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Abstract

This paper proposes a hierarchical model for
determining the energy flexibility offering strategy of
integrated hybrid resources (IHRs) in power distribution
systems to participate in real-time energy markets. The
proposed model utilizes the scalability, fast response
time, and uncertainty observation of deep reinforcement
learning (DRL) to overcome the scalability issue of
operating numerous flexible resources and deliverability
of energy flexibility to the real-time markets in the
presence of the network constraints. To that end, the
power distribution system is divided into multiple IHRs,
where different types of flexible loads, energy storage
systems, and solar plants with controllable inverters are
operated through local IHR controllers, trained by deep
deterministic policy gradient (DDPG) algorithm. Active
power request and reactive power capacity of IHRs
are then transmitted to a central flexibility controller,
where a quadratic optimization model ensures the
deliverability of the energy flexibility to the real-time
energy market by satisfying the distribution network
constraints. The proposed model is implemented on the
123-bus test power distribution system, demonstrating
the capability of DRL-based hierarchical model for
scalable operation of IHRs in order to offer deliverable
energy flexibility to the real-time energy market.

1. Introduction

Federal Energy Regulatory Commission (FERC)
order no. 2222 has provided an unprecedented
opportunity for distributed energy resources (DERs)
to participate and provide services in the wholesale
electricity markets [1]. Integrated hybrid resource (IHR)
offers an economic and salable structure for aggregating
and coordinating the operation of a large group of DERs
to provide the services in the wholesale markets [2–4].
IHRs can facilitate local energy management in power
distribution systems to serve load, while supplying
the distributed energy flexibility at scale to the energy

markets without compromising the operational privacy
of DERs and flexible loads [2]. In addition, IHRs
can increase the efficiency in control and dispatch of
DERs and flexible loads, while reducing the complexity
in power distribution system operation integrated with
large number of flexibility resources [5].

1.1. Scope and Literature Review

The technical literature includes multiple studies for
energy and flexibility management of hybrid resources
in power distribution systems. Application of hybrid
energy systems consisting of co-generation systems and
renewable generation units for congestion management
in power distribution systems is studied in [6]. A
multi-stage robust optimization model is presented
in [7] to assess the role of energy storage systems
(ESS) in mitigating renewable generation uncertainty in
power distribution systems. Coordinated operation of
flexibility resources (i.e., flexible loads, inverter-based
solar plants) to provide distributed energy flexibility and
regulation capacity in power system is studied in [8, 9].
A local energy market framework in developed in [10] to
facilitate energy management of DERs and local energy
trading in power distribution systems.

In addition, data-driven methods have been utilized
for energy flexibility management of DERs in power
system operation. Application of deep reinforcement
learning (DRL) for energy management and control
of DERs and building loads is studied in [11]. DRL
is implemented in a solar-electric vehicle (EV) hybrid
energy system in [12] to control charging services of
EV, thereby increasing the self-consumption of solar
generation. The authors in [13] developed a cooperative
framework based on DRL for energy management of
EV charging stations integrated with solar plants and
ESS. DRL-based models are developed to enable control
and local energy trading of different sorts of DERs in
[14, 15]. The authors in [16] developed a DRL-based
model for local control and dispatch of DERs to
improve resilient operation of the power distribution
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system. The application of DRL for feasible control
and management of DERs in the power distribution
system is investigated through an analytical approach
in [17]. A DRL-based hierarchical framework is
proposed in [18] for resilient operation of IHRs in power
distribution systems. The authors in [19] developed a
data-driven flexibility design for aggregation of flexible
loads, respecting their uncertainties and non-convexity
in modeling their operation.

As discussed in [6]–[10], most of the existing
energy flexibility management models in literature are
developed based on centralized optimization-based
solution approaches. However, with large-scale
integration of DERs with different operational
technologies and integration of numerous EV
charging stations, the computational efficiency of these
approaches to model the distributed energy flexibility
and ensure its deliverability to energy markets is still
challenging. Moreover, energy flexibility management
under the unpredictable behaviour of DERs, such as
EVs and solar plants in real-time operation requires
scalable data-driven approaches to efficiently learn
and decide on the energy control and dispatch of
flexibility resources within the IHR. Data-driven
and learning-based approaches are more compatible
with the distributed operation of distribution systems
than optimization-based approaches. Running an
optimization-based operational algorithm requires a
processing power that might not be readily available
anywhere outside the substations. Learning-based
operational models, on the other hand, only require
a trained regressor or neural network with fixed
weights and biases, which can be implemented on
field-programmable gate arrays and placed anywhere
on pole-mounted control boxes without requiring a
separate processing unit, as implemented in [20, 21].
Although some studies in literature considered
implementation of data-driven approaches for energy
flexibility management of DERs, power distribution
network model in these studies is not taken into account,
thus challenging the deliverability of the flexibility to
the electricity market.

