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Abstract

Power outages and fluctuations represent serious
crisis situations in energy-intensive process industry
like glass and paper production, where substances such
as oil, gas, wood fibers or chemicals are processed.
Power disruptions can interrupt chemical reactions and
produce tons of waste as well as damage of machine
parts. But, despite of the obvious criticality, handling of
outages in manufacturing focuses on commissioning of
expensive proprietary power plants to protect against
power outages and implicit gut feeling in anticipating
potential disruptions. With AISOP, we introduce a
model for AI-based scenario planning for predicting
crisis situations. AISOP uses conceptual, well-defined
scenario patterns to capture entities of crisis situations.
Data streams are mapped onto these patterns for
determining historic crisis scenarios and predicting
future crisis scenarios by using inductive knowledge
and machine learning. The model was exemplified
within a proof of concept for energy-driven disruption
prediction. We were able to evaluate the proposed
approach by means of a set of data streams on weather
and outages in Germany in terms of performance in
predicting potential outages for manufacturers of paper
industry with promising results.

Keywords: Energy-driven crisis, process industry,
outages, scenario planning, scenario patterns.

1. Introduction

The manufacturing industry fears power outages
“like the devil fears holy water” (Ahadu, 2019;
Cissokho, 2019; Fakih et al., 2020). When
manufacturing sensitive products by highly automated
processes, restarting production lines takes a long time
and results in high costs. This is especially critical
in energy-intensive process industry, e.g., glass and
paper production, where substances such as oil, gas,
wood fibers, chemicals or beverages are processed.
Power failures can interrupt chemical reactions and
produce tons of waste as well as damage of machine
parts (Ahadu, 2019). It take months, to shut down
and raise a glass melting tank; immediate energy
stops inducing a quick shutdown would render the
tank completely unusable. Also short-term, regionally
limited power disruptions represent crisis situations for
industrial plants. Due to the reduction of nuclear power
plants and the reliance on renewable energy sources
with partially strong weather dependency, e.g., wind
turbines, solar panels, there are strong fluctuations in the
grid (Campbell and Lowry, 2012; Mills et al., 2011).
The European power grid is designed to cope with
fluctuations between 49.8 and 50.2 hertz, but in case
of larger fluctuations, i.e., below 49.8 or above 50.2
hertz for a few tenths of a second, frequency-sensitive
machines like in paper industry switch off automatically.
In fully automated production processes, consequences
of these uncontrolled shutdowns of production lines
are serious. The film of water and pulp on a paper
machine tears, scrap has been removed completely
before starting again causing unplanned downtime,
destruction of parts, need for spare parts, additional
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manpower and loss of production. However, despite of
the criticality of these energy-driven crises for process
industry, handling of outages in manufacturing focuses
on commissioning of expensive proprietary power plants
to protect against power outages and implicit gut feeling
in anticipating potential disruptions (Bialek, 2020;
Cissokho, 2019). On network operator side, dispatch
and redispatch measures more respectively curtailment
are used as an intervention to adjust the power input of
power plants with the aim of avoiding or eliminating
regional overloads or fluctuations in the transmission
system. Power network operators started to consolidate
redispatch measures via central platforms1 but these
are still in their infancies. In research, related work
on anticipating energy-driven disruptions in process
industry focuses on linear programming models for
estimation of energy disruptions from earth quakes
(Janev et al., 2021), organizational learning approaches
for adaption to climate changes (Orsato et al., 2017) as
well as knowledge management in energy data spaces
(Rose et al., 1997). In addition to that, there is
related work focusing on the energy industry itself,
considering probabilistic risk assessment for preventing
safety related disruptions (Blanco et al., 2019; Kosai and
Unesaki, 2017), anticipation of power generation and
outages (Kim et al., 2019; Moghavvemi and Faruque,
1999) as well as outage management approaches (He
et al., 2016).
Objective of our research is the anticipation of
such energy-driven crises in process industry by
AI-based scenario planning for improving resilience in
manufacturing. Focusing on responsibility and decision
space of manufacturers, anticipation of aforementioned
outages enables proactive adjustments of production
planning and controlled shutdowns of production lines
with rescheduling of maintenance times or planned
downtimes. In this work, we propose AISOP - a
model for AI-based scenario planning for predicting
crisis situations. AISOP uses conceptual, well-defined
scenario patterns to capture entities of crisis situations
in history and future, e.g., location and dates of
outages, effects like downtimes. Data streams are
mapped onto scenario patterns for determining historic
crisis scenarios and predicting future crisis scenarios
by using inductive knowledge and machine learning.
Following the concept of linked data, scenario patterns
are operationalized in JSON-LD leading to a knowledge
graph of crisis scenarios. A special feature of the
model is the applicability of semantically enhanced
scenario patterns for explanation of predictive analytics
to decision makers (Explainable AI (Storey et al.,
2022)). The model was exemplified within a proof

