Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Formal Verification of Prim’s Algorithm in SPARK

Brian S. Wheelhouse
Air Force Institute of Technology
bswheelhouse @ gmail.com

Laura Humphrey
Air Force Research Laboratory
laura.humphrey @us.af.mil

Kenneth M. Hopkinson
Air Force Institute of Technology
kenneth.hopkinson @afit.edu

Abstract

Many distributed systems use a minimum spanning
tree (MST) as the backbone of efficient communication
within the system. Given its critical role, it is important
that the MST be implemented correctly. One way to
ensure its correctness with a high degree of confidence is
to use formal methods, i.e. mathematically-based tools
and approaches for design and verification of software
and hardware. Toward this end, we implement Prim’s
algorithm for construction of MSTs in SPARK, which
is both a programming language and associated set
of formal verification tools. At the most basic levels,
formal verification in SPARK requires proving that code
satisfies contracts on data flow and initialization and
is free of run-time errors, which often reveals rare or
subtle errors that are hard to detect through testing
alone. Once errors are corrected and formal verification
is complete, the result is code that is mathematically
proven to satisfy the verified properties. In this paper, we
provide background on SPARK and describe the process
of using it to implement and verify basic properties of
MSTs constructed using Prim’s algorithm.

Keywords: formal methods, program verification,
spanning trees

1. Introduction

As software systems become increasingly complex,
it becomes increasingly difficult to ensure their
correctness. A major reason is that as system complexity
increases, the proportion of system behaviors that can be
feasibly covered through standard test-based verification
approaches decreases, leaving more room for latent
errors. A possible solution to this problem lies in the
use of formal methods, i.e. mathematically-based tools
and approaches for software and hardware verification
[Rushby, 1997, O’Regan, 2017]. Whereas testing
checks individual execution traces of a system, formal

URI: https://hdl.handle.net/10125/103443
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

H{CSS

methods analyze a mathematical model of a system,
opening the possibility of mathematically proving that
all possible behaviors of the system are correct. To
make an analogy, consider the Pythagorean Theorem.
One could merely build confidence in its correctness
by testing it against a set of randomly selected right
triangles, or one could prove its correctness for all right
triangles by applying geometric axioms.

In safety-critical domains where errors can lead
to substantial damage or loss of life, there is a need
to eliminate as many errors as possible. Certification
standards for many safety-critical domains therefore
promote the use of formal methods, e.g. ISO 26262
for the automotive domain [Bahig and El-Kadi, 2017],
EN 50128 for the railway domain [Basile et al., 2018],
and the DO-333 supplement to DO-178C for the
aerospace domain [RTCA, 2011]. There is a perception
that formal methods require significant expertise
to use and may not provide a good return on
investment [Davis et al., 2013, Bishop et al., 2011,
Nemathaga and van der Poll, 2020], so historically
the use of formal methods has been concentrated
in safety-critical domains. However, the challenge
of maintaining software correctness in the face
of growing complexity has recently motivated the
use of formal methods in other domains. For
example, engineers at Amazon Web Services have
been using formal methods since 2011 to help
solve difficult design problems in systems that
use distributed algorithms for data management
[Newcombe et al., 2015], and Amazon Web Services
also uses formal methods to address a variety of
cyber security concerns [Chudnov et al., 2018,
Backes et al., 2018, Backes et al., 2019]. Despite
perceptions about formal methods being difficult and
expensive to use, Newcombe et al (2015) found that
“Formal methods find bugs in system designs that
cannot be found through any other technique we know
of,” and “Formal methods are surprisingly feasible for
mainstream software development and give good return
on investment.” In fact, they found that using formal

Page 6695

methods to write and check proofs of certain types of
algorithms was actually faster and easier than doing so
by hand. In general, while the use of formal methods
does require some investment, the return on investment
is eventually realized in terms of better reliability,
security, and fewer bugs to fix after development
[Nemathaga and van der Poll, 2020].

For formal program verification, one language
and toolset that we have found relatively easy
to use is SPARK [McCormick and Chapin, 2015].
This is both because the design philosophy of the
language emphasizes safe and correct programming,
it is freely available as part of GNAT Community
Edition [AdaCore, 2022a], and there are a number of
educational materials and examples readily available
[AdaCore, 2021, Garion, 2019]. In this paper, we show
how to use SPARK to implement and verify certain
properties of Prim’s algorithm for building minimum
spanning trees (MSTs). We choose to focus on
this algorithm because MSTs are used in problems
involving network reliability, classification, and routing
[Mariano et al., 2013, van Steen and Tanenbaum, 2017]
and would benefit from formal verification given the
need for reliability in these problem domains. The
rest of the paper proceeds as follows. Section 2
discusses applications of SPARK in industry as well as
efforts to prove Prim’s algorithm using various methods,
Section 3 gives some background on SPARK, Section
4 demonstrates how SPARK is used to develop and
verify Prim’s algorithm, Section 5 addresses the results
of the analysis report generated by SPARK, and Section
6 concludes the paper.