1.2. Contributions

This paper proposes a novel hierarchical model
for determining the offering strategy of IHRs in
distribution systems to participate in the upstream
real-time energy market. The structure of proposed
hierarchical model is illustrated in Fig. 1, where
the distribution system consists of multiple IHRs that
integrate flexible and inflexible loads, ESS and solar
plants, which are managed and controlled by the IHR
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Figure 1. Hierarchical model for determining the

energy flexibility offering strategy of integrated hybrid

resources.

Flexibility Controller (IFC). The IFC utilizes a DRL
model to dispatch flexible loads, ESS and solar plants
and offer the aggregated deliverable energy flexibility to
the Central Flexibility Controller (CFC). The deliverable
energy flexibility of IHR is defined as the difference
of net active power consumption of the IHR with
and without controlling the flexibility resources. A
queuing model is adopted to model the aggregated
energy flexibility of flexible loads, such as EVs, subject
to their quality of service constraints. In addition to
the energy flexibility, the IFC determines the physical
bounds of net reactive power capacities of the IHR. Once
these data are determined by the local IFCs, the CFC
performs an optimal power flow model to adjust the net
active and reactive power consumption of the distributed
IHRs and offer the deliverable energy flexibility to
the real-time energy market such that the technical
constraints of power distribution system are satisfied.
The hierarchical model is implemented on the IEEE
123-bus test distribution system, modified by adding
multiple solar plants, ESS and flexible loads, using the
5-minute real-time market price, solar generation and
load data of California Independent System Operator
(CAISO) and the results are presented and discussed
to verify the performance of the proposed model in
ensuring deliverable energy flexibility to the market.

The rest of this paper is categorized as follows:
the hierarchical model for offering deliverable energy
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flexibility of IHRs into the real-time energy market is
formulated in Section 2. The solution approach for the
local controllers based on DRL is presented in Section
3. Simulation results are presented in Section 4 to test
and validate the efficiency of the proposed model, and
the paper is concluded in Section 5.

2. Problem Formulation

The hierarchical model for determining the energy
flexibility offering strategy of IHRs is mathematically
formulated in this section. The proposed hierarchical
model includes a feeder-level IFC that utilizes DRL
to maximize the revenue from offering the IHR’s
energy flexibility, and a distribution-level CFC that
aggregates all the IHRs energy flexibility and ensures
its deliverability to the real-time energy market, as
shown in Fig. 2. The IFC uses DRL to learn the
behavior of flexible loads (e.g., EV charging), as well
as uncertainties of renewable generation, and once
trained, generates fast and scalable control signals for
numerous resources. Once the net active power in
each IHR is determined, the available capacity for
generating reactive power is also determined and sent
to the central controller. The CFC receives these signals
from IFCs, and runs a distribution-level optimal power
flow model, where each IHR is treated as a single
bus with a net active power and a capacity range for
generating reactive power. The CFC determines the
required reactive power in each IHR, to maintain voltage
within the desired limits throughout the network. This
architecture requires that voltage variation within each
IHR be limited to a small δ as:

|Vit − Vjt| < δ, ∀t,∀i, j,∈ Iz,∀z ∈ Z, (1)

where Z is the set of all IHRs and i, j,∈ Iz represent
any pair of buses in IHR z ∈ Z . The CFC may
also curtail the net active power requested by each IFC
to meet distribution system constraints. In the last
operational step, CFC sends the adjusted net active and
reactive powers to each IFC, which accordingly adjusts
the power setpoints of individual DERs. The operation
of IFC and CFC, and the mathematical problem that
must be solved for each of them is explained next.

