility in designing
the eigenvector v̂, expressed as

v̂ = N λ̂k (19)

for some k ∈ Rm×1. The ith entry of v̂, therefore,
is given by

v̂i =

m∑
j=1

[Nλ̂]i,jkj . (20)

Here, we let N λ̂T and N λ̂C denote the rows of N λ̂
whose indices correspond to the states of the target and
control group, respectively. The target group represents
the states of the devices we wish to destabilize while the
control group is the set of states under the control of the
adversary. We then seek to determine the optimal design
vector k⋆ for maximizing the ratio of ℓ2-norm of the
eigenvector entries corresponding to the target states and
the ℓ2-norm of the eigenvector entries corresponding
to the control group. Similar to [DeMarco, 1998], we
mathematically express this optimization problem as

max
k

k′[N λ̂T ]
′N λ̂Tk

k′[N λ̂C ]
′N λ̂Ck

s.t. k′k = 1,

(21)

where [.]′ denotes the transpose operator. Defining the
matrices G and H as

G = [N λ̂T ]
′N λ̂T H = [N λ̂C ]

′N λ̂C , (22)

we rewrite this optimization as

max
k

k′Gk

k′Hk

s.t. k′k = 1.

(23)

Note that we assume that the matrix H is positive
definite. Otherwise, we could choose the optimal design
vector k⋆ such that the control group would have zero
participation in the unstable mode, i.e. N λ̂Ck

⋆ = 0,
which would be the best case for the adversary.

Having H as positive definite, we can safely assume
that it has a well-defined square root. We now introduce
a linear transformation given by

k = H−1/2ν, (24)

and substitute this into (23), which yields

max
ν

ν′(H−1/2)TGH−1/2ν

ν′ν
. (25)
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Note that (25) takes the form of the Rayleigh quotient
and is therefore easily solvable. The optimal design
vector k⋆ is constructed using the eigenvector νmax

corresponding to the largest eigenvalue of (25), and is
given by

k⋆ = H−1/2νmax. (26)

We then construct the destabilizing feedback matrix F
as follows. Let us define the vectors ŵ and ŵ in (27).

ŵ = M λ̂k
⋆ , v̂ = N λ̂k

⋆, (27)

and construct the real matrices W and V of the form

W = [Re{ŵ} Im{ŵ}0 . . . 0], (28a)
V = [Re{v̂} Im{v̂}Re{v3} Im{v3} . . . vn−1 vn],

(28b)

where [v3, ....vn−1,vn] are the remaining original
eigenvectors from the state-space matrix A given in
(16). The feedback matrix F is then given by

F = WV −1. (29)

Provided that the columns in (28b) are linearly
independent, the matrix F given by (29) exists and is
unique [Moore, 1976].

Appendix B

Nomenclature

γ Inner-loop current controller integrator

eg Gf capacitor voltage

if Gf filter current

ig Gf grid current

vj Right eigenvector for jth mode

vm CIG terminal voltage

vm Gf terminal voltage

wj Left eigenvector for jth mode

α Adaptive filter frequency control gain

īf Gf current set-point

v̄m Gf voltage set-point

Γ Set of indices denoting the states of the active
load

êg q-axis voltage in Gf PLL SRF

ωb System base frequency

ωc Frequency of Gf internal SRF

ωpll PLL frequency estimate

ωz Gf outer-loop filter frequency

ω⋆
z Reference Gf outer-loop filter frequency

τh Time constant of high-pass filter

τl Time constant of low-pass filter

θpll Angle of Gf PLL

p̃c Gf low-pass filtered active power

q̃c Gf low-pass filtered reactive power

ε Integrator state of the PLL

εh Output of controller high-pass filter

εl Output of controller low-pass filter

c Normalization constant

pc Gf active power

pij Participation of state i in mode j

qc Gf reactive power

vc Gf outer-loop voltage setpoint

vij ith element in right eigenvector for jth mode

wij ith element in left eigenvector for jth mode

ξ Inner-loop voltage controller integrator

θc Angle of the CIG active power controller
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