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Abstract 

Current state-of-the-art artificial intelligence 

struggles with accurate interpretation of out-of-library 

(OOL) objects. One method proposed remedy is 

analogical reasoning (AR), which utilizes abductive 

reasoning to draw inferences on an unfamiliar scenario 

given knowledge about a similar familiar scenario. 

Currently, applications of visual AR gravitate toward 

analogy-formatted image problems rather than to 

computer vision data sets. The Image Recognition 

Through Analogical Reasoning Algorithm (IRTARA) 

approach described herein shows how AR can be 

leveraged to improve computer vision in OOL 

situations. IRTARA produces a word-based term 

frequency list that characterizes the OOL object of 

interest. To evaluate the quality of the results of 

IRTARA, both quantitative and qualitative assessments 

are used, including a baseline to compare the 

automated methods with human-generated results. 

Fifteen OOL objects were tested using IRTARA, which 

showed consistent results across all three evaluation 

methods on the objects that performed exceptionally 

well or poorly overall. 

1. Introduction 

Culturally, artificial intelligence (AI) is associated 

with computers that can completely mimic human 

thought processes; however, the case in real-world AI 

applications is considerably brittle (McCarthy, 2004). 

The vast majority of today’s AI is classified as “weak,” 

meaning it is limited to the tasks and datasets that the AI 

was originally trained to do (IBM, 2021). When 

considering new data, i.e., unexpected queries from 

outside the original training scope, poor results are often 

the result. However, the ability of AI to evaluate these 

unknown instances is generally termed “out-of-library” 

(OOL), since they are outside the scope of the training 

data (Situ, Friend, Bauer, & Bihl, 2016). Necessarily, 

appropriately handling OOLs is a critical step in the 

direction of “strong” AI, which can provide 

generalization in perception and cognition (IBM, 2021). 

AI is a broad domain and includes many 

applications and methods, including natural language 

processing and computer vision (CV) (McCarthy, 

2004). Due to the rise in popularity of applications such 

as handwriting recognition, depth perception, and 

augmented reality, the ability to accurately identify and 

describe images is of great importance (Google, 2021). 

In this context, OOL handling would be considered 

images of objects the AI has not been previously trained 

on such as explored in zero-shot learning (Socher, 

Ganjoo, Manning, & Ng, 2013). One way to assist the 

transition to “strong” AI for CV is through integrating 

typical CV methods with other popular methods such as 

artificial neural networks. 

The primary research question is how OOL objects 

can be understood by AI without overly 

computationally expensive deep learning methods and 

then, evaluate the success of these proposed methods. 

This paper addresses this question by proposing the 

Image Recognition Through Analogical Reasoning 

Algorithm (IRTARA) methodology which leverages the 

advantages of analogical reasoning in an imaged-based 

OOL scenario. Several metrics were further created to 

assess the quality of IRTARA’s results based on 

automated methods as well as human-based judgment.  

This paper aims to address the following research 

questions: 

RQ1: What is the current state of research on CV, 

analogical reasoning, and their intersection? 

RQ2: How can analogical reasoning be leveraged in an 

OOL-CV scenario via an automated, repeatable 

process? 

RQ1 is addressed through a review of the background of 

CV methods and analogical reasoning algorithms and a 

discussion of their general capabilities (functional and 

algorithmic). Limited prior work exists in the image-

based and image-to-text AR (Lu, Liu, Ichien, & 

Holyoak, 2019) (Sadeghi, Zitnick, & Farhadi, 2015) 

(Doumas & Hummel, 2010) (Reed, Zhang, Yuting, & 

Lee, 2015) (Hwang, Grauman, & Sha, 2013), with the 
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vast majority of literature focusing on text-based AR 

(Gentner, 1983) (Holyoak & Thagard, 1989) 

(Hofstadter & Mitchell, 1995) (Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013)

 (Mikolov, Tomas, Yih, & Zweig, 2013) (Pennington, 

Socher, & Manning, 2014) (Bojanowski, Grave, Joulin, 

& Mikolov, 2017) (Hummel & Holyoak, 1997) (Wilson, 

Halford, Gray, & Phillips, 2001). The former research 

in AR applied to images has been limited to analogy-

formatted data (e.g., A is to B as C is to D), thus this 

paper aims to address RQ2 through the proposed 

IRTARA methodology. Additionally, an analysis of 

IRTARA on classification image data with results and 

their interpretation through qualitative and quantitative 

measures is then presented and followed by conclusions. 

2. Background 

Presently, considerable AI utility has been seen in 

image data through convolutional neural networks 

(CNN), a form of an artificial neural network (see 

(LeCun, et al., 1989);  (He, Zhang, Ren, & Sun, Deep 

residual learning for image recognition, 2016); (Liu, et 

al., 2018)). Even the most advanced deep CNN, unless 

integrated with another process, can only produce 

results that it was pre-trained on and aware of, i.e., not 

OOL objects. One method with proven success in 

extrapolating new information is analogical reasoning 

which has seen limited image-based applications. 

Learning by analogies, as in analogical reasoning, 

is based on using information from the familiar “base” 

and extending this information onto an unfamiliar 

“target” (Gentner & Maravilla, 2018). The success of 

analogical reasoning in solving analogy problems has 

been proven in both the visual/pictorial (Polya, 1990; 

Zhang, Gao, Baoxiong, Zhu, & Song-Chun, 2019) and 

text/verbal space (French, 2002; Rogers, Drozd, & Li, 

2017). Considerable emphasis has been on the 

development of analogical reasoning for text-based 

analogies with many algorithms developed to address 

the wide range of text-based analogy problems (Combs, 

Bihl, Ganapathy, & Staples, 2022). These text-based 

problems range from novel word problems (e.g., 

king:queen::man:woman) to mapping sentence 

elements (e.g., “She is growing like a weed”) to drawing 

parallels between stories (Ichien, Lu, & Holyoak, 2020).  