2.1. IHR Flexibility Controller

The objective of IFC is to maximize the revenue
gained from offering the IHR energy flexibility to the
CFC, as formulated in (2):

max
∑
t∈T

(λNF
t pNF

z,t − λF
t p

F
z,t), (2)
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Figure 2. Hierarchical IHR energy flexibility control

using IFC and CFC.

where λF
t and λNF

t are the incentive-based and fixed
electricity tariffs, and pFz,t and pNF

z,t are net IHR active
power demand with and without offering flexibility at
time t ∈ T , and are obtained by the active power
balance constraints in the IHR:

pNF
z,t = pDz,t −

∑
i∈Mz

pPV
i,t , ∀t, (3a)

pFz,t=pDz,t−
∑

i∈Mz

pPV
i,t +

∑
i∈Ez

(pCH
i,t −pDCH

i,t )+
∑
i∈Cz

pLF
i,t ,∀t,

(3b)

where pDz,t denotes the inflexible load, pLF
i,t represents

flexible load, pPV
i,t denotes active power output of solar

plants, and pCH
i,t /pDCH

i,t shows the charge/discharge
power of ESS in IHR z. In (3), the IHR can offer energy
flexibility by curtailing its solar generation, charging/
discharging its ESS, or shifting its flexible loads.

The operation of solar plants equipped with
controllable inverters is modeled in (4a)-(4c):

pPV
i,t

2
+ qPV

i,t

2 ≤ S
PV

i

2
, ∀i ∈ Mz,∀t, (4a)

0 ≤ pPV
i,t ≤ pPV

i , ∀i ∈ Mz,∀t, (4b)

pfPV

i
≤

pPV
i,t√

pPV
i,t + qPV

i,t

, ∀i ∈ Mz,∀t, (4c)
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where the apparent power of the solar plants is
constrained to the nominal apparent power of the

inverter S
PV

i in (4a), in which qPV
i,t denotes the reactive

power output of solar plants. Active power supplied by
the solar plants to the IHR operation is constrained to
its maximum limit pPV

i in (4b) and the power factor of
solar plants is ensured to be greater than the minimum
acceptable power factor pfPV

i
in (4c).

The next set of equations represents the operational
constraints of ESS in IHRs:

Ei,t=Ei,t−1+ηCpCH
t,i −

pDCH
i,t

ηD
,∀i ∈ Ez,∀t>1, (5a)

Ei,t = Eini
i , ∀i ∈ Ez, t = 1, (5b)

Ei ≤ Ei,t ≤ Ei, ∀i ∈ Ez,∀t (5c)

0 ≤ pCH
i,t ≤ ICH

i,t pCH
i , ∀i ∈ Ez,∀t, (5d)

0 ≤ pDCH
i,t ≤ IDCH

i,t pDCH
i , ∀i ∈ Ez,∀t, (5e)

ICH
i,t + IDCH

i,t ≤ 1, ∀i ∈ Ez,∀t, (5f)

(pCH
i,t − pDCH

i,t )2 + qEi,t
2 ≤ sEi

2
, ∀i ∈ Ez,∀t. (5g)

The evolution of the state of charge for ESS is
presented in (5a) and the initial energy of ESS is
defined in (5b), where Ei,t and Eini

i are the stored
energy and the initial energy of ESS, and ηC/ηDCH

represent the charging/discharging efficiencies of ESS.
Stored energy in ESS is confined to the minimum
and maximum limits Ei, Ei in (5c) and charge
and discharge power of ESS are constrained to their
respective minimum and maximum limits pCH

i , pDCH
i

in (5d)-(5e). Simultaneous charge and discharge of ESS
is avoided by the auxiliary variables ICH

i,t , IDCH
i,t in (5f).

The ESS apparent power is constrained to the nominal
capacity sEi in (5g), where qEi,t is the ESS reactive power.

A queuing model is adopted from [8] and presented
in (6) to model the aggregate energy flexibility of
shiftable loads, which is particularly ideal for modeling
the charging flexibility of a fleet of EVs with specific
time limitations and energy demands.

QF
i,t = QF

i,t−1 +ALF
i,t − pLF

i,t , ∀i ∈ Cz,∀t > 1, (6a)

QF
i,t = Qini,F

i , ∀i ∈ Cz, t = 1, (6b)

0 ≤ pLF
i,t ≤ pLF

i , ∀i ∈ Cz,∀t, (6c)

QF
i,t = 0, ∀i ∈ Cz, t = tDi . (6d)

The queuing model in (6a) states that the queue
backlog at each time QF

i,t equals to the unsupplied load

at the previous time QF
i,t−1 plus the submitted load

request AF
i,t minus the delivered power at each time pFi,t.

Initial queue backlog value is defined in (6b) and the
delivered power to the loads is limited to its maximum
limit pLF

i in (6c). A deadline-based policy is imposed
(6d) to ensure that all the load request of flexible loads
is supplied by their respective deadline tDi .

