
A Hybrid Job Scheduling Approach for Cloud Computing Environments:
On the Usage of Heuristic and Metaheuristic Methods

Abhijith Remesh
Very Large Business Application Lab

Otto von Guericke University, Magdeburg
abhijith.remesh@ovgu.de

Andrey Kharitonov
Very Large Business Application Lab

Otto von Guericke University, Magdeburg
andrey.kharitonov@ovgu.de

Abdulrahman Nahhas
Very Large Business Application Lab

Otto von Guericke University, Magdeburg
abdulrahman.nahhas@ovgu.de

Klaus Turowski
Very Large Business Application Lab

Otto von Guericke University, Magdeburg
klaus.turowski@ovgu.de

Abstract

The Information Technology Industry has been
revolutionized through Cloud Computing. The process
of job scheduling is an integral part in cloud computing
and developing novel scheduling strategies are relevant.
Different scheduling heuristics performs differently in
terms of different metrics, and their performance also
depends on the nature and amount of tasks. Hence, an
adaptive scheduling mechanism with better optimization
potential posses great significance. This paper proposes
a hybrid task scheduling approach which combines
genetic algorithm with several generic scheduling
heuristics for achieving better optimization potential
and adaptability in processing large-scale workloads.
This approach aims to optimize the performance metrics
namely makespan, average flow time, throughput, and
average waiting time. The approach is modelled in
CloudSimPlus framwork and the experimental results
indicate that the proposed hybrid approach consistently
outperforms the individual heuristics in terms of the
stated metrics irrespective of the workload scale. It
is also observed that the optimization potential tends
to increase as the workload scale becomes heavier
and using flow time as the objective function produces
complementary effects on the other metrics.

Keywords: cloud computing, task scheduling,
scheduling heuristics, metaheuristics, genetic algorithm,
performance metrics.

1. Introduction

Cloud computing enables on-demand and
convenient access to computing resources like
hardware, software, and platforms over the internet
as utility services. This enables a large number of

users to configure and utilize these resources based
on their respective requirements (Aladwani, 2020).
These virtualized computing resources are dynamically
scalable and are billed based on the pay-per-use business
model (Jain & Upadhyay, 2017). The performance of
cloud computing is determined by resource allocation
and appropriate scheduling (Venu, 2020). Any unit of
work that is to be performed within a certain amount
of time can be regarded as a task. Task scheduling
is an NP-complete problem and thus, a good task
scheduling approach is expected to map the tasks to
specific VMs efficiently based on specific performance
criteria (Mathew et al., 2014). Scheduling is the practice
of allocating tasks among resources in a finite amount
of time. The tasks are scheduled in different ways, to
optimize certain objective functions (Kalra & Singh,
2015). In the cloud computing environment, the process
of scheduling happens at the host level wherein VMs
are assigned among hosts known as VM allocation,
and at the VM level wherein the tasks are mapped
among the VMs known as task scheduling (Soltani
et al., 2017). This paper focuses on the field of task
scheduling among VMs.

The scientific community has been proposing several
scheduling strategies for the last two decades. There
exist generic scheduling heuristics and their improved
versions, generic metaheuristic optimization-based
scheduling heuristics, and eventually, hybrid
scheduling strategies wherein scheduling heuristics
and metaheuristic optimization methods are combined.
Different scheduling heuristics exhibit different
behaviour for different metrics. Furthermore, a
specific scheduling heuristic may perform better in
terms of one metric and may perform worse in terms
of another metric and the performance metrics can
also be conflicting or complementing in nature. In

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 1580
URI: https://hdl.handle.net/10125/102827
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

most of hybrid scheduling strategies discussed in the
scientific community, only a few scheduling heuristics
are considered. Hence, this paper proposes a hybrid
task scheduling strategy that aims to incorporate a
number of scheduling heuristics within a metaheuristic
optimization method and intends to observe how this
strategy would perform based on certain performance
metrics. In other words, a metaheuristic optimization
approach is used to optimize the sequence or order
in which multiple scheduling heuristics must run
considering certain performance metrics. Most of
the existing scheduling approaches in the scientific
community are evaluated on smaller problem instances
comprising a fewer number of tasks. However, the
performance of scheduling on large-scale workloads is
relevant and requires investigation. Hence, an adaptive
job scheduling mechanism on large-scale workloads is
significant. This paper intends to evaluate the proposed
hybrid task scheduling approach using large-scale
problem instances so as to examine its optimization
potential while increasing the workload scale. This
paper intends to translate and apply the hybrid design
discussed in the research paper (Nahhas et al., 2021)
into a task scheduling problem. This hybrid design is
translated by combining several scheduling heuristics
and a metaheuristic optimization technique where the
metaheuristic optimization is applied for running these
heuristics. This approach is evaluated in terms of certain
performance metrics using large-scale workload traces.
Thus, this paper intends to address and investigate the
following research questions:

1. How does the proposed hybrid task scheduling
approach perform on large-scale task scheduling
problems in comparison to individual baseline
scheduling heuristics ?

