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Abstract

This paper presents a multi-method approach for
computational modeling of complex business ecosystem
dynamics that enables strategic decision support.
Our computational model is informed by theories
of business strategy, organizational ecology, and
interfirm networks, and uses real-world data mined
from public and proprietary sources. Using a
complex system and network analytic lens, our model
provides insights into how the interconnected nature of
actors, capabilities, and interfirm behaviors (mergers,
acquisitions, and collaborations) can lead to different
ecosystem characteristics. We discuss results and
extensions of this work.

1. Introduction

Today’s business environment is characterized
by rapid change, significant technological advances,
emerging actors, global competition, and a continuous
need to innovate. To cope with these challenges
and ensure sustained competitiveness, companies
increasingly seek interfirm collaboration and acquire
new capabilities through mergers or acquisitions.
Indeed, there is an increased recognition that value
is co-created through a complex ecosystem of actors.
Existing business frameworks, however, appear to fall
short in fully capturing the intricate complexities that
shape this new dominant form of economic organizing;
consequently new theories of ecosystems are emerging
[1]. Yet, there still remains a paucity of empirical studies
and practical tools that can aid decision makers in
quantifying, characterizing, and understanding complex
ecosystem dynamics and using those insights to drive
strategies. This paper fills this gap by presenting and

illustrating a multi-method approach for computational
modeling of complex business ecosystem dynamics.

2. Related Work

The study of business ecosystems has been growing
steadily over the past two decades [2, 3, 4, 5]. The
key tenet is that business ecosystems are characterized
by a heterogeneous and continuously evolving set of
firms that are interconnected through a complex, global
network of various types of relationships, including
alliances, partnerships, investments, or subsidiaries. The
primary focus of studies to-date has either been on
describing the nature of ecosystems, goals of members,
and relationship between members.

The lack of work on understanding the dynamic,
evolutionary aspects of business ecosystems as a
whole, which may determine an individual company’s
success within the ecosystem, may in part be attributed
to challenges in identifying comprehensive temporal
ecosystem data that could help inform our understanding
of the dynamic complexities inherent in these systems
[6]. To overcome this, scholars have often reverted to
studying the evolution of ecosystems using a snapshot
approach, interpolating structural changes over time.

More recently, there has been a call to adopt
a complex adaptive systems lens to the study of
ecosystems [7]. It has been argued that phenomena
like dynamism, emergence, or adaptability are often
missed in studies with a predominantly static snapshot
investigations of ecosystems. With advances in
computational methodologies and tools, such as visual
analytics and agent-based modeling, it is now possible to
model ecosystems as a system of heterogeneous agents
that evolve and interact with one another, leading to
emergent system behavior that would be difficult to
understand by studying individual parts alone [8].
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Figure 1. Ecosystem Strategy Dynamics.

A valuable guidance for developing a computational
model of ecosystem dynamics is the framework on
strategy dynamics for corporate longevity [9]. The
framework juxtaposes actions taken by a focal company
and members of the ecosystem (see Figure 1). A
stable industry structure is characterized by the fact
that the focal company as well as all members
in the ecosystem are rule-abiding, i.e., predictable.
A company-controlled industry change reflects an
ecosystem where the focal company drives changes in
the ecosystem while the company-independent industry
change reflects a changing ecosystem driven by various
players in the ecosystem that does not include the focal
company. The most dynamic ecosystem is labelled
runaway industry change; it reflects the fact that both
the focal company along with ecosystem players are
rule-changing, i.e., unpredictable. Our computational
model operationalizes these definitions.

3. Methodology

To model and understand business ecosystem
dynamics, we utilize a multi-step research approach (see
Figure 2), broadly grouped into two parts: an empirical
analysis and a simulation analysis. The approach
extends key steps proposed in prior data-driven studies
of ecosystems [10, 11] with best practices from complex
systems modeling and simulation [12].