The net IHR active power is determined by solving
(2) subject to constraints (3)-(6). Note that each
IHR may contain hundreds of DERs and flexible
loads; solving such integer problem using mathematical
optimization over a time horizon and for multiple
uncertainty scenarios can be time-consuming and even
intractable. This issue is resolved using DRL-trained
IFCs that can make continuous or discrete decisions
within milliseconds. Details regarding the DRL
approach is explained in details in Section 3. Once
the IHR operation problem is solved and the net active
power in the IHR is determined, the minimum and
maximum reactive power capacities of IHR, qF

z,t
and

qFz,t, are obtained through (7):

pEi = max(pCH
i , pDCH

i ), ∀i, (7a)

qE
i
=−

√
sEi

2 − pEi
2
, qEi =

√
sEi

2 − pEi
2
,∀i, (7b)

qPV
i

=−
√

sPV
i

2−pPV
i

2
, qPV

i =

√
sPV
i

2−pPV
i

2
,∀i, (7c)

qFz,t=qDz,t+
∑
i∈Cz

qLF
i,t −

∑
i∈Ez

qE
i
−
∑

i∈Mz

qPV
i

,∀z,∀t, (7d)

qF
z,t

=qDz,t+
∑
i∈Cz

qLF
i,t −

∑
i∈Ez

qEi −
∑

i∈Mz

qPV
i ,∀z,∀t. (7e)

In (7a)-(7e), pEi is the maximum active power of
ESS, qE

i
,qEi are the minimum and maximum reactive

power output of ESS, qPV
i

,qPV
i are the minimum

and maximum reactive power output of solar plants,
and qDz,t,q

LF
i,t are the reactive power consumption of

inflexible and flexible loads.

2.2. Central Flexibility Controller

The IHRs are represented in CFC as single
buses characterized by a requested active power
consumption, and minimum and maximum reactive
power capacities. The CFC model is formulated as a
quadratic optimization problem, where the objective is
to maximize the revenue of offering deliverable energy
flexibility to the real-time energy market, while the
non-flexible power demand is met. The CFC objective
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function is formulated as:

max
∑
t∈T

(PG,0
t − PG,F

t )λRT
t −

∑
t∈T

∑
z∈Z

pCz,tλ
C , (8)

where PG,0
t and PG,F

t are the active power consumption
of the distribution system with and without flexible
IHRs, λRT

t is the real-time market price, and pCt,z is
the active load request curtailment with the unit cost
of λC . Any positive/negative value for (PG,0

t −PG,F
t )

represents the reduction/increase in the active power
consumption of the distribution system with introducing
the operational energy flexibility in IHRs. The CFC
maximizes its objective, subject to the power flow
constraints of the distribution network, to ensure the
deliverability of the energy flexibility offered to the
market. However, since IHRs are treated as single
buses, the CFC problem is much smaller and faster
than running a large-scale optimization problem for
the whole network including all DER and flexible
loads. The CFC problem constraints are formulated in
(9a)-(9i):

PG,F
t =

∑
1z∈L

P1z,t + g1V
SQ
1,t , ∀t, (9a)

QG,F
t =

∑
1z∈L

Q1z,t + b1V
SQ
1,t , ∀t, (9b)

Pzz′′,t+ pFz,t − pCz,t =∑
z′z∈L

(
Pz′z,t− rz′zI

SQ
z′z,t

)
+ gzV

SQ
z,t ,∀z ∈ B,∀t, (9c)

Qzz′′,t+ qFz,t=∑
z′z∈L

(
Qz′z,t− xz′zI

SQ
z′z,t

)
+ bzV

SQ
z,t ,∀z ∈ B,∀t, (9d)

qF
z,t

≤ qFz,t ≤ qFz,t,∀z,∀t, (9e)

V SQ
z,t − V SQ

z′,t = −2 (rz′zPz′z,t + xz′zQz′z,t)

+
(
r2z′z + x2

z′z

)
ISQ
z′z,t, ∀(z′z) ∈ L,∀t, (9f)

V SQ
z ≤ V SQ

z,t ≤ V
SQ

z , ∀z ∈ B,∀t, (9g)

ISQ
z′z,t ≤ I

SQ

z′z,t, ∀(z′z) ∈ L,∀t, (9h)

V SQ
z,t ISQ

z′z,t ≥ P 2
z′z,t +Q2

z′z,t, ∀(z′z) ∈ L,∀t. (9i)

