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Abstract 
 

High-quality labelled datasets represent a 

cornerstone in the development of deep learning models 

for land use classification. The high cost of data 

collection, the inherent errors introduced during data 

mapping efforts, the lack of local knowledge, and the 

spatial variability of the data hinder the development of 

accurate and spatially-transferable deep learning 

models in the context of agriculture. In this paper, we 

investigate the use of Isolation Forest (IF), an anomaly 

detection algorithm, to reduce noise in a large-scale, 

low-resolution alternative ground truth dataset used to 

train land use deep learning models. We use a modest-

size, high-resolution and high-fidelity manually 

collected ground-truth dataset to calibrate Isolation 

Forest parameters and evaluate our approach, 

highlighting the relatively low cost of the methodology. 

Our data-centric methodology demonstrates the 

efficacy of deep learning methods coupled with IF to 

create mid-resolution land-use models and map 

products for agriculture using an alternative ground-

truth dataset. Moreover, we compare our deep learning 

approach with a traditional algorithm used in remote 

sensing and evaluate the spatial transferability of the 

created models. Finally, we reflect upon the lessons 

learnt and future work.  

 

Keywords: Deep learning, agriculture, GIS, data, 

datasets, isolation forest, ground truth, data-centric AI. 

1. Introduction  

The 17 United Nations Sustainable Development 

Goals (SDGs), a set of worldwide objectives to be met 

by 2030, provide a pathway to eradicate poverty, 

improve socioeconomic inclusion, and provide greater 

protection for the environment. To this end, 232 

indicators have been defined to measure the progress 

made towards these goals and the need for monitoring 

these indicators has led to an increased demand for 

quality data. Before the introduction of the Sustainable 

Development Goals, the United Nations highlighted the 

need for a data revolution to enhance data quality and 

quantity to monitor different indicators (United Nations, 

2013). Almost ten years later, the lack of quality data is 

still a challenge for many developing countries to direct 

and monitor their efforts to address SDGs (Bali Swain 

& Yang-Wallentin, 2020), (Tassopoulou et al., 2019). 

Paradoxically, the amount of free, high-quality 

unlabelled EO (Earth Observation) data is ever-

increasing thanks to the contributions of Landsat and 

Sentinel constellations (Gómez et al., 2016).  

Specifically, SDGs 2 and 15 are defined as “End 

hunger, achieve food security and improved nutrition 

and promote sustainable agriculture” and “Protect, 

restore and promote sustainable use of terrestrial 

ecosystems, sustainably manage forests, combat 

desertification, and halt and reverse land degradation 

and halt biodiversity loss” respectively. Each of these 

objectives presents a list of indicators to help assess the 

progress made in each case. For instance, indicators: 

2.4.1 “Proportion of agricultural area under productive 

and sustainable agriculture”, 15.1.1 “Forest area as a 

proportion of total land area”; and 15.3.1 “Proportion of 

land that is degraded over a total land area” rely heavily 

on land use and land cover data. To this end, the 

literature suggests that remote sensing has been an 

effective tool for monitoring the land surface properties 

resulting from human practices and can greatly 

contribute to measuring these indicators in a cost-

effective way (Tassopoulou et al., 2019). However, 

ground truth data to train the models and verify the 

results is an essential part of the remote sensing process 

(Hoffer, 1971), (Holloway & Mengersen, 2018), and it 

is usually a bottleneck for many machine learning 
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initiatives in different domains (Sidike et al., 2019) and 

particularly in the remote sensing area. Moreover, the 

ground truth data scarcity issue is exacerbated when 

deep learning architectures are used to train models 

since they are more data-dependent (Bansal et al., 2021). 

In Section 2, we introduce the traditionally used 

Random Forest algorithm and the new deep learning 

alternatives. We describe different approaches to 

addressing the ground truth data scarcity issue, and we 

describe the Isolation Forest algorithm. In Section 3, we 

present the datasets used in the study setting and the data 

pre-processing steps. In Section 4, we describe our 

methodology, the deep learning architectures used, and 

the random forest parameters selected, among other 

implementation details. Then, in Section 5, we describe 

the results of five different experiments. Finally, we 

discuss the results, conclusions, limitations and future 

work in Section 6.  

2. Background 

Random Forest (RF) has been traditionally used in 

Remote Sensing for different classification tasks. 

