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Abstract

To decarbonize the energy sector, clean energy
plans with a tremendous quantity of renewable energy
integration are emerging globally. New York State
(NYS) has one of the most ambitious targets to
realize carbon-neutrality by 2040. To investigate the
feasibility of this plan, the starting point of the plan
is analyzed on a modified representation of the NYS
power grid. Historical data for 2019 is used to
model the spatiotemporal co-variability of load and
virtual renewable outputs at hourly intervals. Optimal
power flow analysis is simulated on daily basis for
the full year to examine the performance of the
system from annual to hourly levels. Results identify
bottlenecks to using renewable energy efficiently and
reliably with an emphasis on storage units, providing
system operators, policymakers, and stakeholders with
a practical research foundation.

Keywords: Renewable integration, Decarbonization,
Battery analysis, Power system modeling

1. Introduction

The Paris Agreement states that the global warming
increase should be controlled under 2 °C relative to
pre-industrial levels, which is recently analyzed in
the latest IPCC report [1]. Five illustrative scenarios
projecting the global warming levels from very low
Greenhouse Gas (GHG) emissions to very high GHG
emissions are presented in the report, covering potential
temperature increases from 1-8.5 °C. To stay under 2
°C of temperature increase, GHG emissions have to
decrease to net-zero around 2050. Electricity and heat
accounted for 31.9% of world GHG emissions [2] in
2018. As a result, plans to achieve zero-emission by

2050 have been proposed globally to create a sustainable
and reliable future.

An overview of clean electricity policies for the
US and some other countries is summarized in [3].
With European countries leading the way and targeting
a nearly 100% cut in emissions by 2050, Australia
and China plan to achieve 50% and 35% of renewable
energy penetration by 2030. In the US, various states
or territories have set renewable targets for the next few
decades where the New York State (NYS) has one of the
most ambitious goals to have 70% of renewable by 2030
(“70 × 30”) and to realize carbon-neutrality by 2040,
which is legally bonded by the Climate Leadership and
Community Protection Act (CLCPA).

Roadmaps for all 50 states in the US are proposed
by [4] at the annual level to foster the implementation of
clean energy policies. However, an annual scale analysis
underestimates the temporal variabilities of demand and
the high intermittent renewable energy. A multi-scale
framework that considers capacity planning at hourly
resolution is proposed by [5] to examine the transition
plan of NYS. Even though the model has high hourly
resolution and considers multiple types of generators
and storage units, the power grid is simplified as a single
node which ignores spatial co-variability. The spatial
distributions of load and renewable energy are of great
importance, which is especially true for NYS as it has
highly imbalanced renewable supply and demand.

The New York Independent System Operator
(NYISO) contracted with two analysis groups to
study the climate change impact on long-term
load (phase-I) [6] and power system reliability
(phase-II) [7]. While the phase-I study focuses on
long-term load prediction under climate-change impacts
and electrification of transportation and heating, the
phase-II report investigates the power system reliability
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Nomenclature Sets and Indexes
T length of the planning horizon
Gn total number of generators in the system
Bn total number of buses in the system
Ln total number of branches in the system
Sn total number of storage units in the system
Ifn total number of interfaces in the system
Gb a set of generators connected to bus b
Ib a set of lines flow in to bus b
Ob a set of lines flow out of bus b
Sb a set of storage units connected to bus b
IFi a set of lines in zonal interface i

b ∈ {1, ..., Bn} a bus in the system
t ∈ {1, ..., T} a time interval
g ∈ {1, ..., Gn} a generator in the system
l ∈ {1, ..., Ln} a transmission line in the system

Parameters
Rg/Rg upper/lower ramp rate limit of generator g

P g/P g generation upper/lower bound of generator g]