2. Related Work

Formal methods have been used successfully
in a variety of large projects and in proving
Prim’s algorithm. [Chapman and Schanda, 2014] and
[Humphrey et al., 2022] provide overviews of how
SPARK has been used in various projects, especially
projects focused on cyber security and safety in the
aerospace domain. These include the Ship Helicopter
Operating Limits Information System (SHOLIS); the
C130J “Hercules” core mission computer, which saw
an 80% savings in the modified condition/decision
coverage (MC/DC) testing budget due to the low number
of faults discovered during testing; and the NSA-funded
Tokeneer demonstrator, for which testing found zero
defects for a period after delivery. In terms of cyber
security, verification at the silver level in SPARK proves
that code is free of many of the cyber vulnerabilities
classified in the MITRE corporation Common Weakness
Enumeration (CWE) database [MITRE, 2021]. This is

discussed in [Chapman and Moy, 2018], which provides
a mapping of how the language features of SPARK/Ada
prevent certain classes of CWEs and how verification
with SPARK prevents others.

We briefly note that other tools and frameworks
perform analogous types of formal verification for
different languages. For example, Frama-C is a
framework for analysis of C code in which contracts
and assertions are written in the ANSI/ISO C
Specification Language (ACSL) and plugins for formal
verification are available [Cuoq et al., 2012]. A case
study comparing ACSL/Frama-C with SPARK can
be found in [Brito and Pinto, 2010]. There is also
Prusti for Rust [Finkbeiner et al., 2020] and Krakatoa
[Marché et al., 2004] for Java, just to name a few.

In regard to Prim’s algorithm, some efforts have
already been made to apply formal methods. Abrial,
Cansell, and Méry give an approach to proving Prim’s
algorithm using the formal modeling tool Atelier B
[Abrial et al., 2003]. Atelier B is an environment for
generating and proving proof obligations for formal
models, e.g. of algorithms. Such models can be
automatically translated to C, C++, Ada, or HIA code
[ClearSy, 2022], but since errors could be introduced
during this translation, additional program verification
tools such as SPARK should be used.

Another effort has succeeded in a proof of full
functional correctness of an executable implementation
of Prim’s algorithm written in verifiable C using Coq:
CompCert and the Verified Software Toolchain (VST)
separation logic deductive verifier [Mohan et al., 2021].
Mohan demonstrates that Prim’s algorithm works on
disconnected graphs (thus finding a minimal spanning
forest (MSF) rather than a MST) and predicts that
more-automated tools such as Why3 would not be able
to prove full functional correctness as easily as their
work with VST.

Based on the denotational semantics of the language,
SPARK translates programs along with checks and
contracts to be verified to the Why3 deductive
verification platform [Fillidtre and Paskevich, 2013].
Why3 then uses a weakest-precondition calculus
to generate verification conditions (VCs), i.e.,
logical formulas whose validity would imply
soundness of the code with respect to its checks
and contracts. Why3 then uses multiple theorem
provers/satisfiability modulo theory (SMT)
solvers to discharge the VCs, including CVC4
[Barrett et al., 2011], Alt-Ego [Conchon et al., 2018],
and Z3 [de Moura and Bjgrner, 2008]. While the tools
attempt to automate this process, sometimes additional
assertions in the code must be provided by the user to
guide the underlying provers. We demonstrate what

Page 6696

SPARK is able to prove automatically using Prim’s
algorithm as an example. This example also serves
as a simple tutorial on how to begin using SPARK
to formally verify an executable implementation of a
common algorithm.

3. SPARK

This section provides an overview of SPARK,
much of which is summarized from [AdaCore, 2021].
SPARK is both a programming language and a formal
verification toolset. SPARK as a programming language
is based on the Ada programming language. Ada has a
number of features that help support the development of
safe and correct programs, which SPARK builds upon.
However, SPARK both adds some features that support
formal verification and removes some features that make
formal verification difficult. To summarize, SPARK
leverages features from Ada such as

¢ Type safety
* Ada 2012 aspects for writing contracts

* A package system that enables clean separation of
interfaces from implementations

and removes features such as
* Aliasing (assigning two names to the same object)
» Exception handlers
* Backward goto statements
* Controlled types
* Side-effects in expressions, including functions

For users that rely on Ada features that are restricted
in the SPARK subset, note that while SPARK can be
used to prove an entire program, it can also applied to
only specific parts of a program, including designated
lines, subprograms, or packages. Combined with the
fact that SPARK is compiled using an Ada compiler,
this makes it possible to mix unproven Ada code
with restricted features into the program if necessary.
The SPARK User’s Guide goes into more detail about
these restrictions in [AdaCore, 2022d]. The relationship
between SPARK and Ada is depicted in Figure 1.