2. Which objective values are relevant for task
scheduling in the cloud computing environment ?

The first section provides an introduction to the
cloud task scheduling research problem, specifying
the motivation behind the proposed model and
addresses the relevant research questions. The second
section is the literature research which discusses the
prominent scheduling heuristics, metaheuristic and
hybrid scheduling approaches discussed in the domain
of cloud task scheduling. The third section presents
the conceptual model of our proposed hybrid task
scheduling strategy in detail and the fourth section
discusses the evaluation of our approach through
comparative analysis of the experimentation results.
The fifth section points out the conclusion and future
prospects of the research work.

2. Related work

Over the last two decades, the scientific community
produced numerous contributions in the context of
task scheduling in the cloud computing environment.
The related work has been conducted and studied in
two phases. In the first phase, the research articles
evaluating and comparing several generic scheduling
heuristics in terms of certain performance metrics are
focused. In the second phase, the research articles
proposing hybrid scheduling methods which combines
metaheuristic optimization with generic scheduling
heuristics are discussed.

2.1. Heuristics techniques

This section mainly describes the relative
performance analysis of different scheduling heuristics
in terms of certain performance metrics in the cloud
computing environment. Heuristics are problem-solving
techniques for finding an approximate solution within
a given time period. However, the solutions obtained
from heuristic methods are often satisfactory and may
not be optimal (Chen, 2018). The main purpose of
conducting this literature research is to obtain certain
base-line scheduling heuristics and prominent task
scheduling-oriented performance metrics.

Jemina Priyadarsini and Lawrence (2014) compared
the performance of Max-Min and Min-Min heuristic in
terms of makespan and it is observed that Max-Min
heuristic achieves better makespan when compared with
Min-Min heuristic. Sharma et al. (2017) performed a
relative performance analysis of Min-Min and Max-Min
heuristics with respect to makespan. The authors
concluded that the Max-Min heuristic outperforms the
Min-Min heuristic for makespan when the large-sized
tasks are greater in number than the short-sized tasks
and vice-versa. This implies that size of the tasks
has an effect on the performance of heuristics. Madni
et al. (2017) compared the performance of six heuristics
namely First Come First Serve (FCFS), Minimum
Completion Time (MCT), Minimum Execution Time
(MET), Max-Min, Min-Min, and Sufferage in terms of
cost, degree of imbalance, makespan, and throughput.
The experiments conducted in both homogeneous and
heterogeneous environments using large-scale workload
concluded that Min-Min heuristic performed better than
other heuristics, followed by Max-Min and Sufferage
and their performance varied based on the considered
workload. Sindhu and Mukherjee (2011) presented two
scheduling heuristics namely Longest Cloudlet Fastest
Processing Element (LCFP) and Shortest Cloudlet

Page 1581

Fastest Processing Element (SCFP). In LCFP, the larger
tasks are mapped to resources with high computational
capacity whereas in SCFP, the shorter tasks are
assigned to resources with high computational capacity.
Experiments were conducted with respect to makespan
whose results indicated that these heuristics exhibited
similar performances at a smaller number of tasks
and LCFP exhibited better performance relatively at
larger number of tasks. This again implies that the
scale of the workload is a matter of concern. Streit
(2002) proposed a self-tuning job scheduler known
as dynP job scheduler with a dynamic switching
policy to switch the scheduling policy during the run
time. The authors developed a simple and advanced
decider based on the scheduling policies namely FCFS,
SJF, LJF and observed that the advanced dynamic
decider achieved better performance relative to the
simple one based on the performance metrics like
utilization, average response time. This indicates
the advantage produced by dynamic switching of
heuristics. Aladwani (2020) compared the scheduling
heuristics namely FCFS, Shortest Job First (SJF), and
Max-Min in terms of total waiting time and total
finish time (makespan). The paper concludes that
among all the heuristics, SJF heuristic performs the
best in terms of total waiting time and makespan.
Bandaranayake et al. (2020) proposed a new scheduling
strategy called Total Resource Execution Time Aware
Algorithm (TRETA) with the main goal of minimizing
the makespan. The proposed approach suggest that
the total execution time of computing resource is a
crucial factor for identifying an optimal schedule. This
scheduling strategy is compared and evaluated against
the other heuristics like Min-Min, Max-Min, FCFS and
MCT in terms of the performance metrics makespan,
degree of imbalance and throughput using the large
real-world NASA workload logs. Experimental results
depicted that the proposed approach shows a significant
amount of improvement in the aforementioned metrics
relatively. These two research works indicate that
different scheduling heuristics perform differently in
terms of different metrics.

