
ODSS: A Ghidra-based Static Analysis Tool for
Detecting Stack-Based Buffer Overflows

Eric Wikman
United States Naval Academy

wikman@usna.edu

Thuy D.Nguyen
Naval Postgraduate School

tdnguyen@nps.edu

Cynthia Irvine
Naval Postgraduate School

irvine@nps.edu

Abstract

To reduce code exploitabilty, techniques for
analyzing binaries for potential buffer overflow
vulnerabilities are needed. One method is static
analysis, which involves inspection of disassembled
binaries to identify exploitable weaknesses in the
program. Buffer overflows can occur in libc functions.
Such functions can be referred to as vulnerable
sinks. We present Overflow Detection from Sinks and
Sources (ODSS), a script written for the Ghidra API
to search for vulnerable sinks in a binary and to find
the source of all the parameters used in each sink. We
conduct static analysis of ten common libc functions
using ODSS, and show that it is possible to both find
overflow vulnerabilities associated with functions using
stack-allocated strings and to determine the feasibility
of a buffer overflow exploitation.

Key words: binary analysis, buffer overflow, Ghidra,
libc functions, static analysis

1. Introduction

Although buffer overflow vulnerabilities have been
documented for five decades [1], they remain a serious
cybersecurity problem. Substantial effort has been
expended to develop techniques to find flaws in program
binaries [2], and researchers have systematized a range
of binary analysis techniques [3]. Yet, despite their
“ancient” heritage, new buffer overflow vulnerabilities
emerge with great regularity, as recorded by MITRE [4].

Among the techniques used to exploit buffer
overflow vulnerabilities is to pass bad parameters to
vulnerable sinks, where a sink is a function that receives
inputs as execution parameters. Functions that perform
little to no bounds checking on their parameters have a
potential vulnerability for a buffer overflow.

Security researchers often wish to identify the
parameters supplied to vulnerable sinks. The goal
of discovering the parameter values is to determine
which combination of parameters could result in an

overflow. This process is exceedingly tedious because
large programs may contain many vulnerable sinks with
many possible sources of parameters. Tools are needed
to assist in software reverse engineering (SRE) aimed at
identifying buffer overflows.

In this paper, we present Overflow Detection
from Sinks and Sources (ODSS) [5], a static
analysis technique to detect stack-based buffer overflow
vulnerabilities in binaries compiled for execution on
Linux x86 64-bit systems. ODSS has been implemented
as a Python script that uses the Ghidra API [6] to analyze
binaries for buffer overflow vulnerabilities. The Juliet
test suite [7] is used to evaluate ODSS’s effectiveness.

Our contributions are:
• ODSS static analysis tool to discover buffer

overflow vulnerabities using sinks and sources,
• a Python implementation of ODSS, and
• demonstration of the tool’s identification of

buffer overflow vulnerabilities in ten selected libc
functions.

To explain ODSS, we provide background and
related work in Section 2. Our design approach is
presented in Section 3. Functional testing of the ODSS
tool is described in Section 4. A discussion and
conclusion follow in Section 5.

2. Background

When a buffer allocated on the stack is indexed
outside of its defined boundaries, the location provided
is said to be out of bounds and a stack-based buffer
overflow condition occurs. This is common in languages
such as C and C++. Usually, these errors are caused
by improper input validation within the program. Good
input validation checks the type and size of an input
before using it. When these checks are absent, a
program may fail or be vulnerable to exploitation. This
can occur in functions such as strcpy(), where the source
string is copied into the destination string. Strcpy() does
not check the size of its input strings and instead uses
the null terminator in the source string to know when

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6726
URI: https://hdl.handle.net/10125/103447
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

to stop copying. If the source string is larger than the
destination string, strcpy() will write past the end of the
destination string, causing a buffer overflow.

2.1. Ghidra

Ghidra [8] is a SRE framework developed by the
National Security Agencey (NSA) that runs on Linux,
OS X, and Windows. It supports SRE of executables for
a wide range of processors. Among its features, Ghidra
assists in identifying items on the stack and finding
object references (e.g., address locations, function
locations, and stack locations) within a binary file [9].

Ghidra supports the analysis of disassembled
code [10]. It can produce a function database, decompile
code, and approximate how local variables are stored
on the stack. To build its function database, Ghidra
identifies all the functions in the program and resolves
the functions that are used in the C standard library
(libc). Search of a Ghidra-generated function database
allows analysts to easily identify libc functions known
to be vulnerable to buffer overflows.

Approximating the memory consumed by local
variables plays a large role in determining the stack
space allocated to the function. Without Ghidra,
a user must inspect the disassembled function and
determine the amount of stack space allocated to local
variables. This is typically accomplished by looking at
the beginning of the function for the SUB RSP, 0x**
instruction. However, there are no indications of where
one local variable starts and another ends – the analyst
must laboriously map all of a function’s stack offsets.
In contrast, Ghidra performs this analysis, thus allowing
users to search all of the found stack references versus
searching the function. Once a specific stack reference
is known, simple arithmetic can be used to determine the
amount stack space allotted to that reference.