1https://www.dare-plattform.de/, https://www.openkonsequenz.de

of concept for energy-driven disruption prediction in
process industry. We were able to evaluate the proposed
approach by means of a set of data streams on weather
and outages in Germany in terms of performance in
predicting potential outages for manufacturers of paper
industry in Bavaria (N=7) with promising results.

2. Crisis and Resilience in Process
Industry

Crisis can be defined as the “perception of
an unpredictable event that threatens important
expectancies of stakeholders and can seriously impact
an organization’s performance and generate negative
outcomes” (Coombs, 2014, p. 2). Decision makers
are confronted with uncertainty, competing goals,
changing conditions and time stress (Klein et al., 2010).
Behavioral economics can be used to explain that
intuitive decisions can be biased by heuristics, resulting
in sub optimal decisions being made ”in the heat of the
moment” (Claeys and Coombs, 2020; van der Meer
et al., 2017). Systematic crisis management is
characterized by four successive phases: mitigation,
preparedness, response and recovery (Lauras and
Comes, 2015). Identification of the crisis type is defined
as elementary in a first step. The objective is to assess
the organization’s ability to control the event (personal
control) and the extent of the organization’s culpability
for the event (crisis responsibility). Crises take many
forms. Several crisis taxonomies have been proposed
in literature; energy-driven crises in process industry
are characterized as predictable but hardly influencable
(Gundel, 2005), as industrial accidents (Seeger, 2006)
as well as accidental crises respective technical error
accidents (Coombs, 2004).

3. AI-based Scenario Planning

Theories of crisis handling define variables,
assumptions and relationships that should be considered
when selecting crisis response strategies, e.g., crisis
management with scenario planning processes by
Pollard and Hotho, 2006. Their work combines
crisis management with scenario planning processes
to provide a mechanism for designing, evaluating
and managing future crises, especially in a strategic
context. Florez et al., 2014 propose an approach to
define realistic scenarios based on historical data.
Also storytelling is applied to design scenarios, more
precisely ”storifying” real life events based on a
computational model (Gervás, 2018; Van Notten,
2006). De Nicola et al., 2020 present a framework to
support the creative design of emergency management
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Figure 1: AI-based scenario planning for predicting crisis situations (AISOP)

scenarios, i.e., the process of imagining situations
and describing them through models and stories.
They support the task of gathering knowledge about
emergency management situations by the automatic
generation of conceptual models linked to fragments of
emergency scenarios with the objective of defining use
case scenarios for analysis and simulation.
We present AISOP, a model for AI-based scenario
planning for predicting crisis situations based on the
Resilience Analysis Grid (RAG) (Hollnagel, 2017)
as well as the Functional Resonance Accident Model
(FRAM) (Herrera et al., 2009; Macchi et al., 2009).
Focusing on preparedness and response in crisis
management (Lauras and Comes, 2015), AISOP defines
components for four abilities that make up a resilient
system: learning, anticipating, monitoring and
responding (Pariès and Wreathall, 2017) (cf. Fig. 1).
On the one hand, AISOP operates on semantically
enhanced scenario patterns that describe the conceptual
structure of crisis situations in terms of context, actors,
resources, effects, reason, source, measures and history.
Thus, scenario patterns enable a kind of highlighting of
relevant information sources (priority areas (Hollnagel,
2017)) within or in expectation of crises. On the other
hand, AISOP uses streams of historic data that are
mapped on scenario patterns for deriving historic crisis
scenarios emerging to a scenario knowledge graph
that could act as cross-company data space. Both, the
later as well as scenario patterns are processed under
consideration of actual data for predicting potential
crisis scenarios in future (cf. Fig. 1).
The learning component takes care for generating
crisis scenarios out of historic data according to scenario
patterns. Historic crisis scenarios are arranged into a
knowledge graph and provided as lessons learned to