All these above research works indicate that the
performance of the scheduling heuristics depends on
the considered performance metrics and the nature
of the workload. This justifies the need for an
adaptive scheduling mechanism involving a number
of scheduling heuristics that would optimize different
metrics. Consequently, certain base-line scheduling
heuristics and task scheduling-oriented performance
metrics are identified from the conducted literature
research.

2.2. Metaheuristic and Hybrid Techniques

Meta-heuristic is an iterative approach that guides
a subordinate heuristic, thus exploring and exploiting
search space with the aim of finding optimal solutions
(Christiansen & Fagerholt, 2009). This section mainly
discusses some of the research articles which leveraged
metaheuristic and hybrid techniques for task scheduling
optimization in the cloud environment.

Abdi et al. (2014) proposed a modified Particle
Swarm Optimization (PSO) in which SCFP heuristic
is combined with the standard PSO algorithm. The
standard PSO generates the initial population randomly
whereas SCFP heuristic is used to generate the initial
population in this hybrid approach. It was noticed that
the proposed approach minimized the makespan when
compared with standard GA and PSO. Dasgupta et al.
(2013) proposed a novel load balancing strategy based
on genetic algorithm (GA) which must be able to adjust
itself as per the dynamic workload situations. The main
objective of the proposed strategy is to ensure improved
load balance among the resources and to minimize
the makespan. Experimentation results indicated that
the proposed approach performed better as opposed
to FCFS, Round Robin, Stochastic Hill Climbing
(SHC). Kaur and Verma (2012) proposed a modified
GA that is combined with SCFP and LCFP heuristics.
Unlike the standard GA where the initial population
is generated randomly, the modified GA generates the
initial population with LCFP and SCFP heuristics.
Experiment results indicated that the modified GA
showed relatively better performance under heavy
loads in terms of average makespan and execution
cost. Verma and Kumar (2012) proposed an improved
version of GA in which the Min-Min, Max-Min
heuristics are combined with standard GA such that
the initial population is generated with Min-Min and
Max-Min heuristics hoping to produce better solutions
which in turn provides better future generations on
the application of cross over and mutation. The
experimental results depicted that the makespan of
improved GA is less than that of the standard GA.
Singh and Kalra (2014) proposed a modified GA
where the initial population has been generated using
the Enhanced Max-Min heuristic. It was observed
that this proposed modified GA outperforms the
other modified GA where the initial population was
generated with LCFP and SCFP heuristics as discussed
in (Kaur & Verma, 2012) and the other modified GA
where the initial population has been generated with
Min-Min and Max-Min heuristic methods as discussed
in (Verma & Kumar, 2012). Nahhas et al. (2021)

Page 1582

presented a hybrid approach that uses both heuristics
and metaheuristics approach so as to optimize the VM
allocation problem considering resource utilization.
These authors suggest that a hybrid load management
strategy using heuristics and GA-based optimization
approaches consumes less power in data centers when
compared to a specific or generic approach. The
authors considered various VM allocation policies for
the hybrid approach which were encoded as integers
in the chromosomes of the GA-based optimization
model such that each chromosome represents a specific
combination of VM allocation policies. The paper
concludes that the proposed hybrid approach results
in a significant reduction in energy consumption,
appreciable improvement in VM migrations, and a
slight increment in SLA violations as opposed to
individual VM allocation policies.

From the related work, prominent baseline
scheduling heuristics, metaheuristic optimization
methods and relevant performance metrics are
identified. Certain scheduling heuristics identified
in the literature research are used as input heuristics
in our hybrid approach as they are widely used in
different research articles. The GA-based optimization
model discussed in (Nahhas et al., 2021) is adopted for
optimization in our approach. It is also evident that
most of the research articles evaluated their scheduling
approaches on smaller problem instances and only a
few research articles utilized large-scale workloads
for evaluating their respective scheduling strategies.
Also, the research paper (Bandaranayake et al., 2020)
that utilized large-scale workloads for evaluating their
approach against prominent scheduling heuristics in
terms of certain metrics is identified as the reference
paper for comparison. Hence, the cloud infrastructure
setup, performance metrics, heuristics and large-scale
workload discussed in this paper will be used for
evaluating our proposed hybrid task scheduling strategy.

3. Conceptual Hybrid Scheduling Model

This section presents the proposed conceptual
hybrid model to optimize the task scheduling problem
in the cloud computing environment. This hybrid design
is adopted from the (Nahhas et al., 2021) where it is
applied and evaluated on the VM placement problem.
This paper translates this design into the context of
task scheduling as a hybrid task scheduling approach.
This hybrid approach uses a metaheuristic optimization
technique to optimize and determine the sequence in
which several scheduling heuristics must run.