Ll/Ll upper/lower bound of transmission line l

LIFi
/LIFi

upper/lower bound of interface flow i

Cg,t/C
c
g,t linear/constant cost coefficient of generator

g at time t

Db,t demand for bus b in hour t

ηs round-trip efficiency of the storage unit at bus s

SOCs storage size for storage unit s

∆s charging/discharging capacity of storage unit s

Variables
pg,t generation of generator g in hour t

el,t power flow of branch l in hour t

θb,t phase angle of bus b in hour t

δ+s,t, δ
−
s,t charge/discharge power of storage unit s in

hour t

socs,t amount of stored energy in the storage unit s at
hour t

under a resource set with massive wind and solar
generation, price responsive demand, and DE resources
1. The starting point of the resource set is based on
the “70 × 30” scenario developed in the Congestion
Assessment and Resource Integration Study [8]. An
energy balance model with 11 buses (one for each load
zone) is used in the phase-II report to identify the need
for DE resources. The analysis also considers the loss
of load occurrences, which can be used to identify
system vulnerability under climate disruption scenarios.
However, the climate disruption scenarios considered
in the report are limited to 30-day horizons which fail
to capture the seasonal variance. Furthermore, the
scenarios that provide predictions for the long-term
(to 2040) are not modeled to capture the co-variability
of meteorological variables that govern renewable
output and drive demand patterns, such as temperature
and wind speed. Lastly, the energy balance model
oversimplifies the underlying topology of the grid and
might potentially underestimate the vulnerability of the
system.

It is critical to address the research gaps identified
above for the feasibility of the large-scale renewable
development proposed in the CLCPA as NYS only
had 27% of statewide generation from renewable
resources [9] in 2019. In this paper, we take a

1DE resource is a synthetic resource that is assumed to be
dispatchable and emission-free. Quantifying the need for the DE
resource provides insights on planning for the future grids.

different approach to investigate the feasibility of the
CLCPA plan and address the research gaps mentioned
above. Instead of projecting for extreme scenarios
in 2040, it is crucial to first assess the ability of the
grid to efficiently and reliably dispatch the integrated
renewables on a day-to-day basis with the transmission
capacity expansion planned for the future. Therefore,
the year 2019 is chosen2 to perform Optimal Power
Flow (OPF) analysis for a full year. By using historical
data, the spatiotemporal co-variability is well preserved
and the analysis can be performed long enough to
observe seasonal trends. The open-source NYS grid
representation in [10] is used as a baseline, and
modified to layout the analysis as it has geographic
information embedded in the system and provides
validated underlying grid topology of the NYS with
spatiotemporal data. Virtual wind and solar sites and
storage units are added to the baseline model based on
zonal capacities identified as the starting point of the
CLCPA plan in the CARIS report [8]. Note that the
electrification of the transportation and heating sectors
would increase the load and potentially shift it from
summer peak to winter peak at around 2034 [11], which
is not considered by using the 2019 data. In addition,
more extreme events such as droughts, wind lulls, and
extreme temperatures could be exacerbated as climate
change intensifies, leading to more complicated system

2The year 2019 is chosen to avoid the impact of the Covid-19
pandemic.
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operation conditions. As a result, 2019 is a milder
system condition, which could serve as an upper bound
on the feasibility of the CLCPA for the scenarios we are
projecting for the future. The major contributions of this
paper can be summarized as follows:

• The starting point of the CLCPA plan is integrated
into a realistic representation of the NYS grid
and optimized with hourly OPF analysis for a full
year, to provide more realistic results with higher
spatiotemporal resolution.

• Historical data from 2019 is chosen to preserve
the spatial-temporal co-variability for renewables
and load which depends on meteorological
variables.

• Analysis on multiple time scales is performed
to study the yearly, seasonally and intra-daily
behavior of the system and pinpoint the potential
vulnerabilities of the grid under non-extreme
operation conditions.

• Special focus is given to the duration and cycling
constraints of batteries, which is informative to
future investment, allocation, and operation of
storage units.

The rest of the paper is organized as follows:
Section 2 introduces the baseline model of the NYS
grid and the spatiotemporal renewable output modeled
based on the resource set in [7]. Section 3 describes
the modified OPF model and formulates the problem
mathematically. Section 4 designs the test cases to
compare the system performances and evaluates the
feasibility of the CLCPA plan. Section 5 shows the
numerical results from annual overview to intra-day
investigation and presents the flexibility provided by
batteries. Section 6 concludes the paper and discusses
future work directions.