2.2. Juliet Test Suite

The Juliet test suite was developed by NSA and
published by NIST [7]. The suite is described as, “. . .
a systematic set of thousands of small test programs in
C/C++ and Java, exhibiting over 100 classes of errors,
. . . ” [11]. The latest release is comprised of over
86,000 programs, each containing known flaws. Items
in the Juliet suite are categorized according to Common
Weakness Enumerations (CWEs) [12]. In this work, we
use CWE 121 test cases, stack-based buffer overflows.

2.3. Related Work

Recently, companies have developed methods,
often proprietary, for buffer overflow vulnerability

discovery. However, some open research describes
methods specifically for uncovering buffer overflow
vulnerabilities.

ARCHER is a constraint solver that checks the
bounds of variables and memory sizes of various
objects. ARCHER statically analyzes source code, not
binaries, for memory constraint violations such as array
accesses, pointer dereferences, or calls to a function that
expects a size parameter [13].

BOON detects buffer overflows in source code by
using integer range analysis [14]. The target program
is parsed to find string variables, which are assigned
two integers: the string’s allocated size and the number
of bytes currently in use. BOON checks the usage of
each string to determine if its length is greater than the
allocated size. ODSS uses this comparison technique.

To reduce the false positive rate in software
vulnerability discovery, Holzmann developed UNO
[15]. UNO checks for common errors, e.g., uninitialized
variables, nil-pointer dereferencing, and out-of-bound
array indexing. In addition, users can customize UNO
to check for flaws that may be uncommon in general,
but of interest in the case of a particular application.
UNO requires two passes through the code. In the first
pass, UNO builds a parse tree using ctree [16]. It then
converts the tree into a control flow graph. In the second
pass, UNO performs buffer overflow analysis on the
control flow graph. It checks for errors by performing
a global analysis based on its first pass [15]. Unlike
Archer, BOON, and UNO, ODSS looks at disassembly
information from binaries as opposed to the source code.

Value set analysis recovers “information about the
contents of machine registers and memory locations
at every program point in an executable” [17]. This
technique was used by Kindermann [18] to perform
buffer overflow detection via the static analysis of
executables. Kindermann’s buffer overflow detection
method focused on identifying buffer overflows caused
by loops. Our approach focuses on finding the source
parameters for a given sink. Once the source parameters
are found, our method does perform a limited version of
this type of value set analysis to determine if the sink
can be overflowed.

Machine learning has also been used to predict
buffer overflows from vulnerable sinks. Common
approaches use supervised learning and neural networks
to statistically classify overflows. Elements that
contribute to sinks are classified using various machine
learning algorithms. The goal is to determine the
probability that a particular sink will cause an overflow.
This machine learning method has been used on source
code as well as binary files [19, 20, 21, 22]. These
techniques are probabilistic; further analysis of the

Page 6727

identified vulnerabilities is required to determine if they
are both valid and exploitable. ODSS can support such
further analysis.

3. Design Approach

We explore buffer overflow vulnerability detection in
libc functions through static analysis. The libc functions
capable of producing a buffer overflow are referred to
as vulnerable sinks. Here, a sink is a function that
receives inputs to execute its code. This section covers
how sinks can be found and introduces a process for
detecting buffer overflows from the sinks based on their
sources. Sources are values or variables that have space
or information allocated to them at a particular memory
location within the process namespace [23]. When
a source is a value, it may be stored in a register
before a function call. When it is a variable, the
source may be located on the stack or heap. With
ODSS, we developed a new approach to discover buffer
overflows from vulnerable sinks by tracing the sink’s
parameters back to their sources. ODSS allows analysts
to determine if there is a mismatch in parameter sizes
that would cause an overflow. Here, we describe the
automation of the ODSS process.

3.1. Primary Causes of Buffer Overflows

Buffer overflows often occur due to improper size
validations and missing or incorrect input validation for
a given buffer. These can occur when loop indicies
are incremented past the bounds of an array, or when
functions indiscriminately move values into buffers.
Common libc functions such as strcpy(), strcat(),
memmove(), and fgets() are known to be susceptible
to buffer overflow. These functions do not validate
their input parameters, and they are sinks because they
receive their values and variables from sources external
to the function. This does not mean that all sinks
can produce a buffer overflow; however, failure to
check its parameters renders a function less prepared
to handle abnormal input. Consider strcpy(): it takes
two parameters, (1) a destination and (2) a source string.
Character-by-character, strcpy() reads from the source
string and writes to the destination string. Once a null
byte is read, the null byte is written to the destination
string and the function returns [24]. Strcpy() has
no internal mechanism for checking if the destination
buffer is large enough to contain the source string – the
programmer must perform those checks prior to calling
strcpy(). If the source string is larger than the destination
buffer, then the function will write past the end of
the destination buffer, causing an overflow. Vulnerable
sinks are common entry points for attackers to cause

buffer overflows [25]. Thus, performing ODSS analysis
on vulnerable libc sinks would allow the discovery of
potential overflow vectors.