the anticipating component that applies predictive
analytics to determine a model to forecast potential
crisis situations in the future (cf. Fig. 1). The ability
to monitor refers to actual conditions. Based on the
scenario pattern that serves as a marker template, the
monitoring component enables an observation of
what is happening in the surrounding environment of
manufacturers by applying the model to actual data
streams. In case of a detected potential crisis that could
impact the power supply and lead to outages, slots of
the scenario pattern are filled with derived data and
an alert is given. The responding component assures
fast and effective responses by users according to the
predicted crisis scenario (cf. Fig. 1). By showing the
scenario as a graph with additional evidence-based
explanations like time horizon and probability as well
as potential measures applied in historic scenarios, users
are supported in decision-making. Last, the predicted
crisis scenario including applied measures if any is
forwarded to the learning component to be integrated
into the scenario knowledge graph (cf. Fig. 1).

3.1. Scenario Patterns

Scenario patterns represent the core concept of
AISOP. They demonstrate a conceptual representation
of historical or future crisis situations and could be
data items to be shared between companies. Related
work on scenario patterns stems from requirements
engineering (Alspaugh et al., 1999; Breitman et al.,
1998; Rolland et al., 1998), cognition (Schank and
Abelson, 1975; Watahiki and Saeki, 2001a, 2001b),
software engineering (Śmiałek, 2007; Tsai et al., 2005),
knowledge representation (Hoekstra, 2009) and crisis
communication (Xie et al., 2021). According to
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the state of the art, our scenario pattern model is
composed of the entities Identifier, Context, Source,
Location, Reason, Effect, Actors, Measures, Resources,
and History (do Prado Leite et al., 2000; Hoekstra,
2009; Rolland et al., 1998; Tsai et al., 2005; Xie
et al., 2021) (cf. Tab. 1). Each scenario pattern has
an Identifier, that includes unique information of the
scenario such as a specific title (do Prado Leite et al.,
2000), ID and timestamp (cf. Tab. 1). The Context
Entity elaborates on further background information of
the scenario (do Prado Leite et al., 2000; Rolland et al.,
1998) by providing a description, data the scenario
is based on and further influencing factors (cf. Tab.
1). Xie et al., 2021 identify the information source as
an important facet in order to describe the origin and
reliability of crisis information. So, the Source entity
includes information regarding the organization acting
as the source for data and information with respect to
the scenario (cf. Tab. 1). Furthermore, the importance
of dividing between a local crisis and a crisis that can
have a general impact and that is not bound to one
specific location is introduced (Xie et al., 2021). We
adopted this division to our specific context within the
attributes of the Location entity (cf. Tab. 1). Scenarios
are described by cause and effect relationships, that
include pre- and post-conditions leading to or resulting
from the scenario (Alspaugh et al., 1999; Rolland et al.,
1998; Śmiałek, 2007; Tsai et al., 2005; Xie et al.,
2021). The entities Reason and Effect therefore include
these attributes (cf. Tab. 1). In order to measure the
likeliness of the scenario, the attribute probability was
added while the attribute complexity was introduced to
measure the impact of the effect. We also integrated
Actors that can take certain Measures to react on a
scenario (do Prado Leite et al., 2000; Hoekstra, 2009;
Watahiki and Saeki, 2001b). Actors are described by
their specific role and their acquired skill set that is
needed to take certain measures (cf. Tab. 1). Measures
are based on expert feedback and include action steps,
that can be categorized as precautionary or sudden.
Resources include equipment such as instruments, tools
and aids used to do action steps (cf. Tab. 1). Lastly,
information about scenarios evolve over time (Rolland
et al., 1998). Therefore, the History entity was included
in order to capture information on historical scenarios
by referencing to their ID.