Schmidt et al. (Schmidt et al., 2016) used several 

machine learning techniques to create maps of cropping 

activity for the period 1987-2015 using Landsat 

imagery. In this study, Random Forest performed better 

when compared with SVM, multinomial logistic 

regression, and decision-tree classifiers. Tian et al. (Tian 

et al., 2016) used Random Forest to map wetland land 

cover surpassing SVM and Artificial Neural Networks 

by more than 10%. Chan et al. (Chan & Paelinckx, 

2008) compared the performance of Random Forest and 

Adaboost to classify ecotopes using hyperspectral data 

showing that both algorithms perform similarly in terms 

of accuracy (Random Forest's results were more stable), 

outperforming neural network classifiers. Due to the 

good classification results and the capacity to handle 

high dimensionality data, RF is established as a popular 

algorithm in the remote sensing domain (Belgiu & 

Drăgu, 2016). Random Forest is an ensemble 

classification method, which means that uses not only 

one but many tree predictors that can accurately 

describe complex relationships among multiple 

variables (dos Reis et al., 2018). Once the trees in the 

forest output their decisions, a plurality vote is used to 

combine the final output using the same weight for each 

one (Chan & Paelinckx, 2008).  

Recently, the use of artificial intelligence, the 

proliferation of volunteered geographic information 

culture,  and the increasing availability of free EO data 

present new opportunities to address widescale 

problems. The advances in computing power and data 

availability come in parallel with significant 

developments in the field of artificial intelligence (AI) 

algorithms, in particular, deep learning. Deep learning 

models have improved the state-of-the-art in many 

domains, such as visual object recognition, speech 

recognition, object detection, and recently, the remote 

sensing domain (Lecun et al., 2015). In the GIS context, 

deep learning models have been used for different 

purposes such as geospatial modelling, remotely sensed 

imagery processing, navigation, governance and 

societal, and agriculture. Specifically, the efficacy of 

one-dimensional convolutional neural networks over 

RF has been studied when exploiting the temporal and 

spectral dimensions of remotely sensed imagery in other 

parts of the world (García Pereira et al., 2020; Pereira et 

al., 2019, 2021). Other studies have demonstrated the 

potential of Recurrent Neural Networks (RNNs) such as 

Long-Short Term Memory (LSTM) to classify multi-

temporal Synthetic Aperture Radar (Ienco et al., 2017). 

The increasing volume and variety of collected 

geospatial big data creates new opportunities but also 

poses additional challenges (Li et al., 2016). One such 

challenge is the lack of high-quality, labelled and large-

scale datasets to train deep learning models for land use 

classification (Sun et al., 2017), (Holloway & 

Mengersen, 2018). On the one hand, if large-scale 

datasets are made available, they usually provide a low-

spatial resolution and are generally a product derived 

from computer models whose training and validation 

data samples are not accessible (Hao et al., 2020), 

(Sahajpal et al., 2014), (D et al., 2021). On the other 

hand, the high cost and sometimes prohibitive price of 

manually-mapped high-quality data collection 

initiatives make it difficult to repeat them periodically 

and/or over large extensions of land. Considering the 

current data-centric artificial intelligence drift,  the use 

of these datasets to train highly performant models using 

mid-spatial EO resolution data is a challenge worth 

addressing.  

 To address the ground truth data scarcity issue, the 

literature describes several approaches. The use of weak 

supervision systems for creating training data using 

labelling functions is an emerging area that is being 

explored in other domains (Ratner et al., 2020) and in 

the context of remote sensing (Dao et al., 2019). 

However, the need for domain experts to define the 

labelling functions represents a limitation. Other authors 

have explored the use of Vectorized Code Projected 

Gradient Descent Unmixing (VPGDU) (Faran et al., 

2019) to simulate the ground truth of mid-resolution 

data by applying unmixing techniques to high-

resolution hyperspectral images. However, the selection 

of relevant endmembers sets is a key issue in achieving 

successful unmixing (Kizel & Shoshany, 2018). The use 

of UAVs has also been explored to create high-fidelity 

ground truth data (Hegarty-Craver et al., 2020), 

however, this approach is costly to be implemented on a 
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large scale and previous years' crop maps can not be 

derived using this technique.  Nevertheless, the recent 

development of efficient unsupervised anomaly 

detection algorithms opens up new opportunities to 

address this problem. One of the most recent anomaly 

detection algorithms is Isolation Forest (IF) (Liu et al., 

2008). Despite its simplicity, it excels at dealing with 

high-dimensional data while exhibiting low linear time 

complexity and a small memory requirement (Al Farizi 

et al., 2021). In this way, the quality of alternative large-

scale ground truth datasets with low spatial resolution 

and high per cent error can be enhanced with the use of 

mid-resolution EO data and IF and used for training 

high-quality deep learning models.  