Initially, analogical reasoning started as 

psychologically-based algorithms (see (Gentner, 1983); 

(Holyoak & Thagard, 1989); (Hofstadter & Mitchell, 

1995)) but recently, with the rise of natural language 

processing, vector space models and artificial neural 

network approaches have increased in popularity 

(Combs, Bihl, Ganapathy, & Staples, 2022).  To date, 

the most prominent vector space models include 

Word2Vec (Mikolov, Sutskever, Chen, Corrado, & 

Dean, 2013; Mikolov, Tomas, Yih, & Zweig, 2013), 

Global Vectors (GloVe) (Pennington, Socher, & 

Manning, 2014), and fastText (Bojanowski, Grave, 

Joulin, & Mikolov, 2017). Within the artificial neural 

network scope, models include Learning and Inference 

with Schemas and Analogies (Hummel & Holyoak, 

1997) and Structured Tensor Analogical Reasoning 2 

(Wilson, Halford, Gray, & Phillips, 2001). A handful of 

these algorithms were selected for an apples-to-apples 

comparison which showed the advantages and 

disadvantages of each (Combs, Bihl, Ganapathy, & 

Staples, 2022).  

The exploitation of these approaches in the image 

space has been limited to simply drawing visual 

analogies rather than applying analogical reasoning as a 

methodology. ANALOGY was arguably the first 

analogical reasoning algorithm that was designed to 

solve geometric analogy problems. The visual 

analogical reasoning space has largely been dominated 

by similar geometric-based problems such as Raven’s 

Progressive Matrices (see (Raven & Court, 1938)). Of 

the remaining visual analogy algorithms, only a handful 

applies analogical reasoning to a CV-like problem. One 

example is the Visalogy, which can solve visual analogy 

problems that would be phrased as “A red car is to a blue 

car as a red bike is to what?” (Sadeghi, Zitnick, & 

Farhadi, 2015). Though successful in its application, 

Visalogy is limited in regards to most analogies centered 

around action, attribute, or repositioning of an object 

(Sadeghi, Zitnick, & Farhadi, 2015). Another visual 

analogy application is demonstrated by utilizing the 

semantic and visual aspects of an image from a visual 

analogy data set to solve A:B::C:D-like problems (Lu, 

Liu, Ichien, & Holyoak, 2019). When evaluating text- 

and image-based AR methods, the former is a very 

thoroughly explored field compared to the latter. 

Challenges the latter faces include significant 

computational resources, additional processing and 

interpretation, and the tendency to be catered to an 

analogy-formatted image data set (meaning where the 

problem(s) to be solved are stated such that “Image A is 

to Image B as Image C is to what?”). A clear gap is the 

lack of image-based analogical reasoning applications 

using a general image data set, but also integrating it 

with a textual analogy to alleviate the computational and 

processing expectations typically associated with CV 

applications. 

 

3. Methodology 

Proposed to remedy this gap is the Image 

Recognition through Analogical Reasoning Algorithm 

(IRTARA), which integrates a CV algorithm that 

outputs declarations based on known classes, and an 

analogical reasoning algorithm that takes these
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Figure 1. IRTARA framework

declarations and searches for the meaning of unknowns. 

In addition to filling a gap for analogical reasoning 

applied to OOL CV scenarios, IRTARA had an 

additional advantage over former image-based methods 

by leveraging the matured text-based analogical 

reasoning application(s). 

In operation, IRTARA operates as conceptualized 

in Figure 2.  As presented in Figure 2, first (1) image 

data is considered through a convolutional neural 

network (CNN) to classify the data, then (2) class name 

word vectors are created, next (3) the application of a 

selected analogical reasoning algorithm occurs with 

knowledge extraction being the result from associations 

with a selected dictionary, and finally, (4) evaluation of 

the results occurs.   

3.1. Image Classification 

In developmental practice, IRTARA involves 

taking an image data set with class labels and training a 

CNN as would typically happen in a CV problem. Later 

this CNN is used on an unknown class of images, which 

can be from the data set (by removing one of the classes 

as such demonstrated later in this application) or which 

can be sourced from an external data set. IRTARA is 

modular and can utilize any CNN architecture that can 

produce probabilities associated with how likely that 

particular unknown class image belongs in the number 

of classes in which it is trained, p. IRTARA is only 

interested in the top-k classes where k can range from 1 

to p. 

 

3.2. Creation of Class Name Word Vectors 

The pre-existing class names are converted into 

their respective word embedding vectors via the 

analogical reasoning algorithm. IRTARA sends the 

class names to the analogical reasoning algorithm, 

which retrieves the pre-trained word embedding 

vectors. In the case where the class name is not within 

the analogical reasoning algorithm’s vocabulary, it may 

need to be altered into a “representative” version that is 

recognizable by the algorithm. These class name word 

vector representations are used with the image 

classification’s class predictions in the next process. 