As a static verification toolset, SPARK verifies
code without compiling or executing it. = SPARK
performs several different types of static analysis. One
is flow analysis, which checks the initialization of
variables, unused assignments, unmodified variables,
and data dependencies between inputs and outputs of
subprograms. The other is proof, which checks for the

P Core
Ada

features WAguage Additional
| outside St SPARK
\I\hc SPARK Adaand aspects

‘\suhsﬂ SPARK

H"n—.
B Ada R
- -

SPARK

Figure 1. The relationship between SPARK and Ada
[AdaCore, 2021].

absence of run-time errors as well as conformance of the
program with its specifications.

Given the different types of analysis SPARK can
perform and the fact that the level of detail in program
specifications can vary from partial to complete, some
colloquial terms have been adopted by SPARK users
to define the level of assurance that has been attained
for the code. In order from lowest to highest these
levels are colloquially referred to as “stone,” “bronze”
“silver,” “gold,” and “platinum” [AdaCore, 2022b]. A
simple example of a gold level proof can be found
in [Baity et al., 2021], which verifies that a merge sort
algorithm satisfies a partial specification. Table 1 gives
more detail on the levels of SPARK verification and the
use cases at each level.

Table 1. Levels of SPARK verification. From
[AdaCore, 2022b]
Level Guarantees Use Case
Intermediate level
Stone valid SPARK | during the adoption of
SPARK
initialization, As large a part of the
Bronze correct data .
Alow code as possible
The default target
absence of .,
. . for critical software
Silver run-time errors (subject to costs and
(AORTE) subjec
limitations)
Only for a subset of
proof of key the code subject to
Gold integrity specific key integrity
properties (safety/security)
properties
Only for those parts
full functional | of code with the
Platinum proof of highest integrity
requirements (safety/security)
constraints

Page 6697

4. Example

Spanning trees can be used in communication
protocols to provide paths from one node in the network
to another non-neighboring node. A spanning tree is
a subset of edges in a graph that connect all the nodes
or vertices in the graph without any cycles, where the
number of edges is one less than the number of vertices.
For a weighted graph, a minimum spanning tree is
one whose edge weights have the smallest sum of all
possible spanning trees in the graph.

Prim’s algorithm is one algorithm that can be used
to compute an MST for a graph. In this section, we
start by describing this algorithm. Then, we present an
implementation of this algorithm in SPARK and show
how to refine it so that it proves at the bronze and silver
level.

4.1. Prim’s Algorithm

Prim’s algorithm is a greedy algorithm for finding
an MST of a weighted undirected graph given a starting
vertex. Let G = (V, E) be a weighted undirected graph
with vertices V, edges F, and a function w : E — R
assigning a weight w(u,v) to every edge (u,v) € E.
Let us denote the set of vertices as G.V. Starting from
an arbitrary root vertex r € G.V, Prim’s algorithm
incrementally builds a tree A. At each iteration, it adds
to A the edge with minimum weight that connects a
vertex in A to a vertex in G.V that is not in A. At each
iteration, A is an MST for the subgraph of G whose
vertices are connected by the edges in A. As soon as
all vertices in G.V are connected by edges in A, A is
an MST of G. Note that the algorithm fails to work
when there are disconnected vertices in the graph, and
the computed MST may vary depending on the choice
for r.

A min-priority queue is commonly used in Prim’s
algorithm to quickly extract the next minimum edge. For
each vertex v € G.V, let G.Adj[v] be a list of adjacent
vertices. For each vertex in the min-priority queue @), let
v.key store the minimum weight of any edge connecting
v to a vertex in the tree A (with v.key = oo if there
is no edge), so that function Extract-Min(Q) returns
the vertex associated with the smallest weight. Let v.7
store the corresponding parent of v in the tree. Then
Algorithm 1 outlines the steps in Prim’s algorithm as
given in [Cormen et al., 2022], with r being root of the
generated tree A and the structure of A described by the
values of v.7 extracted from extracted from from queue

Q.

Algorithm 1 Prim’s Algorithm [Cormen et al., 2022]
1: MST-PRIM(G, w, r)

2 for eachu e G.V do

3 u.key = oo
4 u.m = NIL

5: rkey =0

6 Q=G.V

7 while Q # () do

8 u = Extract-Min(Q)

9: for each v € G.Adj[u] do
10: if v e Q and w(u,v) < v.key then
11: VT =u
12: v.key = w(u, v)

4.2. Prim’s Algorithm in SPARK

The Ada language includes two types of
subprograms: functions and procedures. A function is
a subprogram that returns a value, while a procedure
is a subprogram that does not. The implementation
of Prim’s algorithm presented in this paper uses two
functions: one called Extract_-M+n and another called
M st_Prim. Rather than using a min-priority queue as
shown in Algorithm 1, this implementation tracks the
visited vertices with a type called Visited_Set, which
is an array of Booleans, and uses Extract_Min to find
the next minimum edge that has not yet been visited.
The declaration of these functions is given in Listing
1, and the implementations are given in Listing 2 and
revised in Listing 4. This example restricts the graph
size to only 5 vertices for simplicity.

