
Enhancing Robot Programming through
Digital Twin and Augmented Reality

Enes Yigitbas
Paderborn University

enes@mail.upb.de

Gregor Engels
Paderborn University

engels@upb.de

Abstract

Nowadays, robots are widespread across diverse
application contexts. However, robot programming
is a cumbersome and error-prone task that requires
a high domain and programming expertise. To
simplify the process of robot programming, we combine
Augmented Reality (AR) with the concept of Digital
Twin (DT). By combining them, the robot system can
be simulated through a digital equivalent representation
while the real environment is extended with useful
virtual artifacts. To enable users to work in the
robot space, reducing the amount of mentally taxing
coordinate space conversions, we have developed the
DT- and AR-based robot programming framework,
called DART. DART supports users to program a
robot through interactive gestures, offers AR in-place
program simulation, and direct building of finished
programs to the real robot. We evaluated our AR-based
programming approach regarding usability compared
to a web-based robot programming approach. The
evaluation showed that our approach is more usable
than the conventional method and has the potential to
enrich and ease current robot programming processes.

Keywords: digital twin, augmented reality, robot
programming

1. Introduction

Nowadays, robots are an important tool that are used
in different aspects of our lives, performing repetitive,
delicate, or dangerous tasks. Depending on the
context of use, robots become increasingly specialized
in physical aspects as well as in their programming.

However, robot programming is complicated and
time-consuming as there is a lot of (mental) translation
between different coordinate spaces (e.g. robot, mental,
digital space) that needs to be addressed. Furthermore,
the effect of robot programs is not always easy to
predict with conventional robot programming interfaces
showing robot simulations on a 2D screen decoupled
from the real-world scenario where the robot should
perform its tasks.

To tackle these challenges and to overcome
the drawbacks of conventional robot programming
interfaces, we present a Digital Twin (DT)- and
Augmented Reality (AR)-based robot programming
framework, called DART. It supports end-users without
significant robot- or general programming experience
to program robots by themselves. For this purpose,
DART makes use of a DT representation of a real robot
in the form of an equivalent virtual robot. This DT
robot is used as an AR projection in real-world scenes.
Based on a Blockly-based1 AR programming interface,
the users create their robot commands on the virtual
programming interface. Furthermore, the programming
and editing of the virtual robot are enabled through
natural interaction gestures like setting waypoints and
drawings for specifying the robot movements. The
so-created robot program can be simulated through
the DT of the robot as DART offers an AR in-place
program simulation where the virtual robot executes
the specified program commands. Furthermore, DART
supports the direct building of finished programs for the
real robot. Once the user is satisfied with the created
program and its simulation, the robot program can be
deployed to the real robot that executes the created
robot program. Based on this programming style,
create-simulate-evaluate cycles are possible that support

1https://developers.google.com/blockly

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6768
URI: https://hdl.handle.net/10125/103452
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



the agile development of complex robot programs.
This is mainly possible due to the combination of a
digital twin representation and its usage in augmented
reality that is both combined in our solution approach
that aims to ease the process of robot programming.
We evaluated the usability of DART in terms of
efficiency, effectiveness, user satisfaction, and cognitive
workload and compared it to a conventional web-based
robot programming approach without AR and DT. The
evaluation showed that our approach is more usable
than the conventional method, especially in terms of
user satisfaction and cognitive workload, and has the
potential to enrich and ease current robot programming
processes.

The rest of the paper is structured as follows: In
Section 2, we present existing work. Details on the
conception and implementation of DART are given in
Section 3. In Section 4, we present the evaluation and
its main results. Section 5 concludes the paper and gives
an outlook for future work.

2. Related Work

Augmented Reality (AR) and Virtual Reality (VR)
have been a topic of intense research in the last
decades. In the past few years, massive advances in
affordable consumer hardware and accessible software
frameworks are now bringing AR and VR to the
masses. While VR interfaces support the interaction
in an immersive computer-generated 3D world, AR
enables the augmentation of real-world physical objects
with virtual elements. In conjunction with these
technologies, for the last two decades, researchers
have been working on the development of Digital
Twin models. A Digital Twin maps a physical object
or process with a digital environment that enables
simulation, education, prediction, and optimization and
helps in product design and simulating manufacturing
systems, and processes (Garg et al., 2021). Robotic
applications are a specific area of the Digital Twin
domain, focusing on the ease of programming (Zhang et
al., 2019). In the following, we draw on recent research
for AR- and Digital Twin-based robot programming
approaches.

2.1. Augmented Reality-based Approaches

In the following, we briefly present and discuss
related approaches that follow the idea of augmented
reality-assisted robot programming.