3.3. Application of Analogical Reasoning & 

Knowledge Extraction 

An “unknown word vector” needs to be created for 

each unknown class image to ideally “represent” the 

unknown class. If the probability of the unknown class 

image belonging to the given class is greater than the 

threshold, α, its word vector representation is retrieved 

(from the immediate previous process), and it influences 

the unknown word vector. The class name word vector 

representation is multiplied by the probability of the 

image belonging  

to that class for the top-k classes if their probability 

is greater than α shown as 

 
Unknown Word Vector = (Class 1 Word 

Embedding Vector) * (Probability of Class 1) + … 
+ (Class k Word Embedding Vector) * (Probability 

of Class k), 

(1) 

 

where the “Class 1 Word Embedding Vector” is a vector 

with 300 dimensions ranging from 0 to 1. For example, 

if the CNN classified the given object as “lightning” 

with a probability of 0.356 and as a “comet” with a 

probability of 0.178, the resulting unknown word vector 

would be calculated as 

 

Example Unknown Word Vector =  
WV[‘lightning’] * 0.36 + WV[‘comet’] * 0.18, 

(2) 

 

where WV is the word vector representation of the given 

word. Given the scenario where Class 1’s probability is 

not greater than α, it will be used as the unknown word 

vector’s only influence. The unknown word vector is 
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sent back to the analogical reasoning algorithm, which 

is tasked with identifying the closest-w words whose 

word embeddings best match the unknown word vector. 

IRTARA is interested in the closest-w words, where w 

can range from one word to the entire vocabulary of the 

VSM, wmax. 
    Given the closest-w words, they are each sent to the 

selected dictionary, which retrieves each word’s 

definition(s). In the case that the word identified by the 

analogical reasoning algorithm does not exist in the 

dictionary’s vocabulary, it is skipped. The definitions 

are then modified to remove any “stop words” (as 

defined per (Bird, Loper, & Klein, 2009)) in addition to 

other words that lacked significant semantic meaning 

which is at the discretion of the experimenter. The 

remaining words, dubbed “definition words,” are 

compiled. Starting with the creation of the unknown 

word vector, this entire process is repeated for each 

image within the unknown class. This yields a large list 

of words, which are filtered down to the top-t words 

based on how frequently they occur. Theoretically, t can 

range from 1 to the total number of unique words 

identified; however, t has a direct relationship with 

computation time. This list of the top-t words is the term 

frequency list and is the final product of IRTARA. 

3.4. Evaluation Process 

Two modeling approaches were implemented to 

predict the quality of the term frequency list, which in 

return were compared with human judgment. The 

definition evaluation automatically identifies words that 

are directly related to the unknown class; whereas, the 

analogical reasoning evaluation automatically detects 

associated words to the unknown class. The goals of the 

definition and analogical reasoning evaluation methods 

are to quantitatively evaluate the term frequency list in 

an automated fashion. The human experiment is to 

provide a qualitative human-created benchmark used to 

determine how closely the automated methods reflect a 

human’s assessment 

 

3.4.1. Definition Method. This evaluation method 

compared the term frequency list to the words found in 

the unknown class’s definition(s). This analysis was 

able to determine directly related words used to describe 

the unknown class. This method utilized two different 

metrics due to many words having multiple meanings.  

To establish a baseline, each unknown class’s 

definition was retrieved from the same dictionary used 

in the previous process. Similar to the definition words 

described earlier, the same stop words and words 

deemed to lack semantic meaning were also unknown 

from each unknown class’s definition(s). The remaining 

words are called “all words” since they are the words 

found in all the definitions for the unknown class. If 

multiple definitions, the true definition is identified and 

the words found within are called “true words.” In the 

case there is only one definition, the all and true word 

lists are identical. 

The term frequency list is compared against the 

unknown class’s true and all words. The “best-case 

scenario” is for the term frequency list to overlap with 

the true words because these accurately describe the 

unknown class. However, the “all words” are also 

considered in case IRTARA can pick up other meanings 

of the unknown class (if applicable). Since each 

unknown class’s definition has varying word length, the 

two metrics from this method are expressed as 

percentages, namely the true word percentage, TW%, 

and the all words percentage, AW%. 

3.4.2. Analogical Reasoning Method. The analogical 

reasoning evaluation method seeks to identify 

associated words to the unknown class that may not 

appear directly in the definition. This evaluation method 

has two metrics looking at the overlap between the term 

frequency list and the unknown class’s primary and 

secondary words as determined by the analogical 

reasoning algorithm. 

Primary words are the top-u words closest to the 

unknown class based on cosine similarity. Furthermore, 

the top-v words closest to the top-u primary words based 

on cosine similarity are considered the number of 

secondary-per-primary words. There can be up to uvmax 

secondary words; however, after excluding word 

variations and duplicates, it is usually less than uvmax.  
The term frequency list ideally overlaps with 

primary words; however, secondary words are also 

related to the unknown class to a lesser degree. The 

metrics that use this information are the percentage of 

primary words, PW%, and the percentage of secondary 

words, SW%, which looks at how many words in the 

term frequency list are also primary or secondary word, 

respectively. 

 

3.4.3. Human Experiment. The final and only non-

automated method looks at how a human judges the 

quality of the term frequency list. The human 

experiment only considers a modified term frequency 

list, which consists of the top-b words of the original 

term frequency list. The human experiment yields two 

metrics: descriptive words, DW, the number of words 

the majority of respondents deems descriptive for an 

unknown class (based on the “binary term assessment” 

portion of the survey), and a quality score, QS, which 

reflects how well the descriptive words describe the 

unknown class (based on the “overall Likert rating” 

portion of the survey). Figure 2 is an example of how 
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the questions for both portions were presented to the 

respondents. 

The Binary Term Assessment determines how 

many of the modified term frequency list words 

“describe” the target word, which is the class man.  