The active and reactive power balance constraints for
the slack bus in the distribution system are presented in
(9a)-(9b), where P1z,t, Q1z,t are the active and reactive

power flows from substation bus to the bus z, V SQ
1,t is the

squared voltage on the substation bus, g1,b1 are the shunt

conductance and susceptance at the substation bus and L
is the set of lines in the distribution system. The energy
balance constraints for the feeder buses are presented
in (9c)-(9d), where Pzz′′,t, Pz′z,t and Qzz′′,t, Qz′z,t

are respectively the active and reactive power flows in
lines zz′′ and z′z, V SQ

z,t is the squared voltage on bus

z, ISQ
z′z,t is the squared current flow in line z′z, and

rz′z , xz′z are the resistance and reactance of the line z′z
and gz , bz are the shunt conductance and susceptance
at the bus z. The reactive power consumption of
IHRs qFz,t is adjusted in (9e) and the voltage drop on
distribution buses is modeled in (9f). The voltage
level constraints on distribution buses is presented in
(9g) and current flow limit is expressed in (9h), where

V SQ
z , V

SQ

z are the minimum and maximum squared

voltage limits and I
SQ

z′z,t is the squared current flow
limit. Finally, the complex power flow in the distribution
system is constrained in (9i). Solving this problem
results in the maximum revenue of the distribution
system from offering energy flexibility to the real-time
energy market; it also provides the exact reactive power
setpoint and adjusted active power setpoint for each
IHR. The final result of the hierarchical operation is
(PG,0

t −PG,F
t ), which shows the amount of deliverable

energy flexibility to the real-time energy market.

2.3. Revising IFC setpoints

The CFC sends two signals, (pFz,t − pCz,t) and qFz,t,
back to each IFC, so they adjust power generation and
consumption in their own IHR. If pCz,t is zero, i.e.,
the originally requested power by IFC is validated by
CFC, no changes will be made in active power setpoint.
However, if some of the requested active power is
curtailed (pCz,t > 0), then individual local loads are
curtailed starting from ESS, and then flexible loads, and
finally non-flexible loads. For reactive power dispatch,
the IFC divides the qFz,t signal received from CFC among
available DER, including solar plants and ESS, based on
their reactive generation capacity. The reactive power
dispatch of DER units within IHR z are given by:

q̂DER
i,t = (−qFz,t + qDz,t +

∑
i∈Cz

qLF
i,t )×

qDER
i,t∑

i′∈Iz
qDER
i′,t

,

∀i ∈ Iz,∀t, (10)

where q̂DER
i,t = {q̂PV

i,t , q̂Ei,t} is the adjusted reactive
power for solar plants and ESS.
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3. Using Deep Reinforcement Learning
for Training IFCs

In this section, a DRL-based IFC is proposed that
is trained on historical behavior of flexible loads and
renewable generation, and once trained, can generate
fast and scalable control signals for numerous active
elements. In order to use DRL, first the IHR energy
flexibility control problem is formulated as a Markov
Decision Process (MDP), described next.

3.1. Formulating the IHR energy flexibility
control as a Markov Decision Process

An MDP is a sequential optimization problem
consisting of multiple states and a range of possible
actions to take in each state. Taking a certain action in
a certain state results in a reward (or cost) and transition
to another state, which is determined by a transition
probability matrix. The operation of IFC is formulated
as an MDP by defining the following:

State: A system state denoted by s ∈ S is a set
of system parameters that affect decision-making. In
this particular problem, state parameters include time
coordinates (day of the year, day of the week, and time
of the day represented by dyt , d

w
t and ht, respectively),

current energy reserve of all ESS within the IHR,
available renewable power, non-flexible demands, the
queue backlog for flexible loads, their deadlines, and
real-time and forecasted energy price:

st = (dyt , d
w
t , ht,Et,p

PV
t , pDt ,Qt, t

D, λF , λ̃F ), (11)

where (̃.) denotes the average predicted values for the
next 24 hours, and vectors are shown by bold letters.
For instance, Et = [Eit, ∀i ∈ Iz] represents the energy
reserve of all ESS within the IHR.

Actions: Actions denoted by at ∈ A are
operational decisions for scheduling energy flexibility
and dispatching DER units, and are defined by:

at = (pPV
t ,pCH

t − pDCH
t ,pLF

t ), (12)

where each element of at is a vector of actions for a
certain type of DER or flexible load in the IHR.