Figure 1. Hybrid scheduling model

The hybrid task scheduling approach enriches the
adaptive component of the hybrid load management
framework described in (Nahhas et al., 2019). Nahhas
et al. (2021) applied the hybrid design on the VM
placement problem in which VM allocation policies
were used as inputs to the GA-based optimization
whereas in our approach, different task scheduling
heuristics are used as inputs to the model. Hence,
our proposed approach also performs optimization
through GA with the objective of identifying better
combination of heuristics for efficient task scheduling.
This GA-based optimization drives towards finding
better combination of scheduling heuristics as a certain
number of generations pass by. Figure 1 depicts
the abstract representation of the hybrid scheduling
model which consists of heuristic library, performance
model, GA optimization model and evaluation model.
The heuristic library contains the list of heuristics
encoded as integers, performance model contains the
task scheduling oriented performance measures. The
GA optimization model and evaluation model work in
tandem, based on the fitness value, thereby driving
the optimization process. The GA optimization
model generates a population of chromosomes or
solution candidates. Each chromosome or solution
candidate follows integer encoding in which each
integer represents a specific scheduling heuristic which
will be discussed in detail in the following section. This
population gets evaluated with respect to a objective
or fitness function generations after generations in a
continuous manner, thereby optimizing towards better
solution candidates. This approach needs to be
evaluated on large-scale problems so as to validate its
adaptive nature and also to investigate the performance
of this approach on small-scale and large-scale task
scheduling problems. This is done to understand how
the proposed approach would perform when subjected
to heavier and lighter workloads.

Page 1583

3.1. Genetic Algorithm-based Optimization
Model

Based on the conducted literature review, GA-based
optimization methods are applied prominently and
produced effective results when combined with other
generic heuristic approaches. GA offers high-quality
solution candidates for optimization and search
problems through genetic operations like parent
selection, cross-over, and mutation. In this technique, a
population of possible solution candidates also known
as chromosomes or individuals undergoes evolution
over many generations to arrive at better solutions
for an optimization problem. Hence, as the evolution
progresses, the population of solution candidates
gets evolved toward better solution candidates. The
basic unit of GA is a chromosome or a solution
candidate. A chromosome itself is a collection of genes.
In our approach, each gene corresponds to a specific
scheduling heuristic, and thus, a chromosome represents
a collection of several scheduling heuristics. These
scheduling heuristics are encoded as integers from 0
to 7 and since the length of the solution candidate or
chromosome is defined as 24, a solution candidate
contains 24 integers randomly placed where each
integer represents a certain scheduling heuristic. These
scheduling heuristics will be switched one after another
based on a switching interval which is set as 25s in our
approach. When the incoming set of tasks is not able
to be completed within the duration of length of the
chromosome (24*25s), then the remaining set of tasks
will roll back to the beginning of the chromosome.
However, the length of the solution candidate, the
switching interval, population size and generation size
can be regarded as hyper-parameters of the optimization
model and these parameters are defined based on several
trail and error experimentation.

3.2. Scheduling heuristics for the optimization
model

As discussed in the literature review, the following
scheduling heuristics are used as inputs to the GA-based
optimization model as they are relatively prominent and
widely used across different research works.

• First Come First Serve (Aladwani, 2020)

• Shortest Job First (Aladwani, 2020)

• Longest Job First (Streit, 2002)

• Shortest Cloudlet Fastest Processing Element
(Sindhu & Mukherjee, 2011)

• Longest Cloudlet Fastest Processing Element
(Sindhu & Mukherjee, 2011)

• Min-Min (Sharma et al., 2017) (Bandaranayake
et al., 2020)

• Max-Min (Sharma et al., 2017) (Aladwani, 2020)

• Random

3.3. GA-based optimization process

1. As the first step, the GA generates an initial
population of N individuals in a random manner.
N corresponds to the population size, and N is set
as 10. The length of each individual is set as 24.
Both these attributes forms hyper-parameters

2. A fitness function should be defined based on the
task scheduling problem. This fitness function
evaluates each individual of the population in
every generation and attaches a fitness value to the
individuals

3. Parent Selection process happens based on these
fitness values through elitism and parent selection.
In elitism, the elite individuals in the population
having the best fitness values are directly moved
to the next generation. The elite count is
set as 3. In tournament selection, the rest
of the parent individuals are selected through
tournament selection whose count is set as 4.

4. The selected parent individual undergoes any
of the cross-over operations namely single-point
crossover, random crossover, two-point crossover,
and uniform cross-over to produce offsprings.
The crossover probability must be lower than
the predefined crossover rate for the crossover to
occur. The crossover rate is set as 0.5.

5. The generated offsprings then undergo a mutation
process wherein the genes within an offspring
get exchanged among each other. The mutation
probability must be lower than the predefined
mutation rate for the mutation to take place. The
mutation rate is set as 0.4.