Looking at the example in Figure 2’s Binary Term 

Assessment section, the respondent is presented with the 

target word, “skyscraper,” and words from the modified 

term frequency list. The respondent would go through 

the latter words one-by-one and answer “yes” or “no” to 

whether, “by itself, in combination of another listed 

word or its characteristics, [would the given modified 

term frequency list word] describe or could be 

associated with [the unknown class]?” Returning to the 

example, the respondent would ask the aforementioned 

question for each word “light,” “tower,” etc., and mark 

their respective answers in the column like what’s 

shown in Figure 2. The number of “Yes’s” was 

compiled for each of the b-word(s) and then, the number 

of modified term frequency list words where a majority 

(defined as 50% + 1) of respondents said “Yes” were 

summed as the unknown class’s descriptive words.  This 

process was dubbed the “binary term assessment.” 

 

 
Figure 2. Example survey section 

 

The quality score had the respondents look at the 

descriptive words identified in the previous step and 

give a ranking between 1-5 on a Likert scale regarding 

how well they, as a whole, described the unknown class. 

As shown in Figure 2, the respondents were given a 

slider that could accept values between 1 and 5 

inclusive. This value is averaged across all respondents 

and the standard deviation was also calculated. This 

process was called the “overall Likert rating.”  

4. IRTARA Module and Parameter 

Selection 

IRTARA requires four modules which are the data 

set, CNN, analogical reasoning algorithm, and 

dictionary. Six IRTARA parameters were selected by 

the authors in addition to one determined by the data set 

selected.  

4.1. Module Selection 

“Module” is a term referring to any portion of 

IRTARA that can be replaced with another data set, 

algorithm, or application. Briefly, and described below, 

IRTARA was applied to the Caltech-256 data set 

(Griffin, Holub, & Perona, 2007), IRTARA was 

incorporated with a shallow 11-layer CNN, the GloVe 

(Pennington, Socher, & Manning, 2014) analogical 

reasoning algorithm, and the PyDictionary (Bora, 2020) 

and Lexico (Oxford University Press, 2021) 

dictionaries.  

 

4.1.1. Data Set Selection. Though not explicitly part of 

the process shown in Figure 1, before the running of 

IRTARA, an appropriate data set needed to be selected. 

Ideal characteristics of a data set include 1) variety and 

scope of classes, 2) focus on single objects in an image, 

and 3) availability of baseline results. Based on these 

various needs, Caltech-256 (see (Griffin, Holub, & 

Perona, 2007)) was selected to test this framework based 

on its variety of concrete classes and depth of samples 

per class. Caltech-256 has 257 classes, but for this study, 

the 257th “clutter” class was not considered, leaving 256 

classes. In each iteration tested, the unknown class is 

taken from Caltech-256 classes so it is “known” to the 

experimenter, but “unknown” to IRTARA. This means 

that the CNN is trained on 255 classes, and then attempts 

to classify the remaining “unknown” class accordingly. 

For example, if the unknown class in the first iteration 

is “coffee mug,” the coffee mug images would be set 

aside and the CNN would train on the remaining 255 

classes. In the next iteration, if the unknown class was 

“American flag,” the CNN would train on the remaining 

255 classes, coffee mug included, and then attempt to 

classify the American flag images. Caltech-256 also 

included images of varying sizes and thus all were 

resized within the IRTARA algorithm to 128 x 128 

pixels grayscale images. 

 

4.1.2. Image Classification Method. The CNN is the 

primary concern of the image classification section 

(enumerated process 1) of Figure 1. To avoid 

computational demands required in applying deep CNN 

architectures, a 11-layer CNN that balanced accuracy 

and computational performance were developed for 

IRTARA demonstration purposes. The CNN had the 

following architecture:  

 
128x128-1C128-MP2-16C63-MP2-32C30- MP2-
64C14- MP2-128C6-128N-255N 

(3) 

 

using the Cireşan-CNN-representation from (Bihl, 

Schoenbeck, Steeneck, & Jordan, 2020).  
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When trained on all 256 classes, this architecture 

had an average of 22.5% classification accuracy across 

10 runs (compared to 38% for (Griffin, Holub, & 

Perona, 2007) across 40 runs), where optimizer = 

Adam(), batch_size = 32, epochs = 10, and 

validation_split = 0.1. Despite a CNN with higher 

accuracy, e.g., ResNet (He, Zhang, Ren, & Sun, 2016) 

or VGGNet (Simonyan & Zisserman, 2015), being 

likely to yield better results, such CNNs are 

computationally costly and the algorithm of (3) can be 

rapidly retrained to assess IRTARA. Thus, the 

development and this demonstration of IRTARA 

focused on the whole process and used this simple CNN 

which trained quickly on standard desktop hardware. 

 

4.1.3. Analogical Reasoning Method. To select the 

analogical reasoning algorithm (involved in processes 2, 

3, and 4 of Figure 1), the review of AR algorithms from 

(Combs, Bihl, Ganapathy, & Staples, 2022) was used 

and the following methods were considered: Bayesian 

Analogy with Relational Transformations (BART) 1.0 

(Lu, Chen, & Holyoak, 2012) and 2.0 (Lu, Wu, & 

Holyoak, 2019), 3 Cosine Average (3CosAvg) (Drozd, 

Gladkova, & Matsuoka, 2016), Distributed 

Representation Analogy MApper (DRAMA) (Eliasmith 

& Thagard, 2001), Linear Regression Cosine (LRCos) 

(Drozd, Gladkova, & Matsuoka, 2016), GloVe 

(Pennington, Socher, & Manning, 2014), and 

Word2Vec (Mikolov, Sutskever, Chen, Corrado, & 

Dean, 2013) (Mikolov, Tomas, Yih, & Zweig, 2013). To 

select an AR method for IRTARA, the adjusted 

correctness (based selection of the correct answer) and 

goodness (how close to an “ideal” analogy the correct 

answer is according to the algorithm) (Combs, Bihl, 

Ganapathy, & Staples, 2022). This produced the ranking 

of methods seen in Figure 3. From this process and other 

constraints, GloVe was selected based on that it does not 

utilize analogy relationships, it does use singular-word 

embeddings (as opposed to multi-word phrases), and its 

ease of implementation is visually shown in Figure 3.  