Reward function: Defined as R : S × A → R, is
the reward due to making operation action at in system
state st. The reward function helps DRL find the desired
sequence of actions, and should be defined carefully.
In the current problem, it is defined based on the IFC
objective in (2), but with added terms to help DRL
converge faster and search for action trajectories more
efficiently:

Rt = R(st, at) =

(λ̃F
t − λF

t )
(
c1

∑
i∈Ez

(pCH
it − pDCH

it ) + c2
∑
i∈Cz

pLF
it

)
+ c3

∑
i∈Mz

(pPV
it − pPV

it )

+ c4
∑
i∈Cz

pLF
i,t

( QF
i,t

tD − t

)
− c5∥at∥, (13)

where ESS are rewarded for charging when the real-time
energy price is below average forecast price, and for
discharging otherwise. Similarly, flexible loads are
encouraged to shift to low-price periods. In the second
term, solar plants are rewarded for producing power at
full available power. Further, to encourage the DRL
algorithm to meet the deadline of flexible loads, another
term is added in the last line, which rewards supplying
flexible loads if the accumulated queue (QF

i,t) is large

and the remaining time to deadline (tD − t) is short. A
regularization term is also added to the reward function
to avoid unnecessary large action.

Transition function: Defined as P : S × A × S →
[0, 1] is a transition probability matrix that specifies
the probability of reaching a new state st+1, given
the current state st and the taken action at. It is
hard to obtain the transition function as the change of
state parameters are uncertain and hence their prediction
might not be exact. DRL algorithms do not explicitly
use this function, but learn it implicitly through
voluminous observations of historical or simulated
transitions between states.

Using this MDP formulation can maximize the
long-term revenue of IHR from offering energy
flexibility to the CFC. To that end, instead of (2), the
following objective function is maximized:

max
π

Es,a∼P

[ ∞∑
t=1

γt[R(st, at)]

∣∣∣∣s0 = s

]
, (14)

where future rewards are discounted by γ ∈ [0, 1], and
the expectation E is over transition probability matrix P .
In (14), π is the action policy and π(s) = a.

3.2. Training IFC Using Deep Deterministic
Policy Gradient (DDPG)

The DDPG algorithm is used here to train the IFC.
DDPG is an actor-critic DRL algorithm, which means
it makes decisions by training two separate deep neural
networks: a critic network that evaluates the long-term
reward of available actions, and an actor network that
estimates the action value with the highest long-term
reward. The long-term value of action at in state st
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is estimated by Q(st, at), or the Q-value, which is
recursively calculated by the Bellman equation:

Q(st, at) = Rt + γE
[

max
at+1∈At+1

Q(st+1, at+1)
]
. (15)

The Q-value of each action is estimated by the critic
network as Q(st, at; θ

Q), where θQ is the critic’s weight
vector. The actor network estimates the optimal action
vector for each system state as at = µ(st; θ

µ). With
properly trained networks, (15) is re-written as:

Q(st, at) ≈ Rt + γE
[
Q(st+1, µ(st+1; θ

µ); θQ)
]
. (16)

The DRL training starts by observing a system state
st, followed by the actor network taking action at =
µ(st; θ

µ), resulting in the next state st+1 in the power
system. For better exploration of the action space
and also to avoid overfitting, a random perturbation,
typically in the form of a Ornstein-Uhlenbeck process, is
added to at during the training process, resulting in at =
µ(st; θ

µ) + Nt. Also, the resulting action vector at =

(pPV
t ,pch

t − pdch
t ,pL,F

t ) must not violate constraints
(3)-(6). More specifically, the solar generation must
be contained within available solar power, and ESS
charging and discharging must meet the maximum and
minimum energy thresholds of ESS. To that end, the
elements of at are modified as follows:

p̂PV
it = min{pPV

it , pPV
it }, ∀i ∈ Mz, (17a)

p̂chi,t = min{pchi,t,
Ei − Ei,t−1

ηc
}, ∀i ∈ Ez, (17b)

p̂dchi,t = max{pdchi,t , ηd(Ei,t−1 − Ei)}, ∀i ∈ Ez. (17c)

In every step of DDPG algorithm, st, at, st+1, and
the resulting reward Rt are observed and stored in a
replay memory shown by U . Then, a random sample
from the last B observation is taken from U and
a training iteration is run for the critic network by
minimizing the following loss function:

L(θQ) = E
[(
Q(st, at; θ

Q)− y
)2]

, (18a)

y = Rt +Q(st+1, at+1; θ
Q). (18b)

Also, the following loss gradient, obtained by the
gradient chain rule, is used in the actor network to
update the weights:

∇θµL(θµ) = E
[
∇aQ(st, µ(st; θ

µ); θQ).∇θµµ(st; θ
µ)
]
.