3. Data Preparation 

In this section, we present the study setting. We 

then introduce and detail the datasets used and finally, 

we depict the data pre-processing approach.  

3.1. Context 

This study is conducted in the District of Guaminí, 

SW of Buenos Aires Province, Argentina. The study 

setting encompasses an area of 4824.23 square 

kilometres delimited by the District political boundaries 

as shown in Figure 1. 

 

 
 

Figure 1. Study Context 

3.2. Data Sources 

The data sources used in this study are presented in 

Table 1. Data source A is a raster product developed by 

the “Instituto Nacional de Tecnología Agropecuaria” 

(INTA) in the context of the Mapbiomas project within 

the JECAM-GEOGLAM network. The product 

development methodology consisted of the supervised 

classification of different indexes obtained from 30 

meters resolution Landsat satellite imagery. Training 

and validation samples were obtained from field 

observation and complementary information during the 

agricultural season 2020/2021. From the samples 

gathered, the authors used 60% for training and 40% for 

validation. These samples are not part of the final 

product released. The Argentine agricultural surface 

was divided into 15 different zones, and independent 

classifiers were trained and evaluated in each of them. 

For zone XI, containing this study setting, authors 

reported a general accuracy of 0.82 and a Kappa score 

of 0.73 for 7 classes classification, named: Maize, 

Soybean, Sunflower, Sorghum Grain, Sorghum Grass, 

Fallow, and Nonagricultural. However, for the classes 

addressed in this study, Nonagricultural, Maize, 

Soybean, and Sunflower, overall accuracies reported 

were 0.91, 0.75, 0.76, and 0.82, respectively, having 

Maize and Soybean two of the lowest class accuracies 

in the data product.  
Table 1. Data Sources 

ID Data Source URL 

A 
Argentina National Summer 2021 and Winter 

2020 Crops. Resolution: 30 m. 

http://www.ge

ointa.inta.gob.

ar/2021/09/07/

mapa-

nacional-de-

cultivos-

campana-

2020-2021/ 

B 

SENTINEL-2 is a European wide-swath, 

high-resolution, multi-spectral imaging 

mission. The satellite's multispectral imager 

provides a versatile set of 13 spectral bands 

spanning from the visible and near-infrared to 

the shortwave infrared and a 5-days revisit 

time. 

https://scihub.

copernicus.eu/ 

C 

Ground truth dataset. Agricultural data was 

manually collected in the context of this 

study, while nonagricultural data was 

obtained using Open Street Maps data.  

n/a 

 

Data source C was created by the authors of this 

study in the context of a project named “Supporting 

Bee-Friendly Agriculture in Argentina”. Agricultural 

fields were visited during February 2021 and crop 

information was mapped using GIS tools. The extent of 

the fields was manually digitized by humans using 

Sentinel 2 relevant satellite imagery as reference. 

Nonagricultural data was obtained from Open Street 

Maps. The polygons were filtered by landuse =  

“grass”, and highway = “unclassified” OR highway = 

“tertiary” after a visual observation of the data 

confirmed these classes represented most of the 

nonagricultural, but rural, land use. A 20 meters buffer 

was applied to the filtered highway lines to include road 

verges (where natural vegetation usually grows) in the 

dataset. The classes mapped are depicted in Table 2.  

In Table 3 we provide a mapping between Dataset 

A and Dataset C. We can observe that the class 

Sunflower-2nd is not available in Dataset A. This type of 

cropping practice where Sunflower is grown lately in 

the summer season after winter crops such as Barley and 

Wheat is not common in the area, but it is still practised 

by a small number of farmers. 
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Table 2. Dataset C Classes Description 

Class Description 
Fallow A field without summer crops in the period 

Sunflower Sunflower 

Sunflower-2nd 
Sunflowers sowed late in the season after a 

winter crop 

Maize Maize 

Pasture Pasture for cattle 

Stubble 
Straw and crown of plants left on the soil 

surface after harvest. No new crop growing. 