Specifically, the Glove-wiki-gigaword-300 model was 

used, which was pre-trained on 2014 Wikipedia and 

Gigaword 5 textual data to create the word vector for 

400,000 words, each with 300 dimensions (Pennington, 

Socher, & Manning, 2014). In certain cases, GloVe was 

unaware of the original class name, so a substitute 

representation was used. These representations typically 

were a simplification (e.g., “American flag” to “flag”) 

or a merge between two-word vectors representing 

different words (e.g., “baseball bat” to “baseball” & 

“bat”) so as long they would not be confused with 

another class. This verification and revision process 

would need to be repeated whenever different word 

embeddings are used as well as when a different image 

data set is used. 

 

4.1.4. Dictionary. The dictionary is important in 

process 3 of Figure 1, application of analogical 

reasoning and knowledge extraction. The primary 

dictionary used was the external Python library, 

PyDictionary, based on ease of integration with 

IRTARA and standardized definition format. This 

dictionary was used in processes 3 and 4 of Figure 1. 

PyDictionary uses WordNet (see (Princeton University, 

2010)) for its definitions which were created in 1995. 

Considering how language has evolved and changed 

since then, some of the definitions came from an 

alternative dictionary, Lexico, which affected 16 

classes. In addition to using an alternative dictionary, 

some of the definitions were created by simplifying the 

original class name (e.g., “self-propelled lawn mower” 

to “mower”) and merging individual words’ definitions 

(e.g., “cowboy hat”). Like with the GloVe word vector 

representations, the definitions would be verified and 

modified accordingly whenever a new dictionary is used 

and/or a different image data set. 

 

 
Figure 3. AR Justification, from (Combs K. L., 2021) 

4.2. Parameter Selection 

IRTARA requires several parameters to be 

determined before running, which are described and 

shown in Table 1. Only the number of CNN classes, p, 

is dictated outside of the user’s control since it's reliant 

on the input image data set. The remaining parameters 

were selected based on brief, informal experimentation 

on a range of varying values.  
 

Table 1. IRTARA parameters 

Parameter  Val. 

# of CNN classes p 256 

# of top classes per image k 5 

Thres. for influencing unknown word vector α 0.05 

# of closest words per unknown word vector w 5 

# words in the term frequency list t 100 

# of primary words u 20 

# of secondary words v 10 

# of words in the modified term frequency list b 21 
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5. Results 

Fifteen Caltech-256 classes were chosen at random 

to be the unknown class, which yielded a wide range of 

results. Tables 2-5 show the classes and their top 5 term 

frequency words in order of their overall rankings found 

in Table 6 (see (Combs K. L., 2021) for full results). 

Broadly looking at the lists many words repeat across 

lists, which may be due to the dictionary’s tendency to 

frequently use those words in its definitions.  

Each evaluation method yielded two metrics and a 

rank assigned to each class ranging from 1 to 15. In case 

of a tie in rank, the average of the places was used, i.e., 

if two classes were tied for third and fourth place, they 

would both receive a score of 3.5. Each evaluation 

method’s rank contributed equally to the overall rank. 

5.1. Definition Evaluation 

The definition evaluation produced two metrics that 

looked at the percentage of words in the term frequency 

list that also appears “true” definition, TW%, and those 

that appear in any definition of the unknown class, 

AW%. The percentage of true words ranges from 0-

50%; whereas, the percentage of all words range was 

slightly lower, between 0% to 33.3%. The top-three 

performing classes were skyscraper, t-shirt, and 

iguanas. The classes were ordered from highest to 

lowest based on the true words and all words percentage 

and assigned a rank between 1 and 15. An average of 

these rankings was taken, ordered, and ranked again for 

the definition evaluation rank shown in Table 6. 

5.2. Analogical Reasoning Evaluation 

The analogical reasoning evaluation also produced 

two metrics that looked at the percentage of words in the 

term frequency list that also appeared as primary or 

secondary words, PW% and SW%, respectively. 

Around the board, most classes had low scores for both 

metrics; however, the top 3 in both were Mars (15%; 

5.4%), galaxy (15%; 3.8%), and skyscraper (15%; 

2.7%). Similarly, to the definition evaluation rank, there 

was a rank assigned to each class based on its percentage 

of primary and secondary words. An average of these 

ranks was used to order and rank the classes for the 

analogical reasoning rank shown in Table 6. 

5.3. Human Experiment 

These results were derived from a homework 

assignment given to a mix of 25 undergraduate/graduate 

students enrolled in a Midwestern university’s 

introductory human factors engineering class. The class 

consisted of 10 graduate and 15 undergraduate students 

all of whom were pursuing a degree within the 

biomedical, industrial, and human factors engineering 

department. Of the 25 subjects, 7 were male and 18 were 

female. The results reflect a 26th respondent, which are 

the opinions of the first author who was also a female 

graduate student in the department. 