3.2. Algorithm and Example Course

For introducing the proposed approach, we will
give an example course of anticipating energy-driven
crisis scenarios starting with the generation of historic
crisis scenarios and ending with an alert of a potential

crisis scenario. The description of the process will
be supported by the model view marked with step
numbers in Fig. 1. In the example, we apply AISOP on
domain-specific data streams on weather and outages
in Germany. The outage data is obtained from publicly
available data sets of German Federal Network Agency
(GFNA)2 between 2012 and 2020, which contain
features such as network operator number, timestamp,
duration, type and occasion of the outage and further
features regarding power measurement. Weather data
is obtained from the NCEI database3 which is an
integrated database of daily climate summaries from
land surface stations across the globe. The data set
contains numerous weather-related features such as
maximum and minimum temperature, wind speed, wind
gust, total daily precipitation, snowfall, dew point, and
indication of thunder or rainfall. For the following,
imagine a manufacturer in paper industry using a
service based on the AISOP model that wants to be
pro-actively alerted in case of upcoming, unplanned
outages to be able to adjust production planning with
respect to controlled shutdowns, maintenance and
planned downtimes.

Generating historic crisis scenarios: As a first step,
the learning component fills empty scenario patterns
(cf. step 1, Fig. 1) with provided data and information
by the user (cf. step 2, Fig. 1). Scenario patterns
are operationalized in JSON-LD4, which enables
representing semantic relations within a network of
linked data. Fig. 2 shows a JSON instantiation of
an exemplary pattern, without contextual JSON-LD
specific syntax details. We use a semi-automated
approach for mapping data features of historical
weather and outage data as well as additional user
input onto the scenario pattern blueprint. This means,
that the user needs to supervise this step, i.e. revise
the output, in order to achieve correctness of assigned
attributes. Certain attributes, like ID and timestamp of
the entity Identifier are generated automatically (cf.
Fig. 2). The features and data entries (e.g. wind speed,
maximum wind speed, wind gust) of the provided input
data sets are inserted within the data attribute of the
Context entity (cf. Fig. 2). Furthermore, attributes
within Effect, Reason and Location entities can be
filled by using Natural Language Processing tools in
combination with the semantic network Babelnet5 on
the data sets’ features, i.e., assigning data features

2https://www.bundesnetzagentur.de/DE/
Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/
Versorgungsunterbrechungen/Auswertung Strom/start.html

3https://www.noaa.gov/
4https://json-ld.org/spec/latest/json-ld/
5https://babelnet.org/
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Table 1: Description of scenario pattern model with entities, attributes and examples

Entity Reference Description Attributes Example
Identifier do Prado Leite et al., 2000 Identifier of scenario Title, ID, Timestamp Title:’Outage’,

ID:’Outage 987’,
Timestamp:’2020-09-
13T22:23:05+00:00’

Context do Prado Leite et al., 2000; Background information ScenarioDescription, ScenarioDescription:
Rolland et al., 1998 and details Data, ’Outage based on

InfluentialFactors shutdown windturbines’,
Data:’wdsp,mxpsd,gust
4.0,7.0,26.66..’,
InfluentialFactors:
’Autumn Season’

Source Xie et al., 2021 Origin and reliability Organization Organization:
of the scenario ’German Federal
of the scenario Network Agency’,

’NCEI’
ScenarioLocation Location of City, Address, City: ’Munich’,

Xie et al., 2021 occurence of the scenario Region, Country Region: ’Bavaria’
Country: ’Germany’

ImpactLocation Location City, Address, City: ’-’,
Xie et al., 2021 influenced by the scenario Region, Country Region: ’Bavaria’

Country: ’Germany’
Reason Rolland et al., 1998; Conditions leading to and Precondition, Precondition:

Alspaugh et al., 1999; explaining the crisis Probability ’Wind speed’,
Śmiałek, 2007; Probability: ’0.78’
Tsai et al., 2005

Effect Alspaugh et al., 1999; Impact of a scenario and Postcondition, Postcondition:
Rolland et al., 1998; resulting conditions Complexity ’Machine downtime’,
Xie et al., 2021; Complexity: ’Low’
Tsai et al., 2005

Actor do Prado Leite et al., 2000; People, groups, departments ActorRole, Skillset ActorRole: ’Worker’,
Watahiki and Saeki, 2001b; taking action Skillset:
Hoekstra, 2009 ’Maintenance work,..’