Soybean Soybean 

Soybean-2nd 
Soybean sowed late in the season after a 

winter crop 

Nonagricultural 
Rural roads, including road verges, and 

grasslands. 

 

 
Figure 2. Dataset C 

 
Table 3. Datasets Mapping 

Dataset C Dataset A Comment 
Sunflower Sunflower Direct mapping 

Sunflower-2nd - Not classified in A 

Maize Maize Direct mapping 

Soybean Soybean Direct mapping 

Soybean-2nd Soybean Direct mapping 

Nonagricultural Nonagricultural Direct mapping 

3.3. Pre-processing 

Data pre-processing was performed using Python 

programming language and the library eo-learn
1
. This 

library provides a modular approach to defining Earth 

Observation (EO) data extraction workflows. During 

this work, we followed a pixel-based approach. Three 

main pre-processing tasks were performed. The first 

consisted in downloading satellite imagery data and 

computing extra information. For this task, the District 

of Guaminí's political boundaries was used to define the 

region of interest. A 500 meters buffer was added to 

ensure the availability of data on the borders. The 

resulting area was divided into 242 squared patches of 5 

 
1 https://eo-learn.readthedocs.io/ 

km sides. Six different bands (blue, green, red, NIR, 

SWIR1, and SWIR2) were downloaded, together with 

cloud mask and cloud probabilities data, and 

Normalized Difference Vegetation Index (NDVI) 

spectral index was calculated. The data acquired 

spanned from September 2020 to May 2021, a period of 

nine months covering the summer crops growing 

season. The second task consisted of the creation of two 

datasets based on two different reference data sources 

describing the Earth's surface. The first one is the 

Argentina National Summer 2021 Crops data. In this 

case, the data was resampled from a 30-meter spatial 

resolution to a 10-meter spatial resolution matching 

Sentinel 2 resolution. The second one is the manually 

collected ground truth data, both described in Table 1. 

For the two data sources, independent datasets were 

created by overlaying the geospatial data with the earth 

observation data gathered in the previous task, using the 

same coordinate reference systems. Only the directly 

mapped classes defined in Table 3 are used. Finally, for 

both datasets, training data were temporally sampled 

using linear interpolation with a five days interval, and 

previously removing cloudy data points, creating a 55 

data point time series for each pixel in the datasets. 

4. Approach 

4.1. Methodology 

Our methodology presented in Figure 3 focuses on 

experimentation aiming at training deep learning 

models using an alternative low-resolution, machine-

derived reference data and Isolation Forest as an 

algorithm to previously reduce data noise. To this end, 

we evaluate the performance of different deep learning 

models trained with different IF contamination values. 

The contamination value represents the proportion of 

outliers in the dataset and acts as a parameter to control 

the threshold for the decision function to decide whether 

a scored data point should be considered an outlier or 

not. During the experiments we use scikit-learn library 

IF implementation, using 100 estimators, and a max 

number of 55 features, matching the number of data 

points in each pixel. We also compare the performance 

of the deep learning models with random forest models 

and we evaluate the spatial transferability of the 

resulting convolution-based deep learning models. 

During the training process, each 25-patch grid was split 

into 15 patches as a training set (60% of the entire grid), 

5 patches for the validation set (20%), and 5 patches for 

the testing set (20%). This spatial splitting was 

important to reduce the chance that pixels from the same 

fields are present in training, testing, and/or validation 
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sets at the same time. Only the calculated NDVI index 

was used for training and as the IF feature input in all 

the experiments. Due to its ratio properties (using NIR 

and Red bands), NDVI can cancel out a large proportion 

of the noise caused by changing sun angles, topography, 

clouds or shadow, and atmospheric conditions (Huete et 

al., 1999). The distance used to study the spatial 

transferability of the models was calculated using two 

points: the centroid of each test patch, and the centroid 

of each grid used for model training.  

 

Figure 3. Methodology Schematic Diagram 

4.2. Deep Learning Architectures and RF 

To define the deep learning pipeline we utilized 

Ludwig
2
, an open-source, declarative machine learning 

framework. Deep learning methods are characterized by 

Neural Networks built using more than two hidden 

layers. The composition of simple but non-linear 

modules allows DNNs to learn raw data representation 

at many levels. Starting from the raw input, each level 

transforms the representation into a more abstract level. 