2. Data Description

2.1. Modified NYS Power Grid

The open-source NYS power grid representation
in [10] is used as the grid model for this paper as
it has geographic coordinates for the buses and has
been validated with both Power Flow and Optimal
Power Flow analysis against historical records from
the New York Independent System Operator (NYISO).
The representation in [10] will be referred to as the
“baseline” model throughout the paper as it provides a
baseline for the grid status of 2019. Modifications will
be made for transmission lines, wind farms, solar farms,
and storage units as the CLCPA plan suggests.

The baseline model has 57 buses and 94 transmission
lines, where 46 of the buses are for New York and
nine are for neighboring areas. There are 227 thermal
generators, ten hydro generators, and six nuclear
generators being modeled as dispatchable units. Note
that one bus can have multiple generators of different
fuel types. In addition, 14 wind farms and 18 other
renewable generators are modeled as non-dispatchable
units (negative load) due to their generation contribution
at less than 3% of annual generation for 2019. Linear
cost curves are fitted for the thermal generators based
on the heat rates of each unit and the dynamics of fuel
prices.

There are 11 load zones in NY and the interface
flow between each pair of load zones has transmission
capacity limits. Load zones and the simplified network
between load zones and neighbor grids are shown
in Figure 1 The baseline model tracks the dynamic
capacity limits from NYISO’s records [12]. To test
the feasibility of the CLCPA plan, the interface flow
capacity limits are fixed as shown in Table 1 referring
to the Reliability Needs Assessment (RNA) report [13],
which suggests the interface capacity for 2030.

Figure 1. Connections between load zones and

neighbor grids

2.2. Renewable Resources

The renewable resources to be added to the
baseline model include land-based and offshore wind,
utility-scale solar, and behind-the-meter (BTM) solar.
According to the climate change impact phase II report,
17,761 MW of wind, 19,631 MW of utility solar, and
5,440 MW of BTM solar are allocated to each zone as
shown in Table 2. The zonal capacity of utility solar and
wind is then further dis-aggregated to PV buses (only
BTM solar can be included on PQ buses) in the baseline
model based on potential wind and solar sites identified
by the National Renewable Energy Lab (NREL) Wind

Page 2529



Table 1. Interface Flow Limits (MW)

Interface Lower Bound Upper Bound
A-B -2,200 2,200
B-C -1,600 1,500
C-E -5,650 5,650
D-E -1,600 2,650
E-F -3,925 3,925
E-G -1,600 2,300
F-G -5,400 5,400
G-H -7,375 7,375
H-I -8,450 8,450
I-J -4,350 4,350
I-K -515 1,293
Total East -3,400 5,600
NY-NE -1,700 1,300
NY-IESO -2,000 1,650
NY-PJM -900 500

Table 2. Zonal Capacity Allocation (MW)

Zone Wind Utility Solar BTM Solar Storage
A 2692 5748 704 956
B 390 656 218 4
C 1923 3585 596 979
D 1935 - 69 988
E 1821 2268 673 344
F - 4661 827 303
G - 1636 684 84
H - - 61 -
I - - 90 -
J 6391 - 672 195
K 2609 77. 846 27

Tool Kit (WTK) [14] and Solar Integration National
Dataset (SIND) [15], respectively. As a result, 14 wind
generators and 14 utility-scale solar sites are added as
generators to the baseline model along with 24 BTM
solar sites added as negative loads.

The time series trajectories of these synthetic wind
and solar sites are then generated using wind speed,
incident solar radiation, and ambient air temperature
data from MERRA-2 reanalysis data [16]. The data
is scaled and bias-corrected following the methodology
in [17] to generate hourly wind and solar power
for 2019. The spatiotemporal co-variability is well
preserved across all the wind and solar sites given the
historical data.

2.3. Storage Data

The storage capacity of each load zone also
follows [7], which is based on the 2019 CARIS Phase I

starting point and modified to provide the most efficient
“shifting” of renewables across time, resulting in the
capacity distribution shown in Table 2. Similar to
renewable resources, the zonal capacity needs to be
disaggregated for each bus. Batteries are allocated
based on the percentage of renewable resources on
each bus as well as the congestion pattern. Nodes
with a higher concentration of renewables are given
higher priority to be assigned to storage units. If
there are buses with a similar renewable penetration
level, the buses with higher congestion tendencies are
prioritized. Battery sizes vary from 4 to 988 MW. Note
that, a 988MW battery could be several smaller-sized
batteries connected to the same bus in reality. One
bus is assumed to have a single battery to reduce
computational complexity. The Gilboa pumped hydro
is modeled as a 1,170 MW battery in the system. As
a result, 20 storage units are allocated to the baseline
model. Even though [7] suggested 8-hour battery
duration, 2-hour and 4-hour batteries are the most
popular ones in the current US markets [18]. We test
how different battery durations impact the utilization of
renewables in Section 5.4.