Measure Watahiki and Saeki, 2001b; Actions taken to resolve the Actionstep, Category Category:’Precautionary’
Hoekstra, 2009 scenario Actionstep:

’Plan downtime,..’
Resource do Prado Leite et al., 2000; Involved aids and tools Equipment Equipment: ’None’

Watahiki and Saeki, 2001b
History Rolland et al., 1998 Related historical scenarios Identifier.ID Identifier.ID:’Outage 913’

directly to the pattern’s attributes (e.g., City) or finding
related synonyms in order to assign these features
(cf. Fig. 2). Further information regarding Actors or
Measures can be given as input by the user (cf. step 9,
Fig. 1). As scenario patterns are now filled with historic
crises, step 3 of AISOP includes executing a cypher
script to transform semantic relations and linked data
within the JSON-LD code (cf. right side of Fig. 2) into
a respective instance of a Knowledge Graph (KG) (cf.
Fig. 2). The resulting scenario KG is then forwarded as
lessons learned to the anticipating component (cf. step 4
in Fig. 1) that applies predictive analytics to determine
a forecasting model on energy specific crisis situations
(cf. Fig. 1).

Observing potential scenarios: The monitoring
component monitors actual weather data within a
specific region (cf. step 6, Fig. 1). The forecasting
model provided by the anticipating component (cf.

step 5, Fig. 1) is applied on actual weather data (cf.
step 6, Fig. 1) in order to predict future outages. In
case of potential outages, the prediction features (e.g.,
model confidence) and entries are mapped onto the
data attribute within the Context entity (cf. Fig. 2).
All features and data entries of actual weather data
and outage data are mapped as stated in the previous
section. The timestamp attribute within the Identifier
entity, the probability attribute within Reason as well
as ImpactLocation are further derived from the outage
prediction (cf. Fig. 2). An inductive learning approach
is applied onto historical crisis scenario patterns as well
as the predicted outages for a specific time frame and
region (e.g., Bavaria) (cf. step 5, Fig. 1) in order to
explain results to the user. Inductive learning covers
inductive knowledge acquisition and prediction based
on generalized patterns of input observations, applying
numerical or symbolic approaches (Hogan et al., 2021).
Based on the structure of the scenario KG defined by
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Figure 2: Instance of a crisis scenario pattern represented as conceptual knowledge graph and implemented in JSON (extract)

scenario patterns, we apply self-supervised symbolic
learning in order to bridge the gap between symbolic
knowledge patterns and predictive analytical methods.
The application of symbolic learning enables to learn
from labels in natural language that explain information
within a KG. Considering predicted outages of the
forecasting model and attributes of entities of the
scenario pattern (e.g., Context entity with weather
features such as temperature, wind speed, wind gust
etc.) (cf. Fig. 2), rules can be derived. For instance,
based on the occurrence of an influential factor for a
certain outage reason, we could derive the rule:
IF Context.Influence = ’Autumn Season’
THEN Reason.Precondition = ’Wind speed’;
This rule set is continuously revised and extended based
on the inserted information within the scenario KG.
Assuming a user inserts a list of feedback on possible
actions (Measure.actionSteps = [’planned downtime’,
’planned maintenance’]) (cf. Fig. 2)
For a crisis scenario, the rule set could grow to:
IF Context.Influence = ’Autumn Season’
THEN Reason.Precondition = ’Wind speed’;
IF Reason.Precondition = ’Wind speed’
THEN Measure.actionSteps=[’planned downtime’,
’planned maintenance’];

Alerting crisis scenario: In case of a predicted
potential outage, an alert is triggered and results,
including the filled scenario patterns (cf. Fig. 2) and
inductive knowledge based explanations are given as
response to the user (cf. step 7, Fig. 1). The user can
provide feedback by adding input on action steps in
the Measures entity (cf. step 8, Fig. 1). The enriched
scenario pattern is then forwarded and reinserted as
historic scenario pattern into the scenario KG (cf. step

9, Fig. 1). This leads to a refinement of further inductive
knowledge rules enabling more precise explanations of
the predicted results.