The descriptive words metric (“DW” column in 

Table 6), looking at the number of words at least (50% 

+ 1) respondents thought were relevant, ranged from 4-

18 words (out of 21 total words in the modified term 

frequency list). This metric showed the top classes to be 

galaxy (18), fireworks (14), and iguanas (13). The 

second metric from the human experiment, the quality 

score, QS, ranged from 1 to 5, which was averaged 

across all 26 respondents’ responses. Most of the classes 

are statistically similar to one another, with the 

exception being the galaxy class with a score between 

3.69-5.  

A rank was calculated for both metrics like in the 

previous methods. The quality score rank was based 

only on the average quality score. These rankings were 

averaged and ranked against to calculate the human 

experiment rank for this method.  The top three classes 

saw galaxy rank first followed by the tied classes, 

fireworks and t-shirt.  

5.4. Overall Rank 

The top-three classes, t-shirt, skyscraper, and 

iguanas, consistently scored in the top 50% of the 

rankings for all three evaluation ranks. Whereas, at the 

bottom, floppy disk (11.5), sheet music (13), chandelier 

(14), and AK-47 (15) consistently ranked in the bottom 

50% for all three evaluation methods. The best example 

with varying results is galaxy, which performed poorly 

on the definition evaluation (14), but well on the 

analogical reasoning evaluation (2) and the human 

experiment (1). These results suggest that IRTARA 

performs consistently at the extreme ends, but to a lesser 

extent with mid-range results. Spearman’s rank 

coefficient was calculated for both automated methods 

in comparison with the human experiment. The 

definition-human evaluation yielded a ρ = 0.168 and p-
value = 0.549 and the analogical-reasoning-human 

evaluation yielded a ρ = 0.434 and p-value = 0.082. 

6. Conclusions 

Of significant interest to artificial intelligence (AI) 

research is to accurately interpret and describe out-of-

library (OOL) objects (Situ, Friend, Bauer, & Bihl, 

2016). Analogical reasoning has been proposed to assist 

with this end goal in both textual and visual scenarios; 

however, there has been limited research conducted 
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regarding its application in computer vision (CV) 

problems. This paper describes the Image Recognition 

Through Analogical Reasoning Algorithm (IRTARA), 

which integrates standard image classification methods 

from CV with the semantic meaning and interpretation 

from an analogical reasoning algorithm and dictionary. 

 IRTARA consists of four processes. Image 

classification is the first process that involves training 

the CNN on the p classes and then, running the image 

data from the unknown class through it. The second 

process creates and assigns a word vector representation 

(from the selected analogical reasoning algorithm) to 

each class name within the dataset. The third process 

applies analogical reasoning by creating an unknown 

word vector for each of the unknown class images (by 

taking the top-k predicted class’s word vector 

representation multiplied by the image’s probability of 

belonging in said predicted class if the probability is 

greater than the minimum threshold, α). The analogical 

reasoning algorithm uses the unknown word vector to 

identify the closest-w word vector found within its 

vocabulary. The definition(s) of these words are pulled 

from the selected dictionary and the words with 

semantic meaning are called “definition words.” The 

top-t most frequently occurring definition words for an 

unknown class are compiled in its term frequency list. 

In the final stage of IRTARA, evaluation, the quality of  

the term frequency list was measured through two 

automated methods, the definition and analogical 

reasoning evaluations, to be compared to the results 

from the human experiment. The definition evaluation 

method identifies directly-related words as found in the 

unknown class’s definition; whereas, the analogical 

reasoning considers associated words based on the top-

u primary words and up to the top-uv secondary words. 

The human evaluation exists to create a baseline for how 

a human might judge the term frequency list compared 

to the two automated methods. 

Table 3. Top-5 words of select term frequency lists for fireworks, mars, frog, & rainbow 

Rank 
5. Fireworks  6. Mars  7. Frog  8. Rainbow  

Word Freq Word Freq Word Freq. Word Freq. 

1 Large 81 Brain 263 Large 114 Light 604 

2 Small 54 Skull 227 Body 97 Little 321 

3 Long 54 Nervous 226 Fungi 92 Illumination 299 

4 Cloud 49 Ability 226 Small 80 Fire 242 

5 Light 48 Planet 224 Edible 72 United 219 

 

Table 4. Top-5 words of select term frequency lists for people, Swiss army knife, floppy disk, & waterfall 

Rank 
9. People  10. Swiss Army Knife  11.5. Floppy Disk 11.5. Waterfall 

Word Freq. Word Freq. Word Freq. Word Freq. 

1 Large 186 Small 93 Small 60 Fungi 157 

2 Body 160 Ball 76 Ball 49 Large 133 

3 Ball 148 Instrument 71 Body 48 Fleshy 117 

4 Move 143 Body 71 Long 47 Body 103 

5 Small 138 Device 60 Device 44 Edible 93 

 
Table 5. Top-5 words of select term frequency lists for sheet music, chandelier, & AK-47 

Rank 
13. Sheet Music  14. Chandelier  15. AK-47  

Word Freq. Word Freq. Word Freq. 

1 Small 137 Small 91 Long 67 

2 Rectangular 88 Observe 68 Small 61 

3 Area 86 Person 60 Move 59 

4 Glass 85 Determine 53 Person 48 

5 Box 76 Light 49 Played 42 

Table 2. Top-5 words of select term frequency lists for t-shirt, skyscraper, iguana, & galaxy 

Rank 
1. T-shirt 2. Skyscraper  3. Iguana  4. Galaxy  

Word Freq. Word Freq. Word Freq. Word Freq. 