Listing 1. Package specification mst_prim.ads

package MST_Prim with SPARK Mode is
Subtype Weight is Integer
range 0 Integer 'Last;
Subtype Extended_Vertex is Integer
range 0 .. 5;
Subtype Vertex is Extended_Vertex
range 1 .. 5;
type Destinations is
array(Vertex) of Vertex;
type Weights_List is
array (Vertex) of Weight;
type MST is record
Weights: Weights_List;
Edges: Destinations;
end record;
type Visited_Set is
array(Vertex) of Boolean;

Page 6698

type Adj_List is
array (Vertex) of Weight;
type Graph is
array (Vertex) of Adj_List;
function Extract_Min
(Weights: Weights_List;
Visited: Visited_Set)
return Vertex;
function Mst_Prim

(G: Graph;
r: Vertex)
return MST;

end MST_Prim;

Since SPARK is a subset of Ada, it follows the same
packaging structure. The code is structured into two
files: a specification file with an “.ads” file extension
which contains function and parameter declarations
for the package, and a package body file with an
“.adb,” file extension which contains the function
implementations for the package. The following code is
an implementation of Prim’s algorithm in SPARK at the
stone level, i.e. the code compiles but the results show
that it does not pass flow analysis as shown in Listing 3.

Listing 2. Package body mst_prim.adb

package body MST_Prim
with SPARK_Mode
is

function Extract_Min
(Weights: Weights_List;
Visited: Visited_Set)
return Vertex is
min: Weight := Weight 'Last;
min_Index: Integer;
begin
min_Index := 1;
for T in Vertex loop
if Weights(I) < min
and Visited(I) = False

then
min := Weights(I);
min_Index := I;
end if;
end loop;

return min_Index;
end Extract_Min;

function Mst_Prim
(G: Graph; r: Vertex)

return MST is
M : MST;
Visited: Visited_Set :=
(others => False);
u : Vertex;
begin
M. Weights(r) := 0;
M. Edges(r) :=
Extended_Vertex ' First;
for I in Vertex loop
u := Extract_Min
(M.Edges, Visited);
Visited (u) := True;
for V in Vertex loop
if G(u)(V) >0
and Visited (V) = False
and G(u)(V) < M. Weights (V)
then
M. Weights (V) := G(u)(V);
M. Edges(V) := u;
end if;
end loop;
end loop;
return M;
end MST_Prim;
end MST_Prim;

Listing 1 contains the package specification. In the
specification file, we set up types to describe a graph and
an MST. We represent a graph as an adjacency matrix
that specifies weights for each edge, and we represent an
MST as a record that contains a list of parents and a list
of minimum edge weights, each list having one element
per vertex. The list of minimum edges weights is stored
using a type called Weights_List, which is analogous
to the set of v.key values in Algorithm 1, and the list
of parents is stored using a type called Destinations,
which is analogous to the set of v.7m values. Each list
is an array indexed by Vertez, so that each index into
the array corresponds to a vertex in the graph. The
Vertex type in Listing 1 cannot hold any value less
than 1 or greater than 5. This SPARK feature, which is
inherited from Ada, helps with type safety. Strong types
in SPARK help clarify the intent of the code and ensure
that values are not corrupted by incompatible types
during run-time. Type names are also case insensitive,
which adds additional clarity to the code by enforcing
that all type names must be unique. If the names are
not unique, the code will not compile. For instance, one
cannot name a variable “vertex” when there is already
a type called “Vertex.” Bounding a type ensures that
out-of-bounds values cannot be assigned to variables
of that type without a run-time error during execution.
The SPARK verification tools can automatically prove

Page 6699

that variables of bounded types are never assigned
out-of-bounds values as part of the flow analysis check.

Listing 2 contains the implementations of the
functions for the algorithm. For a given initial vertex r,
the M ST _Prim function initializes the corresponding
weight in MST M to zero and the edge to its parent as
Extended_Vertex' First (which is zero) to represent
NIL. At each iteration, the vertex that is reachable with
minimum weight from the current tree stored in MST
M 1is selected as the current vertex and is marked as
visited in Visit_Set. From here, the function follows
the process as described in Algorithm 1 and updates the
minimum weights to reach each vertex that the current
vertex is connected to. Using Extract-Min the next
reachable vertex with minimum edge weight is selected,
and the process of updating the edge weights in the
solution MST continues. As a new edge is added, a
new partial solution MST is created containing all the
vertices that have been visited so far.