3. Model and Formulation

To focus on the feasibility of the CLCPA plan
and to avoid complexity brought by market bidding
strategies, DC-OPF formulation is used to decide the
dispatch of generators and the charging/discharging of
storage units. This approach assumes that the system
operator manages all the resources and aims to satisfy
demand and system constraints with the minimum total
cost over the optimization horizon. A linear cost
function is provided for each generator by the baseline
model. To prioritize the dispatch of wind and solar,
zero marginal costs are assigned to wind and solar
generators, whereas hydro units have a marginal cost
of 3 $/MW. A small marginal cost of 1 $/MW is
assigned to charging and discharging to encourage the
use of batteries while preventing simultaneous charge
and discharge. As nuclear units served as base load
and operated at maximum capacity for most of 2019,
these units are constrained to run at full capacity. The
objective function can then be formulated as equation 1

T∑
t=1

(

Gn∑
g=1

(Cc
g,t + C1

g,tpg,t) +

Sn∑
s=1

(δ+s,t + δ−s,t) (1)

The DC-OPF constraints including charging and
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discharging can be written as equation 2 to 7∑
g∈Gb

pg,t +
∑
l∈Ib

el,t +
∑
s∈Sb

δ−s,t =
∑
l∈Ob

el,t +Db,t

+
∑
s∈Sb

δ+s,t,∀t ∈ T, b ∈ Bn
(2)

P g ≤ pg,t ≤ P g,∀t ∈ T, g ∈ Gn (3)

Rg ≤ pg,t − pg,t−1 ≤ Rg,∀t ∈ T, g ∈ Gn (4)

L ≤ el,t ≤ L,∀t ∈ T, l ∈ Ln (5)
−π ≤ θb,t ≤ π,∀t ∈ T, b ∈ Bn (6)

el,t = Bl(θb,t − θb′,t),∀t ∈ T, l ∈ Ln (7)

where equation 2 is the power balance constraint,
equation 3 and 4 are the power limits and ramping
constraints for generators. The thermal generation has a
lower bound at zero to approximate the unit commitment
process as suggested by [10]. It is worth mentioning
that the upper bounds for renewable generators are
changing over time based on resource availability. We
use the power output derived in Section 2.2 as the
upper bound for wind and solar, so that wind and
solar generators are semi-dispatchable. This means
that the “free” renewable resources can be dispatched
at any level lower than or equal to the maximum
output determined by the available wind speed or solar
radiation. The difference between the dispatched energy
and the upper bound of a specific hour is the curtailed
or “spilled” wind and solar generation. The hydro
plants are assumed to be dispatchable units with a small
cost in this study to prioritize the use of wind and
solar. In this case, the difference between the generation
upper bound and dispatch for hydro is similar to other
dispatchable resources, which is the unused capacity
of hydro. Equation 5 is the transmission line limit
constraint, equation 6 is the phase angle limit constraint
and equation 7 is the linearized relationship between the
power flow and the phase angle.

As suggested by [7], the batteries are assumed to
have round trip efficiency of η = 85% and the Gilboa
pumped hydro has round trip efficiency of η = 75%.
The constraints for batteries can be formulated as:

socs,t+1 = socs,t +
1

√
ηs

δ+s,t −
√
ηsδ

−
s,t (8)

0 ≤ socs,t ≤ SOCs,∀t ∈ T, s ∈ Sn (9)

0 ≤ δ−s,t ≤ ∆s,∀t ∈ T, s ∈ Sn (10)

0 ≤ δ+s,t ≤ ∆s,∀t ∈ T, s ∈ Sn (11)

where equation 8 is the State-Of-Charge (SOC)
transition constraints, equation 9 is the storage size limit
constraint and SOCs = k∆s. k is the battery duration
and will be analyzed in Section 5.4. Equation 10 and 11
are the limit constraints for discharging and charging.