3.2. Detecting Overflows at Vulnerable Sinks

Previous buffer overflow detection techniques, such
as Archer, BOON, and UNO, required the size of
the variables to be known in order to perform bounds
checking. Although each performs bounds checking
differently, they base their approaches on the idea that
every variable has space allocated to it and can be
filled (initialized) with a string. Bounds checking
then compares the allocated size and fill amounts of
two variables to see if a buffer overflow is possible.
The overflow occurs when the source variable’s fill
amount is larger than the allocated size of the destination
variable. If a source variable’s allocated size is larger
than the destination’s allocated size, an overflow is not
guaranteed, but this does indicate a possible problem.

When using source code, finding parameters’
sources is less challenging. Each parameter name
resolves to some initialized variable or input parameter
for a given function. Initialized variables are clearly
defined with the size of the data construct (e.g., array
or string) used to initialize the variable. Changes to
a variable can be found by searching for the variable’s
name, then determining how the variable is used in the
function. This task is more complex when sources are
passed as parameters. To determine the location of each
possible source one must find all the references to the
called function and check the variable or value used as
a parameter by each calling function. Similarly, sinks
and their parameters can be found by searching for each
sink’s name and parameters in the source code.

For the disassembly generated from binary code,
most of the sources and sinks become addresses. When
the sources are local variables, they become offsets
relative to the address of the current stack frame. Given a
single stack offset, it is difficult to determine how much
stack space is allocated to a particular local variable. To
determine a variable’s allocated size, we need the start
address of the preceding local variable. The allocated
size of the source variable is the difference between the
two stack locations. Parameter passing becomes even
more difficult because in 64-bit x86 systems the first six
parameters are passed in registers.

3.3. Method for Finding Overflows

ODSS automates the daunting manual process used
to discover buffer overflows in binary code using sinks.
Typically, vulnerable sinks could be called hundreds of
times. Automating this process can significantly reduce

Page 6728

the time required to analyze vulnerable sinks.
At a high-level, we summarize the ODSS approach

in four steps. STEP 1: Identify the CALL instructions
used to call the libc sinks within the binary file. STEP
2: Identify the source location for all of the parameters
used in the sink call. STEP 3: Determine how the
sources are used. STEP 4: Calculate if any combination
of sources could overflow a buffer for a given sink.

STEP 1: Find Sinks. Vulnerable sinks can be
found by searching Ghidra’s function database, which
Ghidra creates by analyzing all functions in the program.
Ghidra can also resolve libc functions with their actual
function names. Thus, all sinks used in the program
can be identified. Ghidra creates a reference database,
which contains reference information about functions,
global variables, initialized data section(s), and the
uninitialized data section. The reference database tracks
the addresses from which each function is called. The
references to the sinks contain the parameters passed to
each sink. Thus, the references to the sinks become the
starting point to search for the sources.

STEP 2: Find Sources. On 64-bit x86 systems,
the first six parameters to functions are passsed via
registers, while any additional parameters are passed
on the stack. This requires the detection method to
track register usage and stack locations from calling
functions. Finding sources starts with the address where
the sink is called. Since the libc functions that are
chosen as sinks in this research have fewer than six
parameters, all parameters are stored in registers.

By tracking register usage backwards through the
code, it is possible to determine values that are loaded
into the registers. These values passed by the calling
function can include static values, local variables,
function parameters, or addresses. For static values,
local variables, and addresses, the search ends because
these values indicate a location or size; thus, the source
has been found.

When source values originate from a parameter or
pointer, then the source’s true location still needs to
be determined. All the references to the function
parameters or pointers must be checked. For each
function parameter, a path tree is formed where the call
to the sink is the root and the functions containing the
sources are the leaves and interior nodes. For the tree
to be built properly, repeat functions cannot appear on
the same path. This means that ODSS does not double
search functions, to prevent loops in the tree.

Figure 1 shows a sink that can have multiple sources
for its parameters. The sink takes two parameters: par1
and par2. For clarity, the parameter names at the
sink are propagated with the same name back up the
call tree to the leaves. Both of the sink’s parameters

come from the parameters of Func1(). Func2() and
Func3() call Func1(), so those functions are added to the
tree. Func2() is similar to Func1() because both of the
parameters in the call to Func1() come from Func2()’s
parameters. In Func3(), par2 is allocated inside the
function. For Func4(), Func5(), and Func6(), par1 is
allocated in each of these functions.

Figure 1. Source tree with the sink as the root

Figure 2 gives a simple example of the ODSS
tracking technique. The disassembly shown in the
figure ends with a call to strcpy(). Register RSI, the
second parameter to strcpy(), is the sink parameter of
interest. At offset 001011d9, MOV RSI, RDX shows
that RDX holds the value that must be tracked. At offset
001011d1, we find MOV RDX, qword ptr [RBP +

local 30]. The qword ptr [RBP + local 30]

operand is a local variable of this function. At
offset 001011bf, qword ptr [RBP + local 30] is
loaded with RDI. We see that, at this point, RDI was
the first parameter passed to the function. Hence, the
second parameter to strcpy() came from the function’s
parameter. This means that, to find each source of
the second parameter to the sink, all references to each
source in the call chain must be checked.