6. The best individual in each generation is identified
whose fitness value is compared with previous
best fitness value. If its fitness value is better than
the previous one, the best fitness value is updated.

7. The process from 2 to 6 continues until the
termination condition is reached. The termination
condition in our approach is the generation size
which is set as 50. The values for different
hyper-parameters are defined based on several
trial and error experimentation.

Page 1584

3.4. Mathematical representation of the
problem

This section describes the scheduling problem
through mathematical representation as shown below.

• Let D represents the datacenter and Let DB
represents the datacenter broker who manages the
datacenter.

• Let Ci = { C1, C2 , C3 , C4 ,Cn } indicates
the tasks or cloudlets that are incoming to the data
center D.

• Let Hi = {H1, H2 , H3 , H4 ,Hn } represents
the hosts present in the datacenter.

• Let VMi = { VM1, VM2 , VM3 , VM4 ,
......VMn } represents the available VMs across
all the hosts in the datacenter

• Let Ti denotes the time slices based on which
different scheduling heuristics are switched from
one to another. This implies that each scheduling
heuristic will run for this time slice after which
the next scheduling heuristic is selected.

• Let SHi = { SH1, SH2 , SH3 , SH4 ,SHn

} denote the set of scheduling heuristics (i = 0 to
7). Any of the element from this set is assigned to
the datacenter broker DB for every Ti time slice.

• Let P represents the population of individuals
whose strength is determined by the population
size, N.

• Let Ii = { I1, I2 , I3 , I4 ,In } corresponds
to the set of individuals in the population P.
Each individual in the population is also called a
chromosome or a solution candidate. The length
of each chromosome must be predefined which is
set as 24.

• Each individual I is a collection of genes
represented as {G1, G2, G3, G4, G5, G6G24

} with a length of 24 as previously stated. Thus,
each individual contains 24 genes or elements.
Each gene corresponds to an element from SHi.
In other words, each gene of the individual
corresponds to a particular scheduling heuristic.

• Let FVi = { FV1, FV2 , FV3 , FV4 ,FVn

} represents the set of fitness values of all
individuals of the population P. The fitness value
of each individual in the population is determined
by computing the fitness function.

• Let Ei (i ∈ 1, 2, ..n) represents the elite
individuals of the population P where n = elite
count.

• Let TIi (i ∈ 1, 2, ..n) represents the tournament
individuals of the population P where n = PopSize
- elite count.

• Let SIi = { SI1, SI2 , SI3 , SI4 ,
......SIn } represents the set of possible solution
individuals or solution candidates obtained after
the optimization of the GA evolving through
many generations. The GA aims to obtain
an optimal solution candidate s ∈ SIi based
on a fitness function. This solution candidate
is expected to minimize certain performance
metrics.

3.5. Performance metrics

From the literature review conducted, several task
scheduling oriented performance metrics were identified
such as makespan, total waiting time, throughput, flow
time. The objective of the hybrid task scheduling
approach is to minimize these performance metrics.

Makespan (in seconds) is defined as the time taken
to complete the last task in the set of tasks (finish time
of the last task) (Bandaranayake et al., 2020). In other
words, it can be defined as the total time taken to finish
the execution of a set of jobs or a workload.

Makespan = FinishT imei, i = last task

The throughput defines the number of tasks executed
per unit time interval (Bandaranayake et al., 2020).

Throughput =
Numberoftasks

Makespan

Total waiting time (in seconds) is the sum of waiting
time of a set of tasks (Aladwani, 2020).

Totalwaitingtime =

totaltasks∑
n=1

WaitingT ime

Averagewaitingtime =
Totalwaitingtime

No.oftasks

Flow time (in seconds) is defined as the sum of
completion time of a set of tasks (Sindhu & Mukherjee,
2011) (Kalra & Singh, 2015).

flowtime =

totaltasks∑
n=1

CompletionT ime

Page 1585

Averageflowtime =
flowT ime

No.oftasks

The objective of the proposed solution is to reduce
makespan, average flow time, average waiting time
and consequently, increase throughput of the scheduling
process. These metrics are considered for evaluating
the proposed hybrid task scheduling approach. The
fitness function can be framed based on single objective
value or multi-objective values. In this paper, the
fitness function or the objective function is framed
based on single objective value, flow time so as to
minimize flow time in the process of scheduling and
to observe the consequent effect on other metrics.
In fact, other objective functions were also framed
based on other metrics and their different kinds of
combinations. But, the respective empirical analysis
gave better optimization results for objective function
based on flow time. Moreover, the study of empirical
analysis cannot be included in this paper due to the
limited space. Thus, objective or fitness function was
framed based on flow time.

4. Experimentation, Results and Analysis

This section describes the experimental setup used
for the evaluation of the hybrid task scheduling
approach. The individual scheduling heuristics and the
proposed hybrid GA-based task scheduling approach are
subject to run on the experimental setup to evaluate
their comparative performance. The computation results
from these simulation experiments enables us to answer
the stated research questions.