In this way, many complex functions can be learned. 

Convolutional Neural Networks (CNNs) are deep neural 

networks where one or more convolutional layers are 

used. Convolution can be seen as applying and sliding a 

filter over different dimensions of the data 

representation. In our study, we focus on the use of one-

dimensional convolutions involving the temporal and 

spectral dimensions of remotely sensed time series. To 

train a deep learning model using the temporal 

information at the pixel level, we defined the main 

architecture that works by first mapping the input time 

series sequence b x s (where b is the batch size, in this 

case, 128, and s is the length of the time series, in this 

study is 55) into a stack of one-dimensional 

convolutional layers with different filter sizes: (6 layers 

with filter size 7, 7, 3, 3, 3 and 3), followed by a final 

pool and by a flattening operation. This single flattened 

vector is then passed through a stack of fully connected 

layers and returned as a b x h tensor where h is the output 

size of the last fully connected layer. To compare this 

 
2 https://ludwig-ai.github.io/ludwig-docs/0.5/ 

architecture with other common neural networks 

developed for sequential data, we later modify the 

previous architecture and replace the stack of CNNs 

with, first, a simple RNN unit and then, an LSTM unit. 

The preferred way to optimize neural networks in the 

literature are variants of Stochastic Gradient Descent 

(SGD), such as Adam and AdaDelta. In particular, 

Adam has been widely utilized in many optimization 

problems in the field of machine learning, especially in 

time series classification problems (Ismail Fawaz et al., 

2019). Adam (Adaptive Moment Estimation) computes 

adaptive learning rates for each parameter and not only 

stores an exponentially decaying average of past square 

gradients, but also keeps an exponentially decaying 

average of past gradients, as in the momentum method. 

It is also computationally efficient and requires little. In 

our experiments, we used Adam as the optimization 

method, with standard parameters suggested by the 

authors β1= 0.9, β2=0.999, and α=0.001. During our 

experiments with neural networks, we implemented an 

early stopping technique to mitigate the overfitting 

problem, a model that performs well in the data that has 

already been seen but does not generalize well with 

unseen data (low bias and high variance) (Zhang et al., 

2019). Because stopping training too early may reduce 

variance but increment bias and stopping too late may 

reduce bias but increment variance (Yao et al., 2005), 

we utilized the validation set accuracy to stop the 

learning when validation accuracy decreases over two 

epochs. Studies have analyzed the impact of parameter 

selection on RF performance (Belgiu & Drăgu, 2016). 

RF requires the tuning of four parameters: 1) k, the 

number of trees; 2) m, the number of randomly selected 

features at each node; 3) max_depth, the maximal depth 

of each tree, and; and 4) min_samples, the minimal 

number of samples per node. Even though some studies 

have proven that RF parameter selection does not have 

a very significant impact on classification accuracy, 

some general recommendations can be followed to 

improve its performance. Rodriguez-Galiano et al. 

(Rodriguez-Galiano et al., 2012) demonstrated that the 

number of trees (k) is directly proportional to the 

classifiers' accuracy up to the number of 100 trees. Once 

this value is reached, the generalization error converges. 

Pelletier et al. (Pelletier et al., 2016) studied different 

values of k, ranging from 50 to 400, and also concluded 

that this value can be set to 100 without a major 

accuracy loss. Other studies have used k values of 500 

for land use classification (Pelletier et al., 2018). The m 

parameter value suggested by the literature is the square 

root of p, where p is the number of features (Liaw & 

Wiener, 2002). However, small values of m have shown 

very good performance due to the reduction correlation 
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among individual trees (Pelletier et al., 2016). Finally, 

the values for max_depth and min_samples have been 

less explored in the literature. Pelletier et al. (Pelletier et 

al., 2016) used a max_depth of 25, and a min_samples 

of 10 or 25, and showed that the accuracy impacts of 

these parameters’ selection are low. In our experiments, 

we used the RF implementation of the python library 

Sklearn with the following parameters: k=200; 

𝒎=√𝑝,𝑤ℎ𝑒𝑟𝑒 𝑝=𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠; max_depth = None, 

nodes are expanded until all leaves are pure or until all 

leaves contain less than min_samples samples; 

min_samples = 2. 