Figure 2. Ghidra disassembly of a source being

passed to a sink

STEP 3: Determine Source Usage. Prior
to calculating the overflows for a sink, how the
source parameter may have been used or modified by

Page 6729

intermediate functions prior to its use by the sink needs
to be determined. This requires detailed analysis of the
disassembly code to verify the allocated size and the
string length of the sources.

Determining a source’s usage starts at the location
where the source was found. From there, the source is
tracked through the call tree to determine how it was
used enroute to the sink. Within every function where
the source is used as a parameter, the source is checked
to determine if it was used in a call to another function.
If so, then the new function is added to the list of
functions to be checked. To prevent a recursive loop,
functions are checked once. Source usage is determined
in two passes. The first pass collects values that have
no other dependencies. An example is a static value that
can be calculated without further searches. Values that
have dependencies could be other sources that have not
been calculated yet. The second pass allows the source
to calculate values from other sources.

STEP 4: Calculate Overflow. To calculate
overflows, all sources for a given sink are compared to
determine if a buffer overflow is possible. A common
format is used to record parameter attributes for each
sink: a source string, a destination string, and sometimes
an integer byte count. The source string specifies where
the values came from and the destination string specifies
where the values will be written. Using the attributes
collected on the sources, a simple range check can
determine if the destination string can be overflowed.
In the cases of a three-parameter sink, the values of all
three parameters are checked to determine if an overflow
might occur. This method of calculating overflow has
three resulting cases:

• Safe. There is no overflow. Nothing is reported.
• Caution. The allocated size of the source is larger

than the allocated size of the destination; however,
the maximum fill amount of the source is less than
the allocated size of the destination.

• Warning. The source’s string length is greater than
the destination’s allocated size.

Overall Complexity With an understanding of the
steps for finding overflows, we can determine the
complexity as followed:

• n = number of functions in the program
• m = number of calls to a given vulnerable sink
• l = lines of code in the program
• s = number of sources for a given call to a sink

In STEP 1, finding the sinks in Ghidra’s function
database is a linear lookup, where n is the number
of functions in the program. In STEP 2, finding the
sources for a given call to the sink requires searching

up through the code: for every m there is some number
of s. In the worst case of searching for all the sources, it
could search through every line of code in the program.
However, for this step, dynamic programming is used to
limit searching for sources that belong to multiple sinks.
This is determined by examining the path a source takes
between functions and comparing against other paths
that took the identical route. Even with the dynamic
programming in STEP 2, this would still be calculated
as msl. Finding source usage in STEP 3 takes two
passes through the code for every source. Again, in the
worst case, this would require searching through every
line of code for every source. Dynamic programming is
applied again so that duplicate paths for a given source
can be avoided. This will still result in m2(sl). In
STEP 4, calculating the overflow involves comparing the
sources that contain the values against the sources that
will receive the values. In the case of the sink involving
three sources, this would be ms3. Combining these four
steps results in:

O(n+m(3sl + s3))

Depending on the program, any one of these variables
could be the dominant feature of the run time of the
overflow search tool.

3.4. Core Modules of the ODSS Tool

The ODSS software consists of three modules:
Main, Sink, and Source. The Main module is responsible
for the program’s execution flow. The Sink module
finds, creates, and calculates the overflows for the sinks.
The Source module is responsible for finding, creating,
and filling in the attributes for sources.

The Sink module encapsulates1 attributes for all of
the vulnerable libc functions calls in the binary. Its
processing includes discovering the sinks, creating a
database entry for each sink, and determining whether
a particular sink can overflow.

The Source module finds the sources of the
parameters that will be passed to the vulnerable libc
functions. It also determines how the parameter will be
used. To find the sources, the sink’s parameters must be
traced back to their origins. This involves determining
how sources are passed to other functions and building
the path to each source. Once all the sources have
been discovered, the usage of each source is determined.
Searching for the usage of each source yields the longest
string length used in the source. This requires checking
if the source is modified along its path to the sink.
Knowing the longest string length used in the source
allows its string length to be compared with allocated

1We refer to databases in the manner described by Parnas [26]

Page 6730

sizes of other sources to determine if a buffer can be
overflowed.

3.5. Design Choices

This section discusses the design choices for ODSS.
Ghidra Use: The Ghidra API supports finding

functions, references, and iterating through instructions
[6]. Ghidra’s function finding API supports the
identification of sinks. Ghidra’s reference finding API
provides a concise list of how and where various
elements are used in the binary file. Last, Ghidra’s
iterating API helps determine where instructions begin
and end. This makes moving through the binary
file significantly easier. Ghidra’s active support,
open availability, and function database facilitated
the ODSS implementation. These criteria led to
its choice over several other SRE tools such as
IdaPro [27], the advanced functionality for which is
proprietary; Cerbero, which is proprietary [28]; and
API Monitor [29], which has not been maintained
recently. This work utilized Linux-based Ghidra version
9.1-BETA and its associated API.