4.1. Experimental Setup

Table 1. Cloud Infrastructure

Cloud Infrastructures Value
No. of Datacenters 1

No. of Hosts 20
VmScheduler Space Shared
No. of VMs 20

CloudletScheduler Space Shared
VM PEs 128

VM RAM 1024
VM Bandwidth 1000

VM Storage 100000
VM MIPS 1000 - 4000
Cloudlets NASA workload traces

The cloud infrastructure configuration used for
the experiment is referenced from the research paper
(Bandaranayake et al., 2020). Our cloud infrastructure
comprises a datacenter with 20 hosts, 20 VMs are
created across all these 20 hosts such that one host will
contain one VM and both the host and VM processing
capacity ought to be the same. Four instance types of
VMs with different MIPS capacities are provisioned
across the hosts. The workload log used for evaluation
are referenced from the research paper (Bandaranayake
et al., 2020) which is originally taken from the parallel
workload archive (Feitelson, 2005). This log contains
three months’ worth of data as tasks from NASA Ames
Research Center’s 128-node iPSC/860. It includes
basic information about jobs describing their number
of nodes, run time, start time, and user information.
While modelling in CloudSimPlus, the cloudlet’s length
corresponds to the job’s run time and the cloudlet’s
required cores correspond to the job’s number of
nodes. This NASA workload log contains around
18239 jobs which has been batched at different sizes
up to 18239 so that it enables us to comprehend
how the performance of the proposed approach gets
impacted while increasing the workload size and how
the hybrid approach would behave at lighter and heavier
workload sizes. Experiments are conducted on servers
with hardware specifications of Intel Core i5 3570 @
3.40GHz CPU, 16 GB RAM and storage capacity of
512 GB HDD and 128 GB SSD.

The heuristics FCFS, Min-Min and Max-Min were
evaluated in CloudSim Plus considering the same cloud
infrastructure setting, the same performance metrics,
and the same NASA workload benchmark used in
the referenced paper. It is observed that the results
showed more or less resemblance with that of the
referenced paper (Bandaranayake et al., 2020) for all
the performance metrics. This enables us to evaluate
our proposed hybrid scheduling strategy in comparison
to the heuristics FCFS, Min-Min, Max-Min and author’s
approach. Moreover, other heuristics namely SJF, LJF,
Random, SCFP, LCFP are also considered.

4.2. Evaluation and Comparative analysis of
the results

It is already discussed that the proposed hybrid
task scheduling approach uses GA as the metaheuristic
for optimization and uses flow time as the objective
function. This section evaluates the proposed hybrid
task scheduling approach against other individual
approaches namely FCFS, Random, SJF, LJF, SCFP,
LCFP, TRETA, Min-Min and Max-Min in terms

Page 1586

of makespan, throughput, average waiting time and
average flow time. The heuristics FCFS, Max-Min,
Min-Min are used for comparison because the reference
paper (Bandaranayake et al., 2020) from which cloud
infrastructure setup is adopted, also uses the same for
comparison. Furthermore, other heuristics such as
SJF, LJF, SCFP, LCFP, Random are also considered.
The evaluation is done by comparing on each metric
separately, firstly with makespan, then by throughput,
followed by average waiting time and average flow
time at different workload sizes. This is mainly
done to investigate the performance of the hybrid task
scheduling approach while increasing the workload size
and to observe its performance on lighter and heavier
workloads. It is to be noted that TRETA approach
is considered for comparison while evaluating on
makespan, throughput and is excluded for comparison
while evaluating on average waiting time, average flow
time as TRETA approach has been only tested on
makespan and throughput.

4.3. Evaluating by comparing makespan

Figure 2 shows the graphical plot which depicts the
makespan produced by hybrid GA approach and other
individual approaches at different workload sizes. The
horizontal axis indicates the number of tasks while the
vertical axis indicates the makespan in seconds. It is
pretty evident from the plot that the proposed hybrid
GA approach outperforms other approaches thereby
providing lesser makespan values. It is also noted that
the rate of increase of makespan for the hybrid GA
approach while increasing the workload is relatively less
when compared to individual heuristics. This justifies
that the hybrid GA approach consistently outperforms
all other individual heuristics and TRETA approach in
terms of makespan for all workload sizes. The approach
also shows stable performance and better optimization
potential when the workload amount is increased.