Our approach begins with the identification and
curation of relevant ecosystem data (STEP 1). Sources
can include existing public and proprietary databases
or mining highly unstructured data, such as press
releases or analyst reports. The primary focus of
this step is to identify actors (companies), capabilities
(i.e., knowledge, skills, technologies) , and relationships
(explicit or inferred) between them. STEP 2 converts
the data into a network model, with nodes representing
companies and capabilities and links between nodes

representing relationships. Pending on the type of
data, links can also be weighted (e.g, relationship
length, intensity, value). STEP 3 involves selection
and computation of relevant graph theoretic metrics
(e.g., centrality, modularity, etc. [13]). In STEP 4,
we visualize the resulting ecosystem graph using a
force-directed network layout, with key attributes and/or
graph theoretic measures visually encoded. STEP 5
then involves ecosystem sensemaking, which involves
an analysis of structure, dynamics, and rules/behaviors.

Results from the empirical analysis informs the
simulation analyses. We construct synthetic networks
that either resemble the structural characteristics of our
real-world ecosystem or variations thereof (STEP 6).
We define rules and behaviors that companies in the
ecosystem pursue (STEP 7). These rules can be drawn
from empirical evidence as well as operationalization
of theoretical ideas. Finally, we conduct various
what-if scenario experimentation and make sense of the
resulting ecosystem structure (STEP 8).

4. Illustrative Example

4.1. Empirical Analysis

We mined unstructured data (news, press releases,
blogs, and webpages) provided by Netbase Quid to
extract events and entities associated with two focal
industries: the Hardware Accelerator (HWA) and
the Edge Computing (EDGE) industry. The HWA
dataset contained 490 relationship events associated
with 502 unique companies. The EDGE dataset
contained 792 events with 330 companies. Next,
we constructed bi-partite graphs of companies and
capabilities, projected these onto the company graph,
and computed graph theoretic metrics. Since an event
has a timestamp the resulting graphs may be time
dependent. For instance, the event: ”Company A
collaborates with company B at time t1 on using
capability C1...Cn” creates a bi-partite graph between
capability nodes and company nodes, whose projection
onto the company network creates a link between
company node A and B at time t1.

Figure 3 shows a visualization of the bipartite graph
of the HWA ecosystem for the data collection time
period. We observe that core companies have many
capabilities while companies in the periphery have just
one. Further analysis reveals structural characteristics,
using e.g., eigenvector centrality of a node in a network
as a proxy for market dominance. For instance,
collecting label nodes that are important in particular
domains into subsets we can determine the eigenvector
centrality in the projections of the different subsets and
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Figure 2. Multi-Phase Research Approach to Computational Modeling of Business Ecosystem Dynamics.

thus create power rankings in different sub-markets.
Similarly, betweenness centrality is a proxy for flow
control in a network.

The study of observed (i.e., Nvidia and Mellanox)
and proposed mergers (i.e., Nvidia and ARM) illustrates
the potential of network analysis. Specifically, we are
interested in measuring the structural impact of these
two events on the whole business ecosystem beyond the
merging companies. A key result is the different impact
of these mergers on the betweenness centrality ranking:
the ARM merger creates winners (Nvidia, Microsoft)
and losers (IBM, Intel) whereas the Mellanox merger
is irrelevant, i.e., does not change the betweenness
centrality. This suggests that Mellanox was not a
gatekeeper in the HWA network; it had no or little
control over the flow of information or supplies in this
network.

Figure 3. Visualization of the HWA Ecosystem.

4.2. Computational Model

While empirical data can be used to study the
evolution of an ecosystem, the task of collecting
sufficiently comprehensive data to enable more

fine-grained time and sub-segment analysis is resource
intensive. In addition, the rule/behavioral modeling is
often noisy and would require large datasets to extract
any statistically significant statements. A computational
model allows us to generate a large number of relevant
events at a high granularity in time. Moreover, a
computational model of a business ecosystem enables
us to investigate and analyze a wide-range of potential
scenarios by varying the characteristics of the network
structure and behaviors of companies.

To do so, we reduce an ecosystem to a minimal
model that allows us to create an agent-based simulation
that may act as a digital twin of a real-world context.
We retain the structure of a bi-partite graph with label
nodes (which are passive) representing capabilities and
company nodes (the active agents of the simulation).
Our initial networks are similar to the EDGE/HWA
network in terms of the degree distributions of the
nodes, the degree distribution of the capabilities, and the
clustering coefficient of the company networks [14, 15].
The only action that we allow agents to perform are (1)
collaborations and (2) mergers and acquisitions. Our
experimental setup assumes an innovative market that
is characterized by a set of capabilities which have to
be acquired by companies that want to be successful.
Initially all companies have a subset of the necessary
capabilities and their goal is to win the race to the top,
i.e., to be the first company to have direct/indirect access
to all necessary capabilities.