Linux x86 64-bit system: ODSS is designed to
run on a Linux x86 64-bit operating system. As noted
in Section 3.3, the first six parameters are passed in
registers. Passing parameters in registers presents a
unique, but solvable, challenge to tracking how values
are moved between functions.

Buffer overflow detection used on C programs:
Since ODSS is based on vulnerabilities in libc functions,
the script only supports C programs. Focusing on
a single programming language results in consistency
across the different tests and allows uniform analysis.

Compilation requirements: All test programs were
compiled using the default GCC configurations. The
only exception is the -fno-builtin option, which prevents
functions from being inlined. In this context, an inlined
function is placed directly into the code instead of using
CALL to invoke the function. Certain libc functions,
such as memmove(), are inlined when compiled using
the default compiler settings. Test cases with multiple
files are statically compiled together.

Buffer overflows in stack-allocated strings:
We focus only on the overflows that occur from
stack-allocated strings, which are better suited for static
analysis. Sizes of the variables allocated on the stack
are known before run time. The sizes of variables
allocated on the heap can change during program
execution. For heap-based variables, program flow
must be determined to correctly calculate the space
allocated to each variable, which is not conducive to
static analysis methods.

Functional testing using the Juliet test suite: The
set of vulnerabilities from the Juliet test suite [7] relevant
to this work comes from the section labeled CWE
121 stack-based buffer overflow. These vulnerabilities
provide numerous examples of the type of buffer
overflows ODSS is intended to detect.

3.6. Restrictions and Exclusions

Several functional features and capabilities are
beyond the scope of this work.

Variadic functions: Variadic functions take a
variable number of parameters. Examples from libc
are printf() and scanf() [24]. A format specifier, which
is passed as the first parameter, is used to parse the
remaining parameters. Variadic functions are excluded
from this work. A dynamic approach that parsed the
format specifier would be needed.

Stack manipulation functions: Some functions
adjust the stack frame. An example is alloca() [24].
Since the alloca() function is inlined to the function
that calls it, it is difficult to quickly find alloca() when
searching through the program, and thus transforms the
task of determining if a buffer overflow could occur into
one of searching for code that exhibits alloca() behavior.
Hence, alloca() and similar functions are not included in
the buffer overflow tests. Our method relies on Ghidra’s
function database to identify calls to functions. Future
work in this area involves the identification of these
inlined functions. This feature is not an organic part of
Ghidra’s functionality.

Values based on complex algorithms:
Complications arise when a program uses more
than basic arithmetic to calculate values. The equation
used to calculate those values must be discovered to
determine what parameters are sent to the sinks. To
determine values resulting from complex equations, a
state machine that modeled those equations would be
required. Our work is intended to explore the feasibility
of ODSS, so development of a state machine model
was left to future work. Instead, we used addition and
multiplication equations to determine input values to
the sinks, and excluded the use of instructions such as
SUB or DIV when calculating sizes.

Flow invariant: Often, programs consist of many
conditionals that control the code’s execution path.
From a static analysis perspective, a control flow graph
[30] could be constructed to determine how a program
executes. The goal of our overflow detection method
is to test the feasibility of tracking a source back to its
origin. To constrain the scope of our experiments, flow
control is not analyzed. Knowing the program’s control
flow can increase the accuracy of the detection method;

Page 6731

however, mapping the control flow of a program is a
separate large topic, e.g., [31].

Multiple Register tracking: ODSS assumes that
only one register is used to calculate a source’s
location. For the Juliet test cases, tracking one register
was adequate. More complex programs use different
memory addressing modes that require using multiple
registers to calculate a source’s true location. This is
common when indexing into an array; one register is
used to point to a base location and another register
is used to point to the offset into the particular string
array. Tracking multiple registers can be implemented
by searching for all the registers used in an instruction.
Once the values for the registers are found, those values
could be used to calculate the source’s location. This
enhancement is future work.

Limited detection of overflow from concatenation
functions: Since program control flow is not tracked,
knowing when a source has values concatenated to the
source is not considered. A single-use overflow would
copy 100 bytes into a 50-byte buffer once. A continuous
overflow would copy 1 byte into a 50-byte buffer 100
times. We focused on single-use overflows.

4. Functional Tests

We conducted functional tests of ODSS on ten
different sinks with a total of 40 tests: strcpy(),
strncpy(), memcpy(), strcat(), strncat(), wcscat(),
wcsncat(), strcat(), wcscpy(), and wcsncpy(). The
functional tests follow NIST combinatorial testing
guidance [32]. By categorizing the different tests, we
were able to perform pairwise combinations on the test
cases to ensure coverage of the available problem set.
This involved grouping sinks with a buffer overflow
variant. We then grouped the test cases based on how
the sources got to the sink. This is referred to as the flow
variant. The flow variants are based on the flow type
(control flow or data flow) and upon the way parameters
are declared. We then ensured there was a test case for
every overflow variant interaction with every possible
flow variant, as listed in Table 1. This allows us to
reduce the total number of test cases to 40 tests.