4. Implementation and Evaluation

Based on the proposed model (cf. Fig. 1), we
implemented a proof of concept focusing on step 5 and
6 in AISOP, i.e., the observation of the surrounding
environment of manufacturers by applying scenario
patterns to actual data streams, i.e., weather data in
this case. If a potential crisis scenario is detected that
could impact the power supply and lead to outages,
slots of the scenario pattern are filled with derived
data and an alert is given. In order to be able
to observe potential crisis scenarios, we combined
the semantic representation of scenario patterns with
self-supervised symbolic learning and a supervised
classification approach. The proof of concept was
implemented in Python, JSON and JSON-LD. Having
confirmed the location of a manufacturer, slots of the
scenario pattern are used as a marker template that is
filled rule-based with results of analyzing actual weather
data streams with respect to a classification model. A
prerequisite for the implementation is the availability of
historic data on outages and weather data that can be
mapped onto scenario patterns as well as actual weather
data to observe.

4.1. Setting

To evaluate our approach, we conducted a run time
study with the implemented proof of concept. Goal of
this study was to assess the performance in predicting
potential outages caused by weather for manufacturers
of paper industry in Germany. For that purpose, we
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applied a publicly available data set on power outages
published by German Federal Network Agency. These
consist of 1.5 million power outages, that occurred in
Germany between 2012-2020. We noticed, that outages
occurred very unevenly in time. Furthermore, as shown
in Fig. 3, these outages are not evenly distributed
over Germany, as some cities show more outages than
others. Each outage is identified based on the network
operator id, date, city, reason, customers affected as
well as further outage-resulting features6. Tab. 2 lists
all the features of the applied data set. Furthermore,
only network operators that are still operational are
considered for this study and therefore only outages
caused through their respective network are included
within the analysis. For preprocessing, outages were

Figure 3: Distribution of outages in Germany 2012-2020
(Source: German Federal Network Agency) (left) and
distribution of weather stations across Germany (Source:
NCEI database) (right)

grouped based on date and city. Missing dates for each
city are filled with 0. After that, since this data set
is to be integrated with weather data, outage events
that are marked as planned or that are not related to
weather events were excluded. Finally, labels for a
classification problem are obtained where each row
contains date, city and outage-occurred which is a binary
variable. Weather data is obtained from the NCEI
database which is an integrated database of daily climate
summaries from land surface stations across the globe.
The GHCN-daily data set provided by NCEI contains
records from over 100,000 stations in 180 countries.
The data set contains numerous weather-related features
such as maximum and minimum temperature, wind
speed, wind gust, total daily precipitation, snowfall, dew
point, and indication of thunder or rainfall. Tab. 2
lists the weather features used in the evaluation. Each
record is uniquely identified by the weather station id
and the date. For preprocessing, weather stations were

6Data are imbalanced as most of the dates do not contain details
for outages in a particular city. In particular, only 2% of the dates for
all cities are assigned to outages. This percentage is reduced to 1.5%
if cities have more than 1 outage in a day.

Table 2: Overview of features of weather data (Source: NCEI)
(left) and outages data (Source: German Federal Network
Agency) (right)

Features of weather data

Max Wind Speed
Wind Gust
Average Wind Speed
Average Temperature
Max Temperature
Min Temperature
Dew Point
Visibility
Rain
Snow
Ice
Hail
Thunder
Tornado

Features of outages data

Operator ID
Operator Name
Date
Time
Duration
City
Planned/Unplanned
Max Voltage
Mid Voltage
Low Voltage
Reason
Interrupted active power [MW]
Customers Affected
-

Figure 4: City clusters (blue) and weather stations (red)

filtered based on latitude and longitude to retain weather
stations in Germany (cf. Fig. 3). Next step was to
augment outages data with weather data and to handle
the imbalance of outages. Since not all weather stations
have complete historical data in the NCEI data set, a set
of weather stations (N=19) was selected that contains
all historical data from 2012 until 2020. Then, to cater
the unbalancedness problem, K-means clustering with
k = 19 was applied to group cities close to each other
with the nearest weather station. For our experiment,
south-west part of Germany was selected as it has shown
the highest number of outages (cf. Fig. 4). This resulted
in increased percentage of dates having outages for each
cluster. The final data set contains features such as
cluster-id, weather-station-id, date and weather-related
features while outage is used as a label to predict
potential outages7. Finally, data for each cluster was
divided into 80% for training, 10% for validation and

7To handle different ranges for different features, we scale all
features to be in the range 0 to 1.
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Table 3: Classification results of different models on predicting outages in south-west Germany (ACC = accuracy, SP = specificity,
SN = sensitivity, LR = Logistic Regression, RF = Random Forest, NN = Neural Network)

Metrics LR SVM RF NN XGB

ACC 0.634 0.759 0.784 0.806 0.812
SP 0.950 0.952 0.978 0.868 0.850
SN 0.290 0.270 0.218 0.618 0.700

10% for testing.