5. Results  

In this section, we present the results of five 

different experiments conducted in the study region.   

5.1. Experiment 1 

To evaluate the performance of CNN models using 

the alternative ground truth Dataset A and different IF 

contamination thresholds, we defined two separate data 

grids using the spatial square patches grid defined in 

Section 3.3.  

 
Table 4. Grid 1 Contamination Results 

 

Contamination 20% 30% 40% 50% 

Accuracy 0.779 0.802 0.792 0.867 

Loss 0.94 1.214 0.54 0.553 

Avg F1 score weighted 0.778 0.805 0.795 0.864 

Avg F1 score macro 0.764 0.793 0.791 0.852 

Avg F1 score micro 0.779 0.802 0.792 0.867 

Kappa score 0.622 0.665 0.651 0.771 

 
Table 5. Grid 2 Contamination Results 

Contamination 20% 30% 40% 50% 

Accuracy 0.773 0.792 0.84 0.873 

Loss 0.663 0.524 0.426 0.47 

Avg F1 score weighted 0.775 0.791 0.84 0.87 

Avg F1 score macro 0.766 0.78 0.83 0.859 

Avg F1 score micro 0.773 0.792 0.84 0.873 

Kappa score 0.610 0.641 0.723 0.775 

 

Each grid encompassed 25 squared patches. Both grids 

can be observed in Figure 4 and Figure 5. For each grid, 

we trained a different model to classify the three more 

predominant crops in the study area, named: maize, 

soybean, and sunflower. We used contamination values 

of 20, 30, 40 and 50 per cent and we evaluated the 

resulting models using a subset (only 3 classes) of 

ground truth Dataset C, which location is detached from 

the two grids.  Table 4 shows the results for Grid 1 and 

Table 5 the results for Grid 2. 

 

 
Figure 4. Grid 1 Spatial Transferability 

 
Figure 5. Grid 2 Spatial Transferability 

5.2. Experiment 2 

In Experiment 2 we evaluate the spatial 

transferability of the models created before.  

 
Table 6. Grid 1 and Grid 2 Distance Correlation 

 Grid 1 Grid 2 
Accuracy -0.44573 -0.36454 

Loss 0.33925 0.31751 

Avg F1 score weighted -0.43624 -0.35079 

Avg F1 score macro -0.53468 -0.36397 

Avg F1 score micro -0.44573 -0.36454 

Kappa score -0.54482 -0.34515 

Distance 1 1 

 

From Experiment 1 we observe that the best model 

results were produced using contamination of 50%, for 

both grids. We use these models to evaluate their 

performance in different locations defined by the 
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remaining square patches. For the data available for 

each patch, a 50% contamination Isolation Forest was 

run before testing as well, removing the noise on the 

testing set. We then calculated the distance of each patch 

as explained in Section 4. The correlation between the 

distance and different model performance statistics is 

then calculated.  Table 6 present the results for each grid 

and Figure 6 and Figure 7 present the regression results 

for the distance and the accuracy. 

 

 

Figure 6. Grid 1 Distance and Accuracy 
Regression 

 
Figure 7. Grid 2 Distance and Accuracy 

Regression 

5.3. Experiment 3 

As can be observed from the previous two 

experiments, the models' performance decreases with 

the distance between the model training area and the 

area where they are used. Considering this, we 

conducted a third experiment to evaluate the results of a 

model trained with a combination of both grids. Because 

these grids are spatially separated, our intuition suggests 

that the features learnt by the model will be more 

comprehensive and the resulting model should perform 

better when used to predict Dataset C. To test this 

hypothesis, we joined Grid 1 and Grid 2 training, 

evaluation and testing set separately, creating a 

combined dataset with 50 total patches, 30 in the 

training set, 10 in the evaluation set, and 10 in the testing 

set. We used a contamination value of 50% as in the 

previous experiment, and we named this model “model 

1”. Table 7 presents the results obtained and compares 

them with the two single grid models trained before. 

Table 8 presents the class accuracy results. 