NYISO specifies interface flow limits between load
zones and neighboring areas, which constrain the
amount of energy that can be transferred through a group
of lines connecting two areas/zones. The interface flow
constraints can be formulated as equation 12

LIFi
≤

∑
l∈IFi

el,t ≤ LIFi
,∀t ∈ T, i ∈ Ifn (12)

The final optimization problem can then be
formulated as:

min (1)

s.t. (2)− (12)

4. Test Cases

The optimization problem formulated in Section 3 is
solved every 24 hours for 365 consecutive days, where
sequential days are connected by battery states. To
test how the CLCPA plan carries out and to set the
groundwork for the complex 2040 scenarios, we set up
the following test cases as described in Table 3:

Table 3. Description for Test Cases

Test cases Description
Case 1 Run DC-OPF with the baseline model

without any modification with 2019
load and transmission conditions.

Case 2 Install virtual wind and solar capacities
with the time series data described in
Section 2.2 while constraining the
external areas to generate at the level of 2019.

Case 3 Renewable settings as in test case 2,
removing the constraint for generation
in external areas

Case 4 Add 8-hour batteries as suggested by [7]
to test case 3 with the capacity allocated in
Section 2.3

The four test cases are designed to progressively
achieve the CARIS starting point and ensure that the
test cases are comparable. Test case 1 is the baseline
case that reflects the historical condition of the year
2019 for all the other test cases to compare. Test case
2 holds the generation condition for neighboring areas
as they were in 2019 so that NYS continues to import
energy from the external areas. Such a setting imitates a
lower bound (for load level) of the future scenario where
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the neighboring grids have a similar level of renewable
penetration, enabling NYS to continue importing energy
much of the time. Test case 3 relaxes the constraints
on external generators and serves as an upper bound (as
the external areas generate less, NYS will export energy
and thus increase the overall load level) of the future
scenarios where the neighboring grids do not have as
much as renewable as NYS and will tend to import less
expensive energy from NYS. Note that test cases 2 and
3 do not have storage units. In case 4, 8-hour batteries
are added to test case 3 to analyze how much flexibility
storage units can provide. Note that, the four cases
use historical load and projected renewable outputs as
perfect forecasts, which provides a lower bound for the
minimized objective function (equivalent to the upper
bound of system performance).

5. Numerical Results

We start with an annual overview (Section 5.1) and
then highlight daily results over the year (Section 5.2)
to discuss seasonal variations. A specific day will then
be analyzed as an example in Section 5.3 followed by
battery duration analysis in Section 5.4

5.1. Annual Overview

The comparison of generation composition for the
full year is shown in Table 4 for the four test cases.
The result of test case 1 is aligned with the historical
generation in 2019 [19], where approximately 40% of
the energy is from thermal generators. Compared to case
1, cases 2 and 3 significantly reduce the usage of thermal
from 38.15% to 12.05% and 11.43% while using 52%
and 63% of renewable generation, which are under the
70% goal set by the 2019 CARIS report [8]. Recall that
in test case 3, NYS exports energy to neighboring grids
because the overall generation in NYS is less expensive.
As a result, test case 3 has a higher generation level
than case 2, which reduces the percentage of the nuclear
composition. With 8-hour batteries to shift the energy in
case 4, an extra 2% of renewables can be used compared
to case 3.

We quantify the unused wind, solar, and hydro in
Table 5 to highlight that the current grid cannot take full
advantage of the planned renewable resources. Table 5
will be of particular relevance in Section 5.3 where we
observe the use of thermal units in lieu of cleaner and
less expensive hydro generation. Another observation
is that, from case 2 to case 4, since there is no cost to
dispatch wind and solar, the quantity of unused wind
and solar declines first followed by hydro. It is also
as expected that case 3 consumes more renewables due
to the relaxation of constraints for external generators.

Last but not least, it is worth noting that even with
batteries included in case 4, there’s still unused capacity
of hydro while thermal resources continue to provide
around 10% of the total. We look into finer time
intervals in Section 5.2 and 5.3 to investigate potential
causes of such results.