Drawing on fundamental ideas from econophysics
(see [16]), we consider two sets of rules which
we associate with low and high entropy decisions.
Low entropy decisions will be predictable, lead
to rule-affirming actions, have narrow distributions
for random choices and a low rate of activities.
High entropy decisions will be surprising, lead to
rule-breaking, have near uniform distributions for
random choices, and a high rate of activities. A
priori, high and low entropy decisions have no value
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Figure 4. Temporal Structural Characteristics and Performance Metrics for an Illustrative Scenario.

statement associated with it, i.e., it does not necessarily
mean that a low entropy decision is the most prudent,
most risk averse or most profitable decision. However,
computational experiments can be set up such that
low/high entropy decisions are correlated to low/high
risk-taking. We then study how much this and other
correlations (e.g., between the entropy of the decision
options and revenue increase and speed of market
development) depend on the network structure and the
state of the ecosystems.

Operationally these dichotomies are coded as (i)
rules that constrain M&A e.g., through network or
financial constraints (low entropy) or allow completely
arbitrary mergers (high entropy); (ii) rules that assign
capabilities to startup companies based on some
preference scheme or distributed uniformly randomly;
and (iii) lower or higher rates of events. The four
quadrants in Figure 1 are thus associated with low
and high entropy ecosystems and the relative position
that a focus company finds itself. We implement
our computational model using Python and AnyLogic,
conduct a wide-range of practical scenarios, and
compute corresponding key metrics. An example of the
outputs generated by our computational model is shown
in Figure 4. Our initial experiments provide several
important observations into ecosystem dynamics.

• High entropy rules typically lead to faster success.

• Constrained decisions on M&A slow down the
acquisition of capabilities. Companies prefer

to acquire capabilities through collaboration.
It does not matter whether the constraint is
network-based (e.g., merge only with neighbors)
or financially directed (e.g., insufficient budget to
acquire a company).

• Ecosystems that start out unpredictable become
more predictable over time. This happens for
two reasons: certain capabilities become more
valuable making M&A harder, and a company’s
action to acquire the last few missing capabilities
are more predictable since its choices are limited.

The last observation points to a resolution of the obvious
conundrum associated with unstable ecosystems: a
steady state for an unstable ecosystem is a contradiction.
How do ecosystems then evolve to something stable?
Obviously this stabilization is likely driven by the goal
of racing to the top. However, one can argue that many
highly innovative economic phases are characterized in
that way, followed by less innovative phases that may be
driven primarily by financial objectives.

5. Concluding Remarks

Our computational modeling approach provides a
foundation and important initial insights for exciting
future research directions, including exploration of
the target(s) and timing of collaboration and M&A,
strategies to use in highly dynamic and/or stable
ecosystems, evaluation of different competitive rules

Page 1337



and behaviors, or the impact of new capabilities. As
complexity grows in ecosystems, such insights will
be critical to understanding the nature of the industry
dynamics and a company’s strategic advantage relative
to its position in the network structure. At the
same time, there are many opportunities to refine the
underlying mechanism of our computational model,
including the notion of managing product and capability
portfolios, competing for market share, or maximizing
revenue given budget constraints. Similarly, there
are opportunities to extend our model to explore the
impact of “black swan” events (e.g., introduction of
disruptive capabilities, technologies, or innovations)
or geo-political changes (e.g., supply chain sourcing,
collaboration policies, etc.).

The practical implications of our work are immense.
Exponential competitive dynamics, rapid innovation
cycles, and blurring industry boundaries makes a
comprehensive and ideally anticipatory understanding
of business ecosystems a critical strategic capability.
Tools that allow decision makers to computationally
explore existing and potentially unknown scenarios
are critical to successfully navigate uncertain times,
eliminating bad strategies early and enabling the
identification of promising ones. The approach and
computational model presented in this paper represents
an important step in this direction.
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