(19)

3.3. Enhancing the Scalability of DRL

In the standard DRL, the collective action in (12)
should be taken simultaneously for all DERs and
flexible loads. Assuming the size of the action vector
is ND and the action space for each of them is
An, n ∈ {1, ..., ND}, the cardinality of the collective
action is

∏
n An, which is directly proportional to

the number of required Q-value calculations in DRL
training. Therefore, making decisions for numerous
elements can be computationally expensive and result
in an inefficient training process. Instead, one can
break down the action space into ND single actions
and create intermediate system states after taking each
action. That would create ND − 1 intermediate states
as (st, a

1
t ), (st, a

1
t , a

2
t ), ..., (st, a

1
t , ..., a

ND−1
t ). In this

technique, also known as multi-agent rollout, actions
are taken sequentially rather than collectively, and the
decision for the dispatch of each DER unit is taken
after the decision of its predecessor units are determined.
This reformulation reduces the complexity of Q-value
computation from

∏
n |An| to

∑
n |An|. The reward

function is also modified accordingly to reflect the
reward of taking each individual action. For instance,
the reward of taking an action for the energy storage on
bus i is given by:

R(st, at)=(λ̃F
t − λF

t )(p
CH
it − pDCH

it ) +m∥at∥. (20)

4. Numerical Study

In this section, the proposed hierarchical model for
determining the energy flexibility offering strategy of
IHRs is tested on the IEEE 123-bus test distribution
system, modified by adding multiple solar plants, ESS,
and flexible loads. The test system is then divided into
6 IHRs such that (1) is satisfied in each of them in
any loading conditions. Each IHR Consists of flexible
and non-flexible loads, and DERs (i.e., ESS and solar
plants), as shown in Fig. 3. Increasing the number of
IHRs leads to more local control points for the CFC,
hence improving the performance of the hierarchical
model in satisfying the network constraints.

Combination of flexible loads with DERs a is key
point in flexible operation of the IHRs and disregarding
each one of these sources affects the IHRs potential to
provide energy flexibility into the distribution system
operation. Characteristics of the DERs and EV charging
stations within each IHR in the proposed study is
listed in Table 1. As shown in the table, each IHR
contains a charging station with 50 charging plugs,
with maximum power rating of 6.6 kW. The 5-minute
real-time market price, solar generation and load data
of CAISO from 01/01/2021 to 12/28/2021 are used
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Table 1. Properties of DERs and EV charging stations within each IHR

Max. inflexible ESS energy ESS power Max. solar Number of
load (kW) capacity (kWh) rate (kW) generation (kW) EV chargers

IHR 1 400 350 70 70 50
IHR 2 360 300 60 60 50
IHR 3 715 650 130 130 50
IHR 4 830 750 150 150 50
IHR 5 745 250 50 50 50
IHR 6 320 600 120 120 50

Table 2. Total revenues of each IHR in $ from offering energy flexibility to the CFC

IHR 1 IHR 2 IHR 3 IHR 4 IHR 5 IHR 6 Total
DRL-trained model 4602.5 4691.2 4939.2 6014.1 4221.3 4387.7 28856.0
Greedy model 2205.5 2227.1 1977.8 2133.8 2412.0 2149.6 13105.9
Non-flexible model 2046.7 2141.4 1810.0 2011.2 2340.5 1963.4 12313.2
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Figure 3. Modified 123-bus test system with DERs

and EV charging stations, divided into 6 IHRs.

for training the DDPG algorithm [22]. The fixed
electricity tariff is considered to be 8.8 (cent/kWh) and
the incentive-based electricity tariff is assumed to be
1.5 times the real-time market price. EV charging
load is considered as flexible loads, characterized by
specific arrival times and departures (deadline), and
energy demands. In order to consider the uncertainty
of EV owners behaviour within the training of IFCs,
the arrival time for each EV is selected randomly during
the day. The time between arrival and departure is then
sampled from a normal distribution with µ = 4hr, σ =
2hr. The maximum energy demand during this period
is eEV = (departure - arrival) × 6.6kW. The actual
energy demand is randomly sampled from the uniform
distribution eEV ∼ U [0, eEV ]. The arrival time and
maximum duration of charging for 50 EVs in IHR 1 is
shown for a sample day in Fig. 4; also Fig. 5 depicts the
energy demand of EVs for the same day.
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Figure 4. Synthesized arrival and departure times for

charging for a fleet of 50 EVs in IHR 1 over a 24-hour

period (288 5-min intervals).
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Figure 5. Synthesized charging demand in kWh for a

fleet of 50 EVs in IHR 1 over a 24-hour period.