 
Table 7. Combined Grid Performance Model 1 

 Grid_1 Grid_2 Combined 

Accuracy 0.867 0.873 0.890 

Loss 0.553 0.47 0.367 

Avg F1 score weighted 0.864 0.87 0.889 

Avg F1 score macro 0.852 0.859 0.882 

Avg F1 score micro 0.867 0.873 0.890 

Kappa score 0.771 0.775 0.809 

 
Table 8. Combined Grid Class Accuracy 

 Combined Grid Class Accuracy 
Maize 0.891 

Soybean 0.925 

Sunflower 0.964 

5.4. Experiment 4 

Our previous experiments focused on the 

classification of maize, soybean and sunflower, the three 

main summer crops grown in the study region. 

However, the model is not able to classify agricultural 

and nonagricultural land.  

 
Table 9. Agricultural Land Model Results 
 

Accuracy Loss 
Avg F1 

weighted 
Avg F1 

macro 
Avg F1 

micro 
Kappa 

SC 
0.96 0.102 0.962 0.904 0.96 0.808 

 

In this experiment, we used Dataset A and the 

combined grid to train a model capable of classifying 

agricultural and nonagricultural land and we name it 

“model 2”. This time, we combined all the agricultural 

classes of the dataset into a single class, and we used the 

nonagricultural class already available in the product. 

We used a 50% contamination percentage as per the 

findings of our previous experiments. To evaluate the 

model performance, we used Dataset C, combining 

agricultural classes into a single class, as in Dataset A. 

After this step, the resulting Dataset C is imbalanced, 

being the nonagricultural class underrepresented (10% 

of the dataset). This fact needs to be considered when 

evaluating the models’ performance. Table 9 presents 

the results obtained.  

5.5. Experiment 5 

In this experiment, we first compare the 

performance of the CNN models developed before 

(Model 1 and Model 2) with other three methods: two 
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recurrent neural networks (simple RNN-based and 

LSTM-based), and the traditional RF. Following the 

approach applied in previous experiments, we used a 

contamination percentage of 50%  and the datasets 

resulting from the combined grid to train three new 

models to classify maize, soybean and sunflower; and 

three new models to classify agricultural and 

nonagricultural land use. These results are presented in 
Table 10.  

 
Table 10. Model 1 and Model 2 RF Comparison 

 
Model 1 Model 2 

RF RNN LSTM CNN RF RNN LSTM CNN 

Accuracy 0.834 0.786 0.725 0.89 0.933 0.936 0.945 0.96 

Loss - 0.438 0.592 0.367 - 0.192 0.11 0.107 

Avg F1 weight. 0.83 0.791 0.727 0.889 0.94 0.938 0.949 0.962 

Avg F1 macro 0.82 0.792 0.714 0.882 0.85 0.56 0.58 0.904 

Avg F1 micro 0.834 0.786 0.725 0.89 0.933 0.936 0.945 0.96 

Kappa SC 0.729 0.654 0.526 0.809 0.705 0.68 0.744 0.808 

 

Finally, to study the contribution of IF pre-

processing to the algorithms, we used different 

contamination values to train RF models as we did in 

Experiment 1, for Grid 1 and Grid 2. These results and 

their respective comparisons are presented in Table 11 

and Table 12. 
 

Table 11. Grid 1 RF & CNN Comparison 

Contam. 
20% 30% 40% 50% 

RF CNN RF CNN RF CNN RF CNN 

Accuracy 0.798 0.779 0.799 0.802 0.78 0.792 0.789 0.867 

Kappa SC 0.654 0.622 0.659 0.665 0.623 0.651 0.63 0.771 

 
Table 12. Grid 2 RF & CNN Comparison 

Contam. 
20% 30% 40% 50% 

RF CNN RF CNN RF CNN RF CNN 

Accuracy 0.750 0.773 0.758 0.792 0.784 0.84 0.831 0.873 

Kappa SC 0.575 0.61 0.591 0.641 0.630 0.723 0.70 0.775 

6. Discussion and Conclusion   

In this paper, we showed that the use of an 

alternative ground truth dataset together with Isolation 

Forest is an effective approach to train high-quality deep 

learning CNN-based models that significantly 

outperform the state-of-the-art random forest algorithm 

for land use classification. Our results show the 

improved CNN models' performance and proved that 

the approach can help alleviate the lack of high-quality 

ground truth labelled datasets in machine learning and 

remote sensing domain by using an alternative and 

freely available ground truth data source.  

In Experiment 1 we showed that a contamination 

value of 50% was optimal compared to lower values. 