Although the code in the Listing 2 is correct
SPARK code (making this a stone-level verification),
it does not pass SPARK flow analysis. Flow analysis
verifies that the code satisfies checks on variables that
model how the data flows through them at run-time
[AdaCore, 2021]. In this case, M is not properly
initialized, so analysis with SPARK provides the output
in Listing 3, identifying the fields of the record M
that are not properly initialized. Uninitialized variables
introduce non-determinism which is evident when the
program specified in Listing 2 is executed. Without
initializing the variable M, the execution of the code
results in an incorrect MST. To resolve this issue,
we simply initialize M as shown in Listing 4, with
minimum edge weights all set to the maximum possible
value for type Integer and all edges to parents set to O
(representing NIL).

Listing 3. Console output after SPARK analysis of
the code in Listing 1 and 2

Phase 1 of 2: generation of Global
contracts

Phase 2 of 2: analysis of data and
information flow
mst_prim.adb:35:27: medium:

”"M. Edges” might not be initialized
mst_prim.adb:39:19: medium:

"M. Weights” might not be initialized
mst_prim.adb:46:14: medium:

"M. Weights” might not be initialized
mst_prim.adb:46:14: medium:
"M.Edges” might not be initialized

Listing 4. Package body mst_prim.adb

type MST is record
Weights: Weights_List :=
(others => Integer 'Last);
Edges: Destinations :=
(others => 0);
end record;

Once M is initialized, flow analysis passes and
the code constructs a correct MST. This raises the
verification level to bronze, and with no run-time errors,
it is even considered silver level. The automatic
achievement of silver level verification in this case
is mainly due to the simplicity of the code and the
straightforward type definitions. The analysis report in
the next section explains what checks were proved to
achieve these levels of verification.

5. Results

SPARK generates an analysis report that summarizes
the checks performed on the code during analysis,
including whether or not the checks were successful and
which tools or provers were used to discharge them.
These details are presented as a table included in the
analysis report as shown in Listing 5 and Listing 6. Each
row in the table represents the categories of checks that
SPARK performs and the columns represent which tool
was used to discharge each check. When a prover is used
to discharge a check, the name of the prover is cited in
the provers column. The numbers in the table represent
the total number checks verified by the associated tool.
The number of steps needed to prove the checks and
a breakdown of the checks by subprogram are also
given in the analysis report. A thorough description of
the analysis report including descriptions of the table
columns and rows can be found in [AdaCore, 2022c] but
the results for this example are presented here.

Listing 5 shows the analysis report for our program
when it had an uninitialized variable. When a variable
is uninitialized, flow analysis fails. The code analyzed
in this case is contained in Listing 1 and Listing 2,
where the MST variable in the MST_Prim subprogram
is uninitialized. After running SPARK with the “prove
all” option on this code, 4 checks (50% of all of the
checks) are unproved as shown in the analysis report.
These four checks are directly related to the warnings
given in Listing 3. This means there is no guarantee
that valid values will be passed through the variable
M in the subprogram M st_Prim. The “Unproved”
column in Listing 5 demonstrates how flow analysis is

Page 6700

able to catch initialization issues that are not caught
by the compiler. Initializing M as shown in Listing 4
resolves the error and the new analysis report, presented
in Listing 6, shows that all initialization checks pass.
Additionally, the code now passes flow analysis and is
guaranteed to have valid information flow because flow
analysis is sound, which means that if the errors it is
supposed to catch are not caught, then there are no such
errors [AdaCore, 2021].

Both results summaries show one check discharged
by the CVC4 prover. In this case, the Extract_Min
subprogram has been proven to contain no run-time
errors when it uses an Integer type for min_Index
to return a Vertex type. This means min_Index will
never hold a value outside of the range of type Vertex,
which is a proof that can be automatically performed by
SPARK using provers such as CVC4 without the need
for extra annotations from the developer.

Listing 5. SPARK analysis report with MST
uninitialized

SPARK Analysis results Total Flow Provers Unproved

Data Dependencies

Flow Dependencies
Initialization 6 2 . 4
Non-Aliasing .
Run-time Checks 1
Assertions

Functional Contracts

LSP Verification

Termination

Concurrency

1 (cved)

Total 72 (29%) 1 (14%) 4 (57%)

max steps used for successful proof: 1

Analyzed 2 units

in unit main, O subprograms and packages out of 1 analyzed
Main at main.adb:4 skipped

in unit mst.prim, 3 subprograms and packages out of 3 analy

zed
MST_Prim at mst_prim.ads:1 flow analyzed (0 errors, O che
cks and 0 warnings) and proved (0 checks)
MST_Prim. Extract_Min at mst_prim.ads:23 flow analyzed (0
errors , 0 checks and 0 warnings) and proved (1 checks)
MST_Prim. Mst_Prim at mst_prim.ads:27 flow analyzed (0
errors , 4 checks and 0 warnings) and proved (0 checks)

Listing 6. SPARK analysis report with MST
uninitialized

SPARK Analysis results Total Flow Provers Unproved

Data Dependencies

Flow Dependencies . .
Initialization 3 3
Non-Aliasing .