4.2. Results

Outage predictions were modeled as a supervised
learning classification problem with power outage as
label and weather conditions as feature. We report
on results of different models trained on the cluster of
cities in the south-west of Germany as shown in Fig 4.
For evaluation, accuracy, sensitivity and specificity were
used. Tab. 3 shows classification results of different
models. XGBoost (XGB) outperforms other models
in terms of overall accuracy (0.812) and sensitivity
(0.700). In particular, sensitivity is the most important
metric since it evaluates out of all outage events,
how many the model could identify, which is crucial
given the aforementioned scarcity of outage events.
In order to analyse which features have the strongest
contribution to outage prediction, weights of features
that XGB converged to are plotted in Fig. 58. We

Figure 5: Feature importance in weather data for predicting
outages

see that maximum wind speed, dew point, wind gust
along thunder indicators and temperature features had
the most contribution to the outage prediction (c.f.
Schuck and Schelhaas, 2013). For evaluation, locations
of paper industry within the city cluster (cf. Fig.
4) were selected as published by the German paper
industry Association9. For those paper manufacturers in

8Feature importance score is calculated for a single decision tree
in XGBoost by the amount that each attribute split point improves
the performance measure, weighted by the number of observations the
node is responsible for.

9https://www.papierindustrie.de/

south-west Germany (N=7)10, we were able to predict
outages in 2020 with the aforementioned accuracy of
0.812. In case of a predicted outage for the location
of the paper manufacturer, relevant data were mapped
onto the scenario pattern structure, as specified in (cf.
Tab. 1). Features of both data sets as listed in (cf.
Tab. 2) and their respective data entries for the date
of the potential outage with affected region were filled
into the scenario pattern (Context.Data). Furthermore,
the date was inserted as Identifier.T imestamp into
the pattern. The City feature within the data set of
German Federal Network Agency (cf. Tab. 2) was
mapped onto ScenarioLocation.City similar to the
Reason feature that fills the slot Reason.Precondition.
As the applied classification model also captures the
level of confidence regarding its prediction, this value
is mapped onto Reason.Probability. The feature
of affected customers (cf. Tab. 2) was mapped
onto Effect.Postconditions in the scenario pattern.
The History entity is automatically generated in each
newly generated scenario pattern for linking it with
historic crisis scenarios caused by outages at the same
location (Identifier.ID). In summary, completely
filled scenario patterns with explanatory information
on the predicted outages potentially affecting the
manufacturers (N=7) were generated. In a next step,
an alert would be given for presenting the predicted
scenarios to manufacturers for supporting decisions
on the pro-active initiation of measures in production
planning.

5. Conclusion

We considered energy-driven crises in process
industry. Despite of the criticality of power outages
and fluctuations for energy-intensive process industry
and serious consequences of uncontrolled shutdowns of
production lines, handling of outages in manufacturing
focuses on commissioning of expensive proprietary
power plants to protect against power outages and
implicit gut feeling in anticipating potential disruptions.
Putting the emphasis on responsibility and decision

10Cities: Raubling, Trostberg, Augsburg, Schrobenhausen, Fürth,
Teisnach, Plattling
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space of manufacturers, we introduced AISOP, a
model for AI-based scenario planning for predicting
crisis situations. AISOP uses conceptual, well-defined
scenario patterns to capture entities of crisis situations
in history and future, e.g., location and dates of
outages, effects like downtimes. Data streams, e.g.,
historic outages, weather data, are mapped onto scenario
patterns for determining historic crisis scenarios and
predicting future crisis scenarios by using inductive
knowledge and machine learning. Historic crisis
scenarios emerge to a scenario knowledge graph that
could serve as cross-company data space. The
model was exemplified within a proof of concept for
energy-driven disruption prediction in process industry.
We were able to evaluate the proposed approach by
means of a set of data streams on outages in Germany in
terms of performance in predicting potential outages for
manufacturers of paper industry with promising results.
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