Sinks were divided into two groups: two- and
three-parameter sinks. In the cases of a three-parameter
sink, we also needed to consider the integer byte count
to determine an overflow. Because of this distinction,
there are multiple tests for the applicable overflow/flow
variant combination. Wide and normal character types
can be grouped together because the source’s size is
determined by counting the bytes at the location of the
source; differences between wide or normal characters
will not skew the tests.

Table 1. Number of test cases per interaction

between overflow variants (OV) and flow variants

(FV). The total is 40 cases.

FV1 FV2 FV3 FV4 FV5 FV6 FV7
OV1 2 N/A N/A N/A N/A N/A N/A
OV2 2 N/A 2 2 2 2 2
OV3 1 N/A 1 1 1 1 1
OV4 1 1 1 1 1 1 1
OV5 1 N/A 1 1 1 1 1
OV6 1 1 1 1 1 1 1

*N/A indicates there was no applicable test case for the flow
variant and overflow variant combination.
FV1: Uses a conditional to control the flow of the program.
FV2: Uses a conditional to control the flow of the program and
passes source information between functions.
FV3: Uses pointers to point to the source values.
FV4: Uses a union for the source parameter.
FV5: Passes source information between functions.
FV6: Passes source values between files.
FV7: Pass values to different functions, but pass different types
of information.
OV1: Incorrect length value used for a struct (CWE 121).
memmove(), memcpy()
OV2: Off by one error (CWE 193). strcpy(3), wcscpy(3),
memcpy(2),memmove(2), strncpy(), wcsncpy()
OV3: Buffer access with incorrect length value (CWE 805).
strncat(),wcsncat(),memmove(),memcpy(),strncpy(),wcsncpy()
OV4: Buffer access using size of source buffer (CWE 806).
wcsncpy(), strncpy(2), memcpy(2), wcsncat(), memmove()
OV5: Destination parameter passed to sink as a pointer (CWE
121). strcat(2), wcscat(), wcscpy(2), strcpy()
OV6: Source parameter passed to sink as a pointer (CWE 121).
wcscpy(), wcscat(2), strcpy(2), strcat(2)

4.1. Test Results

Functional testing showed that tracking sources to
sinks is a viable method for detecting overflows caused
by vulnerable sinks. Our buffer overflow detection
method correctly identified buffer overflows in 38 out
of the 40 test cases. Figure 3 shows the receiver
operating characteristic (ROC) curve against the 40 test
cases, where ODSS produced only three false positives.
In most test cases, the detection method accurately
estimated the allocated sizes and fill sizes of the sources.
The primary causes of deviations in the size estimates
were due to accounting or not accounting for a null byte.

Two test cases failed, resulting in false positives.
Test Case 2 checks the overflow variant using the
memmov() sink. It tests a condition of struct overrun
caused by an incorrect value used for a struct. Test Case
10 checks the overflow variant type using the memmov()
sink. It tests an off-by-one error.

4.2. Review of error rates

First, Test Case 2 produced a warning for two
good implementations of a sink. This is caused by

Page 6732

Figure 3. ODSS ROC curve

the destination parameter not accounting for the null
byte at the end of the char array. Figure 4 shows
the Ghidra disassembly of the function that caused
the error. We see that local 68 is the destination
parameter and is allocated a space of 60 bytes. We
also see that memmove() is writing 64 bytes (hex 0x40)
to the destination parameter. This does seem like an
overflow; however, immediately below the memmove()
call, a null byte is moved into local 2c. local 2c

is a four-byte variable that resides immediately after
local 68 (local 2c requires four bytes because
local 68 is a UTF-32 wide char array). Since there
is a direct reference to local 2c, Ghidra treats it as
an independent variable, although this null byte value
is part of the char array. Thus, with local 2c the actual
size of the array is 64 bytes. This can be fixed by adding
checks for the presence of a null bytes after a char array.

Figure 4. Error in Test Case 2 caused by null byte

Test Case 10 produced two warnings, but should
have produced one (see Listing 1). This is because the

source location was misidentified as a pointer. Figure 5
shows the disassembly that caused misidentification of
the source. Starting at the memmove() sink at the bottom
of the figure, the source can be tracked up through code
by following the last use of the operand. We see that the
source is first at a pointer at offset -0x28.