Table 4. Fuel Mix of four test cases

Fuel Type Case1 Case2 Case3 Case4
thermal 38.15% 12.05% 11.43% 9.98%
Nuclear 32.96% 35.61% 25.39% 25.06%
Hydro 25.79% 7.50% 14.30% 15.41%
Wind 3.10% 31.83% 34.42% 34.54%
Solar NA 13.00% 14.45% 15.01%

Table 5. Unused Renewable four test cases
Renewable Type Case1 Case2 Case3 Case4
Wind NA 37.23% 2.65% 1.01%
Solar NA 41.80% 7.24% 0.02%
Hydro NA 73.79% 28.39% 21.79%

5.2. Daily Overview

To explore the dynamic pattern of the system
behavior, the aggregated daily generation composition
and unused renewable for case 4 are plotted for the
whole year in Figure 2. Case 4 is chosen as an
illustration here because it utilizes the renewables
with batteries most efficiently. The upper panel of
Figure 2 shows the generation by fuel type in different
colors where charging is plotted as a negative value
to distinguish from discharging. Load is denoted as
the thick black line, which verifies the exportation of
power to neighboring areas as the total generation is
consistently higher than the load. The lower panel shows
the curtailed wind, solar and hydro aggregated for each
day.

In general, summer brings reductions in curtailment
and increases in thermal usage (in orange) due
to the lack of wind, which matches the seasonal
wind generation pattern recorded by NYISO [12].
Conversely, more curtailment and reduced thermal
usage are observed in the shoulder seasons because
demand is lower and the wind resources exhibit higher
capacity factor during spring and fall seasons. Note
that thermal units continue to be used nearly every day
throughout the year, indicating a lack of renewables
during certain hours of the day, transmission line
congestion, or insufficient energy shifting capability
from batteries. To understand these challenges, we next
more closely examine the intra-day behavior under this
high renewable level scenario.
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Figure 2. Daily Overview for case4

5.3. Intra-Day Analysis

A single day (Apr 27, 2019) with high curtailment of
wind, solar, and unused capacity of hydro, is presented
to investigate the diurnal dynamics of the system. As
shown in Figure 3, the upper panel is the generation
composition and the lower panel shows the renewable
resource curtailments. Hydro is consistently not used
throughout the day as it has higher cost than wind and
solar. The batteries are charged in the middle of the
day when excess “free” wind and solar generation are
available. At hour 17, the curtailment of wind and solar
power reduces to zero, and hydro power is added to the
generation mix along with some thermal units. Batteries
discharge as the thermal generators are turned on to take
advantage of the energy that was stored earlier in the
day.

Figure 3. Generation composition and renewable

curtailment of Apr 27, 2019.

Towards the end of the day, hydro units get
dispatched but there is still significant amount of
extra hydro power available, even while thermal units
are brought online. To investigate the underlying
reason, the interface flows between each load zone and
NYS-to-neighboring areas are shown in Figure 4 and
the Locational Marginal Prices (LMPs) for each zone
are shown in Figure 5. The blue lines in Figure 4
indicate the temporal interface flows, the orange lines
denote the interface flow limits, and the vertical red
lines highlight hour 17, which is the transition from
the period of excess renewable resources to the use of
thermal units. Similarly, Figure 5 includes the vertical
red lines to highlight this transition hour. It should be
emphasized that the LMPs in all the load zones increase
after the transition hour. However, in load zone A-E,
the LMPs are within the range 2 − 3$/MW indicating
hydro power is on the margin, while zone F-K shows
LMPs are near 20$/MW , indicating a thermal unit is
on the margin. This observation suggests that upstate
zones (A-E) have extra hydro power that cannot be
transferred to downstate zones (F-K), which can further
be verified by Figure 4: note that D-E and Total East
(which is E-F plus E-G) are both at maximum capacity
when the thermal units are on, implying that there is
no extra capacity to transfer power from upstate to
downstate. As a result, the hydro power (noting that
most of the NYS hydro power exists in zone A and D)
are not being used while downstate areas need to turn
on thermal generators to satisfy demand. To summarize,
even on a day with excess renewables, thermal units
are still necessary due to the imbalance in load and
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Figure 4. Interface flows between load zones and

neighboring areas

renewable distribution between upstate and downstate
zones, implying insufficient transmission line capacity
expansion.