The high contamination percentage can be explained by 

the fact that on top of the error carried by Dataset A data 

reference product, a new nature of the error was 

introduced during the pre-processing step described in 

Section 3, where we resampled Dataset A from 30 

meters to 10 meters. In this step, a labelled pixel in 

Dataset A generated nine new pixels with the same label 

in the 10 meters spatial resolution data. Depending on 

the spatial context of this pixel, new errors can be 

introduced. In Experiment 2, we showed that the 

models' performance degrades with the increasing 

distance, and we provide evidence of the statistical 

significance of this relationship by using correlation and 

regression analysis. In addition, we show in Experiment 

3 that the model performance can be improved by 

selecting training, validation, and testing data from 

detached locations. When compared with Dataset A 

performance report, our model outperforms the 

individual class accuracies reported in the data product 

description for the three crops, as shown in Table 8 and 

Section 3. In Experiment 4, we used the knowledge 

gained from previous experiments to train a CNN model 

to classify agricultural and nonagricultural land use 

showing outstanding results when compared with 

Dataset A data product description. Because Dataset C 

is imbalanced, the accuracy statistic is not a good 

performance indicator to evaluate the model. In this 

way, we can observe that the Kappa score, a 

performance metric that takes imbalanced classes into 

account, is higher than 0.80 for the CNN model, 

denoting a remarkable level of agreement between true 

values and predicted values. Moreover, the fact that the 

model is able to detect nonagricultural areas such as 

road verges and rural streets is of high importance to 

assessing ecosystems services for agroecosystems and 

agricultural landscapes (a desired property in the 

original Dataset A), highlighting the importance of 

having incremented the spatial resolution of the data 

using Sentinel 2 imagery.  

Finally, in Experiment 5, we compared three deep 

learning models' performance with the traditional 

random forest models, and we provided evidence of the 

increased performance of the CNN models over the 

others. The lower performance of RNNs models might 

be explained by the fact that they excel at tasks that 

require a prediction at each time point, while land use 

classification aims at producing one label for all the time 

points. We show that the CNN approach proposed 

significantly outperformed the traditional RF for every 

performance metric; especially by almost 6% on Model 

1 in terms of accuracy, and more than 10% in terms of 

the Kappa score coefficient for Model 2. Moreover, we 

studied how different IF contamination values help RF 

and the CNN method. Results presented in Table 11 and 

Table 12 indicate that the CNN method may benefit 

more from the use of IF in the data preprocessing step. 

When compared to other studies addressing the same 
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challenge, our approach is less dependent on domain 

expertise. However, local knowledge is needed to create 

a mapping between the datasets classes. Moreover, our 

approach does not depend on the definition of 

endmembers sets as in (Faran et al., 2019). When 

compared to the use of UAVs, our approach is cheaper 

to implement since we use a freely available alternative 

ground truth dataset, and a modest size but high-fidelity 

ground-truth dataset to calibrate IF parameters where 

part of the dataset was created using Open Street Maps 

volunteered data.  

Additionally, our approach can be implemented 

using alternative ground truth data from Dataset A in 

different locations at the National level, alleviating the 

models' spatial transferability issue. Furthermore, it can 

be used after data creation using labelling functions to 

improve the training data quality. Another important 

property of our approach is that it relies only on 

temporal NDVI data and not on several independent 

spectral bands, minimizing the memory requirements 

during training.  

In summary, the use of IF during the data 

preprocessing step can greatly improve the quality of the 

models developed using an alternative ground truth 

dataset during the training phase and a high-quality 

ground truth dataset to calibrate IF contamination value 

parameter. When comparing RF and CNN methods, our 

results indicate that the CNN approach may benefit 

more from the use of IF. Because this algorithm has a 

linear time complexity with a low constant and a low 

memory requirement, its application during data 

preprocessing is justified by the resulting model's 

quality improvement.  

The limitations of this study include the fact that the 

experiments are carried out in a specific location, using 

two particular reference datasets and specific satellite 

imagery. Another limitation is that the approach 

presented here uses IF as the main anomaly detection 

algorithm and no comparison with other similar 

algorithms were investigated. Future work includes 

experimenting with deep learning models and different 

anomaly detection algorithms to implement a spatially 

progressive learning approach to overcome the spatial 

transferability issue of deep learning models without the 

need for large-scale datasets.  
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