The value in offset -0x28 then came from the
pointer at offset -0x38. Offset -0x38 is then loaded
with the address of offset -0x48. Offset -0x48 is
a pointer, not a source location. Since there is no
instruction to load offset -0x48, the detection method
did not find the actual value with which -0x48 is
associated. The actual value of offset -0x48 is a pointer
to offset -0x1d. This is the result of offset -0x30

pointing to offset -0x48 and then offset -0x1d is
loaded into the location to which offset -0x30 points.

void ...CWE193_char_declare_memmove_32_bad()
{

char * data;
char * *dataPtr1 = &data;
char * *dataPtr2 = &data;
char dataBadBuffer[10];
char dataGoodBuffer[10+1];
{

char * data = *dataPtr1;
data = dataBadBuffer;
data[0] = '\0';
*dataPtr1 = data;

}
{

char * data = *dataPtr2;
{

char source[10+1] = SRC_STRING;
memmove(data, source,

(strlen(source) + 1) *
sizeof(char));

printLine(data);
}

}
}

Listing 1. Source code for Test Case 10

There is no simple solution for this case. Analysis
of pointer usage within functions is needed to determine
the source. Dynamic analysis is more appropriate since
the values of the dereferenced pointers must be checked
at the time of their use. Through the execution of a
particular control flow path the target values are set.

5. Discussion and Conclusion

The tool focuses on function-to-function
interactions, testing how sources pass through different
functions enroute to a sink. Based on the testing
results, tracking sources through parameter passing was
demonstrated to be possible. Tracking sources inside a
function illuminated some weaknesses. The test results

Page 6733

Figure 5. Incorrect source identification due to

pointer use. (Left: original. Right: mark-up.)

showed that the tool needs a more robust means for
tracking pointer usage to correctly identify sources.
Other improvements include improving the accuracy of
the source size calculations, properly identifying data
types in uninitialized structs, and determining sources
from multiple register usage.

int main()
{

char string1[50];
char string2[50];

string1[13] = 'A';

for(int i = 0; i < 50; i++){
if(i == 13){

string2[i] = 'A';
}

}
}

Listing 2. Source calculation test

5.1. Source size calculation

Our method for calculating the size of the source
relies on finding references to stack locations inside
a given function. To determine a variable’s size, the
method calculates the unused space between the start
of two variables. This works for initialized variables
and cases where there is a reference to each of the
variables. It fails for direct references into arrays
because Ghidra interprets direct references to stack
locations as variables. Thus, calculating the space in
between the variables will not work because Ghidra adds
a new variable in the middle of an existing variable.

An example of direct referencing into a variable is
seen in Listing 2 and Figure 6.

Listing 2 shows a direct reference in the middle

of a character array via static assignment within a
loop. Figure 6 shows the stack layout Ghidra produced
from the binary code. Note that local 88 refers to
string1 and local 48 refers to string2. For string1,
we see a variable at location local 7b, which is the
13th index in the array. Using the current source size
calculation method, the difference between local 88

and local 7bwould result in the incorrect size of 13 for
the variable. Without source code, further investigation
is needed to detect these cases.

Figure 6. Disassembly of the stack layer for the

source test

5.2. Uninitialized structs

When structs are uninitialized, space on the stack
frame is allocated for the whole struct, so individual data
structures in a struct cannot be easily differentiated. To
do so, a reference to each data structure’s location in the
code is needed. Absent these references, calculating the
distance between variables could result in calculating
space meant for another data structure within the struct.

There is no good solution. One could search for
clues about the struct. Information from functions such
as sizeof() can provide clues to the length of a data
type. Given such functions, the compiler may statically
assign the data type’s size as an integer in the binary.
These statically assigned values provide a direct means
of determining the space allocated to a variable.

5.3. Instruction set coverage

ODSS focused on the instructions that appeared
in the test sets. For example the SUB instruction
could be handled similarly to the ADD instruction when
calculating offsets. However, the SUB instruction did not
appear in tests for tracking a source and, thus, the use
of the SUB instruction for calculating offsets remains
untested. There are many other instructions that were
not handled; this is an area for future work.

5.4. Conclusion

We demonstrate ODSS, automated support for static
analysis of binary programs to search for buffer overflow
vulnerabilities. The bottom-up tracking process showed

Page 6734

how to use the sinks and sources found in binary code to
discover potential vulnerabilities. ODSS was successful
against test cases in the Juliet test suite and identified
buffer overflow vulnerabilities in ten libc functions. The
selected Juliet test cases allowed us to test variations
of a sink’s usage; however, these tests are short
code sequences intended to illustrate vulnerabilities and
do not reflect many challenges associated with larger
real-world applications. Further research is required
to enhance the capabilities of ODSS. Future work
involves use of a more realistic test suite and open
source programs with known buffer overflows. This will
require further refinement of ODSS for use on a wider
range of systems.

The ODSS code is available at: https:
//github.com/ecw0002/Ghidra-based-Static-Analysis-
Tool-for-Detecting-Stack-Based-Buffer-Overflows/

Disclaimer Any opinions, findings, and conclusions
or recommendations expressed are those of the authors
and do not necessarily reflect the views of the
Department of the Navy or the U.S. Government.