To demonstrate the congestion pattern of the
system, the generation condition of each zone and the
transmission condition of each interface for hour 16 and
hour 20 are presented in Figures 6 and 7. For both
figures, black circles indicate that there is no curtailment
or thermal units on, black diamonds show that hydro is
being curtailed in that zone, and green diamonds denote
wind and/or solar curtailment (indistinguishable, as
wind and solar both have zero marginal cost) and unused
capacity of hydro. The orange circles indicate that there
are thermal generators on in that zone. Red transmission
lines indicate that the interface is at capacity, whereas
blue lines indicate free capacity, and the thickness of the
line indicates the percentage of usage for that interface
(i.e. a thin blue line indicates lowest line usage).
Figure 6 shows that in hour 16, the path from upstate
zones to downstate zones still has capacity so there
are no thermal units on. Whereas in Figure 7 we can
see that in hour 20, there no longer exists a feasible
path from upstate to downstate as E-F and E-G transfer
constraints are binding so that zones F and J cannot
receive extra renewables and require thermal generation
to meet load requirements. In fact, the congested area is
highly concentrated at E-F and E-G throughout the year,
suggesting that more transmission capacity is needed for
this critical area.

Figure 5. LMPs of each load zone and neighboring

areas

Another key observation is that the batteries are not
being fully used throughout the day. Recall that 8-hour
batteries are used in this test case, which means the
batteries should be able to discharge at full capacity for
8 hours. However, only 6 hours of discharge is observed
by the end of the day, which raises the question of
whether 8-hour batteries are necessary given that 2-hour
and 4-hour batteries are the most established types in the
current market. To answer this question, we perform a
battery duration analysis in the next section.

5.4. Battery Analysis

Batteries are critical resources that provide flexibility
in the power grids to use renewable energy more
efficiently. Currently, in the power markets, 2-hour
and 4-hour batteries are most commonly used, so one
key focus of this section is to investigate the impact
of battery duration on the use of renewable energy.
Another practical concern for batteries is the cycling
constraints, which restrict the battery to operate one
cycle a day to prevent rapid degradation. The battery
is considered to have gone through one cycle when it
has fully discharged its storage capability (i.e. capacity
multiplied by duration), which can be formulated as
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Figure 6. System condition of hour 16.

Figure 7. System condition of hour 20.

equation 13

T∑
t=1

δ−s,t ≤ SOCs,∀t ∈ T, s ∈ Sn (13)

The following six test cases are designed to analyze
how different duration configurations and the cycling
constraint can impact the system behavior:

• Case 1: 2-hour battery with cycling constraints

• Case 2: 2-hour battery without cycling constraints

• Case 3: 4-hour battery with cycling constraints

• Case 4: 4-hour battery without cycling constraints

• Case 5: 8-hour battery with cycling constraints

• Case 6: 8-hour battery without cycling constraints
(This is the same as Test Case 4 in Section 4)

Note that in the real power system, it is not realistic to
have only one configuration of battery duration. The
test cases here serve as three checkpoints to bound the
impact of the batteries, and we can assume that the

combination of different duration configurations would
give results in between these bounds. We compare
the level of thermal and renewable usage of each case,
as well as the average battery cycles over the year in
Table 6.

Table 6. Comparison for battery configurations

Test Case thermal Renewable Battery Cycles
GWh GWh

Case1 19,767 121,980 333.5
Case2 19,679 122,047 412.7
Case3 19,235 122,839 305.9
Case4 19,203 122,877 330.4
Case5 18,949 123,313 220.2
Case6 18,943 123,316 221.6

By comparing cases with and without cycling
constraints, the differences in thermal and renewable
balance tend to decrease as the battery duration
increases. Specifically, with 8-hour batteries, the
difference between constrained and unconstrained
cycling is only 6GWh of thermal generation over the
entire year. This result verifies that 8-hour batteries
may be excessive for the system, assuming the system
operates at the daily horizon. In other words, there
are not many opportunities to charge and discharge
batteries of this capacity within a day. This might
be counter-intuitive at the first glance, but recall that
the batteries are assumed to be owned by the system
operator and are operated to minimize the overall
generation cost. This is as opposed to the case that
the batteries are actively bidding in the system to
maximize their profits, which would lead to different use
patterns. Within this configuration, 2-hour batteries see
the largest impact of the cycling constraint, though even
the 2-hour batteries only operate 1.13 cycles on average
each day without the cycling constraints. This small
difference suggests that the cycling constraints should
be considered in operations to prevent fast degradation
of batteries, since this will have a significant impact on
overall system efficiency.