1 Ball 383 Light 81 Long 118 Planet 153 

2 Light 289 Tower 54 Small 106 Sun 135 

3 Game 270 Small 54 Large 85 Mythology 92 

4 Face 253 Building 49 Coat 65 Th 80 

5 Small 243 Little 48 Genus 61 Small 71 
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To test IRTARA’s methodology, evaluated against 

the Caltech-256 dataset (Griffin, Holub, & Perona, 

2007), with parameters consistent with those found in 

Table 1. Overall, the three evaluation methods show 

consistency with unknown classes that have performed 

on the extreme ends (exceptionally well or poorly). 

Namely, when acting as the unknown class, t-shirt, 

skyscraper, and iguana consistently ranked in the top 

half across all three evaluations. On the other spectrum, 

floppy disk, sheet music, chandelier, and AK-47 

consistently ranked in the bottom half across the 

evaluation methods. However, there was a significant 

amount of ambiguity for those that rank in-between. 

Using the Spearman rank coefficient to compare how 

well the automated methods match the human 

experiment ranks, it was determined that the analogical 

reasoning evaluation ranks had a higher correlation (ρ = 

0.43; p-value = 0.08) compared to the definition 

evaluation ranks (ρ = 0.17; p-value = 0.55). 

7. Acknowledgements 

The views expressed in this paper are those of the 

authors and do not represent the views of any part of the 

US Government. This work was cleared for unlimited 

release under: AFRL-2022-2372. 

8. References 

Bihl, T., Schoenbeck, J., Steeneck, D., & Jordan, J. (2020). 

Easy and efficient hyperparameter optimization to 

address some artificial intelligence “ilities”. Proceedings 
of the 53rd Hawaii international conference on system 

sciences (pp. 943-952).  

Bird, S., Loper, E., & Klein, E. (2009). Natural Language 
Processing with Python. Sebastopol: O'Reilly Media Inc. 

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). 

Enriching word vectors with subword information. 

Transactions of the association for computational 
linguistics, 5, 135-146. 

Bora, P. (2020). PyDictionary 2.0.1. Retrieved from PyPi: 

https://pypi.org/project/PyDictionary/ 

Combs, K. L. (2021). Application of analogical reasoning for 
use in visual knowledge extraction. Wright State 

University. OhioLINK: Electronic Theses and 

Dissertation Center. 

Combs, K., Bihl, T. J., Ganapathy, S., & Staples, D. (2022). 
Analogical reasoning: An algorithm comparison for 

natural language processing. Proceedings of the 55th 

Hawaii International Conference on System Sciences.  

Doumas, L. A., & Hummel, J. E. (2010). A computational 
account of the development of the generalization of shape 

information. Cognitive Science, 34, 698-712. 

Drozd, A., Gladkova, A., & Matsuoka, S. (2016). Word 

embeddings, analogies, and machine learning: Beyond 
king-man+ woman= queen. Proceedings of coling 2016, 

the 26th international conference on computational 

linguistics.  

Eliasmith, C., & Thagard, P. (2001). Integrating structure and 
meaning: A distributed model of analogical mapping. 

Cognitive science, 25(2), 245-286. 

Evans, T. G. (1964). A heuristic program to solve geometric-

analogy problems. Proceedings of the April 21-23, 1964, 
spring joint computer conference.  

French, R. M. (2002). The computational modeling of 

analogy-making. Trends in cognitive science, 6(5), 200-

205. 
Gentner, D. (1983). Structure-mapping: A theoretical 

framework for analogy. Cognitive science, 10(3), 277-

300. 
Gentner, D., & Maravilla, F. (2018). Analogical reasoning. In 

L. J. Ball, & V. A. Thompson, International Handbook 

Table 6. Summary of results 

Unknown Class 

Definition Evaluation 
Analogical Reasoning 

Evaluation 
Human Experiment 

Overall 

Rank 
TW% AW% Rank 

PW

% 
SW% Rank DW 

QS  

(avg ± stdev) 

Ran

k 

Ak-47 0% 0% 14 0% 0% 14 7 2.04 ± 0.77 14.5 15 

Chandelier 0% 0% 14 0% 0% 14 5 2.52 ± 0.95 13 14 

Fireworks 12.5% 12.5% 7 0% 1.7% 9 14 3.62 ± 0.85 2 5 

Floppy Disk 0% 6.7% 11.5 0% 0.9% 11 9 2.81 ± 1.02 10 11.5 

Frog 10% 15% 8 0% 2.4% 6 11 2.92 ± 0.9 7.5 7 

Galaxy 0% 0% 14 15% 3.8% 2 18 4.5 ± 0.81 1 4 

Iguanas 31.3% 31.3% 3 0% 2.1% 7 13 3.15 ± 0.89 4 3 

Mars 23.5% 20.6% 5 15% 5.2% 1 4 2.58 ± 1.14 11 6 

People 0% 16.7% 10 5% 2.2% 4 9 2.69 ± 1.05 7.5 9 

Rainbow 11.1% 9.1% 9 0% 1.8% 8 9 3.42 ± 0.81 5 8 

Sheet Music 0% 6.7% 11.5 0% 1% 10 7 2.08 ± 1.06 15 13 

Skyscraper 50% 50% 1 15% 2.7% 3 8 3.35 ± 0.89 6 2 

Swiss Army Knife 16.7% 16.7% 6 0% 0% 14 9 2.65 ± 0.85 9 10 

T-shirt 40% 33.3% 2 5% 1.5% 5 12 3.27 ± 1.12 3 1 

Waterfall 25% 25% 4 0% 0.8% 12 5 2.27 ± 0.96 12 11.5 

Average 13% 14%  3% 2%  9.24 2.91 ± 0.93   

           

Page 968



of Thinking & Reasoning (pp. 186-203). New York: 
Psychology Press. 