Number of tasks (workload scale)

0

250

500

750

1000

1250

2500 5000 7500 10000 12500 15000 17500

FCFS

Random

SJF

LJF

SCFP

LCFP

Min-Min

Min-Max

TRETA

Hybrid-GA

makespan (in seconds)

Figure 2. Makespan of hybrid GA approach against

other heuristics

4.4. Evaluating by comparing throughput

Figure 3 represents the throughput produced by
the proposed hybrid GA approach and other individual
approaches at different workload sizes. The horizontal
axis indicates the number of tasks while the vertical axis
indicates the throughput. It is apparent from the plot
that hybrid GA approach produced higher throughput as
opposed to other individual heuristics and also, shows
better performance in terms of throughput even when the
workload amount is increased. It is to be also noted that
the throughput shows a steady increase for the hybrid
GA approach when the workload amount is uniformly
increased as opposed to other individual heuristics and
TRETA approach. Thus, it is a clear indication that the
hybrid GA approach perform consistently and produce
better optimization as the workload becomes heavier.

Number of tasks (workload scale)

0

20

40

60

80

2500 5000 7500 10000 12500 15000 17500

FCFS

Random

SJF

LJF

SCFP

LCFP

Min-Min

Min-Max

TRETA

Hybrid-GA

throughput

Figure 3. Throughput of hybrid GA approach against

other heuristics

4.5. Evaluating by comparing average waiting
time

Figure 4 represents the average waiting time
produced by the proposed hybrid GA approach and
other individual heuristics at different workload sizes.
The horizontal axis indicates the number of tasks while
the vertical axis indicates the average waiting time in
seconds. The plot clearly indicates that there has been
a significant reduction in the average waiting time for
the proposed hybrid GA approach as opposed to the
other individual heuristics. On increasing the workload,
while the individual heuristics produced a significant
increase in the average waiting time, the hybrid GA
approach relatively produced a slight increase in the
average waiting time.

Page 1587

Number of tasks (workload scale)

0

20

40

60

80

2500 5000 7500 10000 12500 15000 17500

FCFS

Random

SJF

LJF

SCFP

LCFP

Min-Min

Min-Max

Hybrid-GA

average waiting time (in seconds)

Figure 4. Average waiting time of hybrid GA

approach against other heuristics

4.6. Evaluating by comparing average flow
time

Figure 5 represents the average flow time produced
by the proposed hybrid GA approach and each of the
individual heuristics. The horizontal axis indicates the
number of tasks while the vertical axis indicates the
average flow time in seconds. The plot clearly indicates
that there has been a significant reduction in the average
flow time for the proposed hybrid GA approach as
opposed to the other individual heuristics similar to the
previous plot. The rate of increase in average flow time
is relatively less for the hybrid approach when compared
to the other approaches. This justifies the fact that the
proposed hybrid approach produce better optimization
potential as the workload becomes heavier.

Number of tasks (workload scale)

0

20

40

60

80

2500 5000 7500 10000 12500 15000 17500

FCFS

Random

SJF

LJF

SCFP

LCFP

Min-Min

Min-Max

Hybrid-GA

average flow time (in seconds)

Figure 5. Average flow time of hybrid GA approach

against other heuristics

These comparative results justifies the fact that
hybrid GA approach consistently outperforms other
individual heuristics in terms of the performance
metrics namely makespan, throughput, average waiting
time and average flow time at both small-scale and
large-scale workloads. Furthermore, hybrid GA
approach outperforms TRETA approach in terms of
makespan and throughput.

5. Conclusion and Future Prospects

In this paper, a hybrid GA-based task scheduling
approach with the intention of optimizing the
performance metrics namely makespan, throughput,
average flow time and average waiting time has
been presented. Initially, literature research has
been conducted to identify prominent scheduling
heuristics, task scheduling-oriented performance
metrics, large-scale workload and a reference paper
for comparison-based evaluation. The experiments
were modelled in CloudSim Plus simulation framework
using large-scale workload. Based on the experimental
results, it can be concluded that the hybrid GA-based
scheduling approach outperforms the individual
scheduling heuristics thereby providing better values
for makespan, throughput, average waiting time, and
average flow time in a consistent manner. Flow time is
used as the objective function in our approach. Among
the metrics, it is observed that average flow time and
average waiting time has been significantly reduced
in the proposed approach. This implies that flow time
has good complementary effects on other metrics. The
proper tuning of hyper-parameters of GA is significant
for its performance. Randomly generating the initial
population of the GA has a slight adverse effect on the
quality of its final solutions where there exists a scope
for improvement. Another scope of improvement is
the incorporation of more scheduling heuristics in the
GA. The switching interval parameter which facilitates
the switching among heuristics, is to be reduced while
running lighter workloads and is to be increased while
running heavier workloads. The hybrid GA approach
has been evaluated on independent tasks where there
is no precedence among the tasks. Hence, there exists
the scope to evaluate the approach on dependent tasks.
These form some of the potential areas where there
exist scope for improvement and where further research
can be conducted.