Another observation is that as battery duration
increases, the amount of thermal generation decreases,
and the amount of renewable generation increases. As
longer duration gives the battery a larger storage size
and more flexibility to shift the excessive renewable
generation to peak load hours, it is reasonable to see the
8-hour batteries supporting the use of more renewable
energy. As for future planning, if the batteries are
operated daily, it may not be economically efficient
use 8-hour batteries as suggested by [7]. Based on
Table 6, the reduction in thermal generation is only
approximately 200 GWh for the full year, indicating that
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the 4-hour duration batteries can satisfy the need for
most situations. However, this is not to underestimate
the need for other technologies to enable energy storage
for the long term (for example between seasons).
Figure 2 and [7] show that shoulder seasons have more
excess renewables to be shifted to winter and summer
seasons and strategies to reduce curtailment and take
advantage of this low-cost and low-emissions energy
should be considered in the future.

6. Future work and Conclusion

In this paper, the starting configuration proposed in
the CLCPA is simulated over the entire year of 2019 to
investigate the feasibility of the plan. Taking advantage
of the high-resolution spatial-temporal historical data,
the co-variability of renewable output and load can be
properly considered. However, it should be emphasized
that by using the 2019 data, the effect of climate
change for 2030 and the load increase due to proposed
electrification (potentially shifting from summer peak to
winter peak) and/or climate impacts on temperature are
not considered. The simulation result is implemented
under a milder condition, treating historical data as
perfect forecasts. Compared to the projected 2030/2040
scenario, the result presented here can serve as an upper
bound estimate of system performance. Even under
these milder conditions, the goal of 70% renewable
generation is barely achievable. Transmission capability
from upstate to downstate is one of the critical
bottlenecks that is limiting the effective use of renewable
resources. The “Total East” interface is identified
to have the highest congestion probability and more
attention should be paid to alleviating the congestion in
this area.

Furthermore, the potential flexibility to shift
renewable energy provided by storage units is studied.
The 3,900 MW of storage proposed in the CLCPA
can increase renewable usage by 2% with 8-hour
batteries. Our results show that the cycling constraint
of batteries is not a significant factor, so it is likely
more economically and environmentally efficient to
adhere to the cycling constraint and prolong the life
span of batteries. In addition, the duration of batteries
needs to be carefully considered. The results of this
analysis indicate that the ideal duration is around 4
hours for daily operations as 8-hour batteries are not
fully utilized for most days, and 2-hour batteries would
require extra cycles leading to faster degradation. To use
renewable energy more efficiently, a larger capacity of
batteries is needed. Meanwhile, testing longer operation
horizons for batteries, i.e. instead of running daily
operation, a weekly operation horizon might highlight

the benefits of longer-duration batteries. Technologies
and mechanisms to store the excess energy in shoulder
seasons for use in peak load months could be valuable
resources to improve the overall system efficiency.

This research can be extended in the future with
more attention paid to hydro resources, as it accounts
for over 20% of annual generation in the current
system. The correlation between hydro power and
other variables in the system such as wind, solar,
and load should be properly modeled. It would also
be interesting to study the worst-case scenarios and
understand how long-term climate change could impact
load patterns, renewable outputs, and transmission line
limits. In addition, the nuclear units are gradually
retiring, with two nuclear generators already offline in
2020. Therefore, given the social and political concerns
surrounding this resource, a future test scenario should
consider the retirement of all the nuclear units, and
the impact of this decision on decarbonization goals
and grid performance. Understanding the correlation
between climate factors and the system behavior is of
great importance to transition to the next generation
of power grids efficiently and reliably. Overall, this
paper provides a practical exploration of the CLCPA
plan based on historical data for NYS and could serve
as a solid foundation for more in-depth research of the
pathway to a zero-emission grid.
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