Run-time Checks 1
Assertions

Functional Contracts

LSP Verification

Termination

Concurrency

I (Cves)

Total 4 3 (75%) 1 (25%)

max steps used for successful proof: 1

Analyzed 2 units

in unit main, 0 subprograms and packages out of 1 analyzed
Main at main.adb:4 skipped

in unit mst_prim, 3 subprograms and packages out of 3 anal

yzed
MST.Prim at mst_prim.ads:1 flow analyzed (0 errors, 0 ch
ecks and 0 warnings) and proved (0 checks)
MST_Prim. Extract_-Min at mst.prim.ads:23 flow analyzed (0
errors , 0 checks and 0 warnings) and proved (1 checks)
MST_Prim. Mst_Prim at mst_prim.ads:27 flow analyzed (0 er
rors , 0 checks and 0 warnings) and proved (0 checks)

Proofs performed by the provers are only guaranteed
if flow analysis is passing. Therefore, the results in the
“Provers” column should be considered only after flow
analysis is complete. For more complex code or code
with gold or platinum level functional specifications,
it is likely that more effort would be required from
the developer, e.g., additional annotations in the code
needed to guide the provers (see [Baity et al., 2021] for
an example).

Since all subprograms in this example had 0
unproved checks in all rows above “Functional
contracts,” the subprograms are verified to the silver
level. We consider this an automatic proof because
the code did not need to be annotated with pre- and
post-conditions, loop invariants, assertions, etc. for
all checks to prove. Raising this code to the gold or
platinum level would require first writing functional
specifications for each subprogram in the form of pre-
and postconditions, then using SPARK to attempt to
prove that they are satisfied. After that, if SPARK is
not able to prove that the code satisfies the specifications
automatically, then the developer would need to add
additional annotations in the code to guide the provers.
At the silver level, the code is currently guaranteed to
have correct variable initialization and data flow and
to be free of run-time errors, which is a key step in
demonstrating that the code is highly reliable.

6. Conclusion

In this paper, we have given a brief overview of
formal methods, with an emphasis on SPARK for
formal program verification. We have shown how to
use SPARK to develop and formally verify a basic
implementation of Prim’s algorithm for constructing
MSTs, with an explanation of what types of analysis
SPARK performs and how the different levels of
verification in SPARK are categorized. In this case,
we formally verified that our implementation is free
of data initialization, data flow, and run-time errors
automatically. This level of verification provides a solid
foundation for reliable code.

In the future, we would like to re-implement the
algorithm using a formally verified implementation

Page 6701

of a min-priority queue such as the one presented
in [Baity, 2021] to match Algorithm 1 more closely.
Next, we would like to formally verify that our
implementation satisfies functional specifications of the
algorithm. This would require writing appropriate
specifications for our subprograms in the form of pre-
and postconditions that describe their desired behavior.
While SPARK attempts to prove such properties
automatically, fully automated proof is generally not
feasible, so it is likely that annotations in the form
of assertions and loop invariants will be needed to
guide the provers. As a starting point, we can
leverage work by Moller and Héfner who prove Prim’s
algorithm by hand (i.e. not with formal methods), but
using a proof strategy explicitly designed to facilitate
formal program verification of an implementation of the
algorithm [Moller and Hofner, 2019]. Most other proof
approaches rely on (1) existence of a minimal spanning
tree of the overall graph and (2) properties that rely on
reasoning about graph cycles, both of which are hard to
reason about in program verification tools. Moller and
Hofner’s proof strategy establishes invariants at each
step of the algorithm, which is far easier to reason about
in program verification. In a SPARK implementation,
these invariants likely provide the assertions and loop
invariants needed to prove the code satisfies functional
specifications. If we are able to complete a proof
of full functional correctness using the approaches
in [Moller and Hofner, 2019] and also provide enough
additional functionality to form a library, we plan to
make our code available as a crate through the new
Alire (Ada Llbrary REpository) distribution system.
Completing this proof will show that a full functional
correctness proof of Prim’s algorithm is possible with
more-automated tools such as Why3, contrary to Mohan
et al.’s prediction that such tools would not be able to
prove full functional correctness as easily as their work
with VST [Mohan et al., 2021].

Additional research can be done in comparing a
variety of formal verification tools using other languages
such as Rust with Prusti. The Rust language was
built with many of the same security concerns in mind
that resulted in the creation of Ada/SPARK. Recently,
SPARK released support for a restricted form of pointers
inspired by Rust [Dross and Kanig, 2020]. This new
feature allows for the verification of recursive data
structures, demonstrating that as the SPARK language
grows, more challenging structures and algorithms
can be formally verified using SPARK. Since both
the Rust and SPARK languages were developed with
similar safety and security concerns in mind, they
will probably continue to influence each other. An
interesting exercise with these languages would be to

use the same specification to generate and verify code
in each language to see how the tools, reliability, safety,
and security compare. This exercise may give some
insight to what the future of formal software verification
may look like.