References

[1] J. P. Anderson, “Computer security technology planning
study,” Tech. Rep. ESD-TR-73-51, Air Force Electronic
Systems Division, Hanscom AFB, Bedford, MA,
October 1972.

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok:
Eternal war in memory,” in Proc. IEEE Symp. on Security
and Privacy, pp. 48–62, May 2013.

[3] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “SOK: (state of) the art of
war: Offensive techniques in binary analysis,” in IEEE
Symp. on Security and Privacy, pp. 138–157, May 2016.

[4] MITRE, “Common vulnerabilities and exposures.” https:
//cve.mitre.org/, May 2022.

[5] E. C. Wikman, “Static Analysis Tools for Detecting
Stack-based Buffer Overflows,” Master’s thesis, Naval
Postgraduate School, Monterey, California, June 2020.

[6] National Security Agency, “Ghidra API.” http://ghidra.
re/ghidra docs/api/, 2020.

[7] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and Java
Test Suite,” Computer, vol. 45, pp. 88–90, Oct 2012.

[8] National Security Agency, “Ghidra.” https://www.nsa.
gov/resources/everyone/ghidra/, 2019.

[9] B. Knighton and C. Delikat, “Black Hat USA 2019.”
https://github.com/NationalSecurityAgency/ghidra/wiki/
files/blackhat2019.pdf, Aug 2019.

[10] C. Eagle and K. Nance, The Ghidra Book. San
Francisco, CA: No Starch Press, September 2020.

[11] P. E. Black, Juliet 1.3 Test Suite: Changes From 1.2. US
Department of Commerce, NIST, 2018.

[12] MITRE, “Common weakness enumeration.” http://cwe.
mitre.org, 2006.

[13] Y. Xie, A. Chou, and D. Engler, “Archer: using symbolic,
path-sensitive analysis to detect memory access errors,”
ACM SIGSOFT Software Engineering Notes, vol. 28,
no. 5, pp. 327–336, 2003.

[14] D. A. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken,
“A first step towards automated detection of buffer
overrun vulnerabilities.,” in NDSS, pp. 2000–02, 2000.

[15] G. Holzmann, “Static source code checking for
user-defined properties,” in Proc. IDPT, vol. 2, 2002.

[16] S. Flisakowski, “C-tree distribution.” https://github.com/
nimble-code/Uno/blob/master/Src/tree.h, July 1997.

[17] G. Balakrishnan and T. Reps, “Wysinwyx: What you see
is not what you execute,” ACM Trans. on Prog. Lang. and
Sys. (TOPLAS), vol. 32, no. 6, p. 23, 2010.

[18] R. Kindermann, “Static detection of buffer overflows
in executables.” https://www.academia.edu/3859898/
Static Detection of Buffer Overflows in Executables
Diplomarbeit, 2008.

[19] Q. Meng, C. Feng, B. Zhang, and C. Tang, “Assisting in
auditing of buffer overflow vulnerabilities via machine
learning,” Math. Problems in Eng., vol. 2017, 2017.

[20] B. M. Padmanabhuni and H. B. K. Tan, “Buffer overflow
vulnerability prediction from x86 executables using
static analysis and machine learning,” in 2015 IEEE
39th Ann. Computer Software and Applns. Conf., vol. 2,
pp. 450–459, July 2015.

[21] B. M. Padmanabhuni and H. B. K. Tan, “Predicting
buffer overflow vulnerabilities through mining
light-weight static code attributes,” in 2014 IEEE Intl.
Symp. on Software Reliability Engineering Workshops,
pp. 317–322, Nov 2014.

[22] H. Xue, S. Sun, G. Venkataramani, and T. Lan,
“Machine learning-based analysis of program binaries:
A comprehensive study,” IEEE Access, vol. 7,
pp. 65889–65912, 2019.

[23] H. Zhu, T. Dillig, and I. Dillig, “Automated inference
of library specifications for source-sink property
verification,” in Asian Symp. on Prog. Lang. and Systems,
pp. 290–306, Springer, 2013.

[24] die.net, “Linux programmer’s manual.” https://linux.die.
net/man/3/, June 2022.

[25] AlephOne, “Smashing the stack for fun
and profit,” Phrack, vol. 7, August 1996,
http://www.phrack.org/issues.html?issue=49.

[26] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Comm. A.C.M., vol. 15, no. 12,
pp. 1053–1058, 1972.

[27] C. Eagle, The IDA Pro Book. No Starch Press, 2008.
[28] Cerbero Labs, “Cerbero suite: The hacker’s multitool.”

https://cerbero.io, August 2022.
[29] rohitab.com, “API Monitor.”

http://www.rohitab.com/apimonitor, 2012.
[30] F. E. Allen, “Control flow analysis,” SIGPLAN Notices,

vol. 5, pp. 1–19, July 1970.
[31] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,

“Control-flow integrity principles, implementations, and
applications,” ACM Trans. Inf. Syst. Secur., vol. 13, Nov.
2009.

[32] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical
combinatorial testing,” NIST SP 800-142, 2010.

Page 6735