The MDP formulation of the problem, as explained
in Section 3, is implemented using Gym toolkit, which
allows for defining episode restart and step through
functions. DDPG algorithm is then implemented using
Keras package in Python. For both actor and critic
networks, a feed-forward neural network is designed
with two hidden layers, each containing 50 neurons and
followed by ReLU activation function. Other DDPG
parameters are tuned through cross-validation and set as
follows: γ = 0.99, replay memory size B = 400, and
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learning rate = 0.001. The coefficients of the reward
function (13) are: c1 = 1.5, c2 = 10, c3 = 1.5, c4 =
0.5, c5 = 0.1. For training and testing the DRL-based
IFC, the collected data, including annual profiles of
price, load, and solar generation, as well as synthesized
EV data, are divided int [0.8,0.2] for training and testing.

Separate IFCs are trained for each IHR and are tested
on the test portion of the data. Table 2 shows the total
revenue of each IHR from offering energy flexibility to
the CFC, and compares the results with the greedy and
non-flexible methods, indicating the superiority of the
proposed DRL-trained model. In the greedy method,
DERs generate or discharge active power as long as they
can, and EVs charge their batteries immediately after
arrival. To showcase the impact of incentive-based tariff
on the energy flexibility, Fig. 6 shows how the flexibility
of EVs is utilized in different times of a sample 24-hour
period (288 5-min intervals). At each time, if loads
are shifted from that time to other times, the energy
flexibility is positive and it is negative otherwise. In Fig.
6, most positive energy flexibility is taken during the
peak price period between intervals 90 and 150. Note
that due to time constraints of EV charging, the energy
flexibility profile cannot exactly match the price profile,
but it follows it closely for the most part.

The scheduled EV charging demand is shown in Fig.
7, which shows how the peak EV charging demand
between intervals 100 and 160 is shifted to intervals
180 and later, to avoid charging during the peak energy
tariffs. Similar results are shown in Fig. 8 for energy
flexibility offering of ESS. Note that unlike EVs, ESS
do no have a time constraint and can follow energy tariff
more closely. The only limitation of ESS is their energy
capacity and distribution system operation constraints.

As discussed in Section 2, one of the main tasks of
the CFC is to determine reactive power setpoints for
each IHR, using which IFCs generate reactive power
setpoints for inverter-based DERs and charging stations.
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Figure 6. Total energy flexibility offered by EV

charging stations from all IHRs in a sample 24-hour

period.
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Figure 8. Total energy flexibility offered by ESS

from all IHRs in a sample 24-hour period.

Fig. 9 shows how the required reactive power is supplied
by different types of inverter-based devices in each IHR.
When solar plants are active, they contribute as much
as ESS in reactive power generation, since their power
ratings are similar. However, solar plants can only
supply reactive power when they also produce active
power, i.e., during daytime. Note that in Fig. 9, the
24-hour period starts at a random time of the day, and
not at 12am. Besides solar plants and ESS, EV charging
stations also contribute to reactive power generation, but
to a much less extent due to their lower power rating.
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5. Conclusion

In this paper, an intelligent hierarchical model
was presented for determining the energy flexibility
offering strategy of IHRs to participate in real-time
energy markets. The proposed model utilizes DRL
for training IHR flexibility controllers, and includes
a quadratic optimization central controller to maintain
the grid constraints and manage the reactive power
dispatch. The scalability issues of using standard DRL
for operation of large number of DER and flexible
loads is overcame by breaking down the action space
using multi-agent rollout technique. As a result, the
associated real-time energy flexibility control problem,
which is intractable by integer optimization, is solved
by the proposed intelligent method in a fraction of a
second. The simulations were conducted on the 123-bus
system and the results showed that the proposed method
outperforms greedy operational algorithms by a large
margin, and effectively shifts flexible loads based on the
incentive-based tariff in the distribution system, while
maintaining their quality of service constraints.
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