7. Acknowledgements

This paper was partially supported by AFOSR grant
#20RQCORO096.

References

[Abrial et al., 2003] Abrial, J.-R., Cansell, D., and Méry, D.
(2003). Formal derivation of spanning trees algorithms. In
International Conference of B and Z Users, pages 457—476.

[AdaCore, 2021] AdaCore (2021). Introduction to SPARK.
https://learn.adacore.com/courses/
intro-to-spark/index.html. (accessed:
05.19.2022).

[AdaCore, 2022a] AdaCore (2022a). Download GNAT
Community Edition. https://www.adacore.com/
download. (accessed: 05.19.2022).

[AdaCore, 2022b] AdaCore (2022b). SPARK user’s
guide: Applying SPARK in practice. https:
//docs.adacore.com/spark2014-docs/html/
ug/en/usage_scenarios.html.

[AdaCore, 2022c] AdaCore (2022c). SPARK user’s guide:
How to view GNATprove output. https://docs.
adacore.com/spark201l4-docs/html/ug/en/
source/how_to_view_gnatprove_output.
html#the-analysis—-results-summary-file.

[AdaCore, 2022d] AdaCore (2022d). SPARK user’s guide:
Overview of SPARK language. https://docs.
adacore.com/spark2014-docs/html/ug/en/
source/language_restrictions.html.

[Backes et al., 2019] Backes, J., Bayless, S., Cook, B.,
Dodge, C., Gacek, A., Hu, A. J., Kahsai, T., Kocik, B.,
Kotelnikov, E., Kukovec, J., et al. (2019). Reachability
analysis for AWS-based networks. In International
Conference on Computer Aided Verification (CAV), pages
231-241. Springer.

[Backes et al., 2018] Backes, J., Bolignano, P., Cook, B.,
Dodge, C., Gacek, A., Luckow, K., Rungta, N., Tkachuk,
0., and Varming, C. (2018). Semantic-based automated
reasoning for AWS access policies using SMT. In Formal
Methods in Computer Aided Design (FMCAD), pages 1-9.
IEEE.

[Bahig and El-Kadi, 2017] Bahig, G. and El-Kadi, A. (2017).
Formal verification of automotive design in compliance
with ISO 26262 design verification guidelines. IEEE
Access, 5:4505-4516.

[Baity et al., 2021] Baity, R., Humphrey, L. R., and
Hopkinson, K. (2021). Formal verification of a merge sort
algorithm in SPARK. In AIAA Scitech 2021 Forum.

[Baity, 2021] Baity, R. M. (2021). Formal verification for
high assurance software: A case study using the SPARK
auto-active verification toolset. Master’s thesis, Air Force
Institute of Technology, AFIT Scholar.

[Barrett et al., 2011] Barrett, C., Conway, C. L., Deters, M.,
Hadarean, L., Jovanovié, D., King, T., Reynolds, A., and

Page 6702

Tinelli, C. (2011). CVC4. In International Conference
on Computer Aided Verification (CAV), pages 171-177.
Springer.

[Basile et al., 2018] Basile, D., ter Beek, M. H., Fantechi,
A., Gnesi, S., Mazzanti, F., Piattino, A., Trentini, D.,
and Ferrari, A. (2018). On the industrial uptake of
formal methods in the railway domain. In International
Conference on Integrated Formal Methods (iFM), pages
20-29. Springer.

[Bishop et al., 2011] Bishop, M., Hay, B., and Nance, K.
(2011). Applying formal methods informally. In
44th Hawaii International Conference on System Sciences
(HICSS), pages 1-8. IEEE.

[Brito and Pinto, 2010] Brito, E. and Pinto, J. S. (2010).
Program verification in SPARK and ACSL: A comparative

case study. In International Conference on Reliable
Software Technologies, pages 97-110.

[Chapman and Moy, 2018] Chapman, R. and
Moy, Y. (2018). Cyber security. https:

//www.adacore.com/uploads/books/pdf/
AdaCore-Tech-Cyber-Security-web.pdf.

[Chapman and Schanda, 2014] Chapman, R. and Schanda, F.
(2014). Are we there yet? 20 years of industrial theorem
proving with SPARK. In International Conference on
Interactive Theorem Proving, pages 17-26. Springer.

[Chudnov et al., 2018] Chudnov, A., Collins, N., Cook, B.,
Dodds, J., Huffman, B., MacCarthaigh, C., Magill, S.,
Mertens, E., Mullen, E., Tasiran, S., et al. (2018).
Continuous formal verification of Amazon s2n. In
International Conference on Computer Aided Verification
(CAV), pages 430—446. Springer.

[ClearSy, 2022] ClearSy (2022). Atelier B user
manual version 4.0. https://www.it.
uu.se/edu/course/homepage/bkp/
ht13/AB/documentation/manual/
ManuelUtilisateurAtbd/uk/user_uk.pdf.