Therefore, this paper answers the addressed research
question stated earlier as follows; the proposed hybrid
task scheduling approach consistently outperforms the
individual scheduling approaches at small-scale and
large-scale workloads. In fact, the proposed hybrid
task scheduling approach exhibits stable scheduling
performance and better optimization potential on large
problem instances. Several performance metrics like
makespan, average flow time, throughput, average
waiting time can be considered as significant objective
values in the context of cloud task scheduling and
optimizing on flow time produces complementary
effects on other metrics.

Page 1588

References

Abdi, S., Motamedi, S. A., Sharifian, S., et al. (2014).
Task scheduling using modified pso algorithm
in cloud computing environment. International
conference on machine learning, electrical and
mechanical engineering, 4(1), 8–12.

Aladwani, T. (2020). Types of task scheduling
algorithms in cloud computing environment.
Scheduling Problems-New Applications and
Trends, 145–152.

Bandaranayake, K., Jayasena, K., & Kumara, B. (2020).
An efficient task scheduling algorithm using
total resource execution time aware algorithm
in cloud computing. 2020 IEEE International
Conference on Smart Cloud (SmartCloud),
29–34.

Chen, J. (2018). Heuristics. https://www.investopedia.
com / terms / h / heuristics . asp (accessed:
15.08.2021)

Christiansen, M., & Fagerholt, K. (2009). Maritime
inventory routing problems. Encyclopedia of
optimization, 2, 1947–1955.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K., &
Dam, S. (2013). A genetic algorithm (ga) based
load balancing strategy for cloud computing.
Procedia Technology, 10, 340–347.

Feitelson, D. (2005). Parallel workloads archive. https:
/ /www.cs .huji .ac . il / labs /parallel /workload/
(accessed: 15.04.2021)

Jain, A., & Upadhyay, A. (2017). Cloud scheduling
using meta heuristic algorithms. International
Journal of computer sciences and engineering,
5(10), 132–139.

Jemina Priyadarsini, R., & Lawrence, D. L. A.
(2014). Performance evaluation of min-min
and max-min algorithms for job scheduling
in federated cloud. International Journal of
Computer Applications, 99(18), 47–54.

Kalra, M., & Singh, S. (2015). A review of metaheuristic
scheduling techniques in cloud computing.
Egyptian Informatics Journal, 16(3), 275–295.

Kaur, S., & Verma, A. (2012). An efficient approach to
genetic algorithm for task scheduling in cloud
computing environment. International Journal
of Information Technology and Computer
Science, 4(10), 74–79.

Madni, H., Shafie, A. L., Abdullahi, M.,
Abdulhamid, S., & Usman, M. (2017).
Performance comparison of heuristic
algorithms for task scheduling in iaas cloud
computing environment. PLoS ONE, 12, 1–26.

Mathew, T., Sekaran, C., & Jose, J. (2014). Study and
analysis of various task scheduling algorithms
in the cloud computing environment.
Proceedings of the 2014 International
Conference on Advances in Computing,
Communications and Informatics, ICACCI
2014, 658–664.

Nahhas, A., Bosse, S., Pohl, M., & Turowski, K.
(2019). Toward an autonomic and adaptive
load management strategy for reducing energy
consumption under performance constraints
in data centers. Proceedings of the 9th
International Conference on Cloud Computing
and Services Science, 471–478.

Nahhas, A., Cheyyanda, J. T., & Turowski, K. (2021).
An adaptive scheduling framework for the
dynamic virtual machines placement to reduce
energy consumption in cloud data centers.
Proceedings of the 54th Hawaii International
Conference on System Sciences, 878–888.

Sharma, N., Tyagi, S., & Atri, S. (2017). A
comparative analysis of min-min and max-min
algorithms based on the makespan parameter.
International Journal of Advanced Research in
Computer Science, 8(3).

Sindhu, S., & Mukherjee, S. (2011). Efficient task
scheduling algorithms for cloud computing
environment. High Performance Architecture
and Grid Computing, 79–83.

Singh, S., & Kalra, M. (2014). Scheduling of
independent tasks in cloud computing using
modified genetic algorithm. 2014 International
Conference on Computational Intelligence and
Communication Networks, 565–569.

Soltani, N., Soleimani Neysiani, B., & Barekatain,
B. (2017). Heuristic algorithms for task
scheduling in cloud computing: A survey.
International Journal of Computer Network
and Information Security, 9(8), 16–22.

Streit, A. (2002). A self-tuning job scheduler family
with dynamic policy switching. Workshop
on Job Scheduling Strategies for Parallel
Processing, 1–23.

Venu, G. (2020). Task scheduling in cloud computing: A
survey. International Journal for Research in
Applied Science and Engineering Technology,
8(5), 2258–2266.

Verma, A., & Kumar, P. (2012). Independent task
scheduling in cloud computing by improved
genetic algorithm. International Journal of
Advanced Research in Computer Science and
Software Engineering, 2(5), 111–114.

Page 1589