Google. (2021, December). Google Research. Retrieved from 

Perception: https://research.google/teams/perception/ 

Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 
object category dataset.  

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual 

learning for image recognition. Proceedings of the IEEE 

conference on computer vision and pattern recognition 
(pp. 770-778). 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual 

learning for image recognition. Proceedings of the IEEE 

conference on computer vision and pattern recognition.  
Hofstadter, D. R., & Mitchell, M. (1995). The copycat project: 

A model of mental fluidity and analogy-making. 

Advances in connectionist and neural computation 

theory, 2, 205-267. 
Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by 

constraint satisfaction. Cognitive science, 295-355. 

Hummel, J. E., & Holyoak, K. J. (1997). Distributed 

representations of structure: A theory of analogical 
access and mapping. Psychological review, 104(3), 427. 

Hwang, S. J., Grauman, K., & Sha, F. (2013). Analogy-

preserving semantic embedding for visual object 

categorization. Proceedings of the 30th international 
conference on machine learning.  

IBM. (2021, December). What is artificial intelligence (AI)? 

Retrieved from IBM: 

https://www.ibm.com/topics/artificial-intelligence 
Ichien, N., Lu, H., & Holyoak, K. J. (2020). Verbal analogy 

problem sets: An inventory of testing materials. Behavior 

research methods, 52(5), 1803-1816. 

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, 
R. E., Hubbard, W., & Jackel, L. D. (1989). 

Backpropagation applied to handwritten zip code 

recognition. Neural computation, 1(4), 541-551. 

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., 
. . . Murphy, K. (2018). Progressive neural architecture 

search. Proceedings of the European conference on 

computer vision (ECCV) (pp. 19-34).  

Lu, H., Chen, D., & Holyoak, K. J. (2012). Bayesian analogy 
with relational transformations. Psychological review, 

119(3). 

Lu, H., Liu, Q., Ichien, N. Y., & Holyoak, K. J. (2019). Seeing 

the meaning: Vision meets semantics in solving pictorial 
analogy problems. Proceedings of the 41st annual 

conference of the cognitive science society (pp. 1-7).  

Lu, h., Wu, Y. N., & Holyoak, K. J. (2019). Emergence of 

analogy from relation learning. Proceedings of the 
national academy of sciences, 116(10), 4176-4181. 

McCarthy, J. (2004). What is artificial intelligence? Stanford 

University, Computer Science Department.  

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, 
J. (2013). Distributed representations of words and 

phrases and their compositionality. Advances in neural 

information processing systems, 3111-3119. 
Mikolov, Tomas, Yih, W.-t., & Zweig, G. (2013). Linguistic 

regularities in continuous space word representations. 

Proceedings of the 2013 conference of the North 

American chapter of the association for computational 
linguistics: Human language technologies (pp. 746-751).  

Oxford University Press. (2021). Lexico. Retrieved from 
Lexico: https://www.lexico.com/ 

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: 

Global vectors for word representation. Proceedings of 

the 2014 conference on empirical methods in natural 
language processing (EMNLP) (pp. 1532-1543).  

Polya, G. (1990). Mathematics and plausible reasoning: 

Induction and analogy in mathematics (Vol. 1). 

Princeton: Princeton University Press. 
Princeton University. (2010). About WordNet. from 

https://wordnet.princeton.edu/citing-wordnet 

Raven, J. C., & Court, J. H. (1938). Raven's progressive 

matrices. Los Angeles: Western Psychological Services. 
Reed, S. E., Zhang, Y., Yuting, Z., & Lee, H. (2015). Deep 

visual analogy-making. Advances in neural information 

processing systems.  

Rogers, A., Drozd, A., & Li, B. (2017). The (too many) 
problems of analogical reasoning with word vectors. 

Proceedings of the 6th joint conference on lexical and 

computational semantics (* SEM 2017) (pp. 135-148).  

Sadeghi, F., Zitnick, C. L., & Farhadi, A. (2015). Visalogy: 
Answering visual analogy questions. Advances in neural 

information processing systems.  

Simonyan, K., & Zisserman, A. (2015). Very deep 

convolutional networks for large-scale image 
recognition. Proceedings of the third international 

conference on learning representations.  

Situ, J. X., Friend, M. A., Bauer, K. W., & Bihl, T. J. (2016). 

Contextual features and Bayesian belief networks for 
improved synthetic aperture radar. Military operations 

research, 21(1), 89-106. 

Socher, R., Ganjoo, M., Manning, C. D., & Ng, A. (2013). 

Zero-shot learning through cross-modal transfer. 
Advances in neural information processing systems, 26, 

935-943. 

Wilson, W. H., Halford, G. S., Gray, B., & Phillips, S. (2001). 

The STAR-2 model for mapping hierarchically 
structured analogs. In D. Gentner, K. J. Holyoak, & B. N. 

Kokinov, The analogical mind (pp. 125-160). 

Cambridge: MIT Press. 

Zhang, C., Gao, F., Baoxiong, J., Zhu, Y., & Song-Chun, Z. 
(2019). RAVEN: A dataset for relational and analogical 

visual reasoning. Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition 

(pp. 5317-5327).  

 

Page 969