[Conchon et al., 2018] Conchon, S., Coquereau, A.,
Iguernlala, M., and Mebsout, A. (2018). Alt-Ergo
2.2. In International Workshop on Satisfiability Modulo
Theories (SMT), pages 1-11.

[Cormen et al., 2022] Cormen, T. H., Leiserson, C. E., Rivest,
R. L., and Stein, C. (2022). Introduction to algorithms.
MIT press.

[Cuog et al., 2012] Cuoq, P, Kirchner, F., Kosmatov, N.,
Prevosto, V., Signoles, J., and Yakobowski, B. (2012).
Frama-C. In IEEE International Conference on Software
Engineering and Formal Methods (SEFM), pages 233-247.
Springer.

[Davis et al., 2013] Davis, J. A., Clark, M., Cofer, D., Fifarek,
A., Hinchman, J., Hoffman, J., Hulbert, B., Miller, S. P,
and Wagner, L. (2013). Study on the barriers to the
industrial adoption of formal methods. In International
Workshop Formal Methods for Industrial Critical Systems,
pages 63-77. Springer.

[de Moura and Bjgrner, 2008] de Moura, L. and Bjgrner, N.
(2008). Z3: An efficient SMT solver. In Ramakrishnan,
C. R. and Rehof, J., editors, Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), pages 337-340. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Dross and Kanig, 2020] Dross, C. and Kanig, J. (2020).
Recursive data structures in SPARK. In [International
Conference on Computer Aided Verification (CAV), pages
178-189. Springer.

[Filliatre and Paskevich, 2013] Filliatre, J.-C. and Paskevich,
A. (2013). Why3 — where programs meet provers. In
European Symposium on Programming (ESOP), pages
125-128. Springer.

[Finkbeiner et al., 2020] Finkbeiner, B., Oswald, S., Passing,
N., and Schwenger, M. (2020). Verified Rust monitors
for Lola specifications. In International Conference on
Runtime Verification, pages 431-450. Springer.

[Garion, 2019] Garion, C. (2019). SPARK by
example. https://github.com/tofgarion/
spark—-by-example. (accessed: 05.19.2022).

[Humphrey et al., 2022] Humphrey, L., Baity, R., and
Hopkinson, K. (2022). Formal verification of
safety-critical software using SPARK. In Aviation
Cybersecurity: Foundations, Principles, and Applications,
pages 31-48. IET.

[Marché et al., 2004] Marché, C., Paulin-Mohring, C., and
Urbain, X. (2004). The KRAKATOA tool for
certification of JAVA/JJAVACARD programs annotated in
JML. The Journal of Logic and Algebraic Programming,
58(1-2):89-106.

[Mariano et al., 2013] Mariano, A., Lee, D., Gerstlauer,
A., and Chiou, D. (2013). Hardware and software
implementations of Prim’s algorithm for efficient minimum
spanning tree computation. In International Embedded
Systems Symposium, pages 151-158.

[McCormick and Chapin, 2015] McCormick, J. W. and
Chapin, P. C. (2015). Building high integrity applications
with SPARK. Cambridge University Press.

[MITRE, 2021] MITRE (2021). Common Weakness
Enumeration (CWE). https://cwe.mitre.org.
(accessed: 05.19.2022).

[Mohan et al., 2021] Mohan, A., Leow, W. X., and Hobor,
A. (2021). Functional correctness of ¢ implementations
of dijkstra’s, kruskal’s, and prim’s algorithms. In
International Conference on Computer Aided Verification,
pages 801-826. Springer.

[Moller and Hofner, 2019] Moller, B. and Hofner, P. (2019).
A new correctness proof for Prim’s algorithm. http://
www.Informatik.Uni-Augsburg.de.

[Nemathaga and van der Poll, 2020] Nemathaga, A. and
van der Poll, J. A. (2020). Formal Methods Adoption in
the Commercial World. PhD thesis, University of South
Africa.

[Newcombe et al., 2015] Newcombe, C., Rath, T., Zhang,
F., Munteanu, B., Brooker, M., and Deardeuff, M.
(2015). How Amazon web services uses formal methods.
Communications of the ACM, 58(4):66-73.

[O’Regan, 2017] O’Regan, G. (2017).
formal methods. Springer.

[RTCA, 2011] RTCA (2011). Formal methods supplement
to DO-178C and DO-278A. Technical Report DO-333,
RTCA Special Committee 205 (SC-205) and EUROCAE
Working Group 71 (WG-71).

[Rushby, 1997] Rushby, J. (1997). Formal methods and their
role in the certification of critical systems. In Safety and
reliability of software based systems, pages 1-42. Springer.

Concise guide to

[van Steen and Tanenbaum, 2017] van Steen, M. and
Tanenbaum, A. (2017). Distributed systems.
https://www.distributed-systems.net/
index.php/books/ds3/.

Page 6703