Shepherd et al., 2019 used a video-based AR
approach for robot programming. A block-based
Integrated Development Environment (IDE) was
embedded onto the screen. The block-based IDE

is a CoBlox derivate. CoBlox is designed for
offline robot programming and normally features a
robot and environment simulation (Weintrop et al.,
2017, Shepherd et al., 2018, Weintrop et al., 2018).
In Shepherd et al., 2019 it was also noted, that
programming with controllers as well as having to move
the real robot with hands is cumbersome.

Another approach is to use hands for both
interactions. This approach was used in Gadre et
al., 2019 where a Mixed Reality (MR) interface was
proposed for creating and editing waypoints. The
created waypoints could be grouped, the resulting action
previewed, and the resulting program executed on the
real robot. The solution was tested against a monitor
interface in a usability study using Microsoft HoloLens.

Thanigaivel et al., 2019 proposed an AR-assisted
robot programming system that allows users to
program pick-and-place as well as welding tasks
by demonstrating the task/path. These paths can
be selected by showing the full path, showing the
start and endpoints, or selecting features based on
Computer-Aided Design (CAD), e.g., edges. The robot
motion was simulated and augmented in AR.

Rosen et al., 2019 proposed an MR interface
for programming robots. Here a manipulation of
the movement starting point and goal, as well
as end-effector orientation, via hand interaction, is
possible. The AR device used is a Microsoft HoloLens.
MoveIt is the motion planning tool used to calculate a
path between the two aforementioned points (start point
and endpoint).

In summary, the idea of AR-assisted robot
programming is an established field of research
and there are existing approaches that make use
of AR technology to ease the complex task of
robot programming. However, most of the existing
approaches are focusing on specific 3D objects
and virtual representations of robots neglecting the
integration of digital twins in an AR-assisted robot
programming environment in a systematic way. To
fill this gap, our solution approach aims to combine
the concept of the digital twin with AR technology.
For this purpose, we will show how different DTs
of a robot system can be integrated and used in an
AR-assisted robot programming environment to reduce
the complexity of robot programming.

2.2. Digital Twin-based Approaches

The digital twin is an idea related to the concept
of a virtual, digital equivalent of a physical product.
The digital twin is used to reproduce a real, physically
existing environment, process, or single object. Its

Page 6769



role is to map the main features of the physical
object or process enabling simulation, prediction and
optimization in the areas of system servicing (Olabi et
al., 2012), product design and manufacturing systems
(Burghardt et al., 2020), and processes (J. W. Hart et al.,
2021). The main features of the digital twin, such as its
form, upgradeability, the degree of precision with which
it maps reality, and many others, depend on the purpose
it serves (Muszyńska et al., 2019).

In previous work, the concept of the digital twin
has been used in several domains such as manufacturing
(Tao et al., 2018) or assistance systems (Josifovska et al.,
2019). Utilizing a combination of the concept of digital
twin and VR interfaces has been shown successfully in
previous works, especially for human-robot interaction
(HRI). Whitney et al., 2018 suggest that VR interfaces
can allow non-expert users to control robots, and present
a controlling mechanism where the user’s hands are
directly mapped to the robot’s hands. To support
controllability of robot systems, Lipton et al., 2018
present a VR interface that simulates a control room
(VRCR), where the user sees the world from the robot’s
eyes and uses control orbs to move its arms. Another
approach was presented by Burghardt et al., 2020, where
a VR interface including the digital twin of a robotic
station, tracks user interaction with a real object for
programming the robot. Similarly, the approach by
Theofanidis et al., 2017 enables controlling a robot in
VR, by allowing the user to define the trajectory that the
robot arm should follow by detecting hand gestures of
the user.

In summary, most of the existing digital twin-based
approaches for supporting robot programming rely on
virtual reality technology. While such approaches
support the simulation of robot systems in a virtual
environment, we believe that AR technology is better
suited to simulate a robot system in a real-world setup
as collisions and other environmental parameters can
be taken into consideration. Therefore, our solution
approach focuses on the usage of AR technology and
its combination with digital twin models of a robot to
leverage an easy-to-use robot programming interface.

3. Conceptual Solution and
Implementation

To ease the process of robot programming by
combining the concept of digital twin and augmented
reality, we have created the DART framework. The
architectural overview of our DART framework is
shown in Figure 1. It is mainly based on a 4-layer
architecture consisting of the following layers: Robotics
Layer, Translation Layer, Programming Layer, and

UI Layer. In the following, each layer and its
implementation will be described in more detail.

The Robotics Layer contains the main entities that
have to be programmed. In our case, this layer consists
of the main components Lego NXT and Dobot as we
have shown the functionality of the DART framework
based on these exemplary robot systems. Each robot
component is divided up into two subcomponents: one
subcomponent characterizing the real robot and the
other one characterizing the virtual robot that is the
digital twin model of the real robot system. We have
chosen the Lego NXT2 and Dobot3 systems to have
one example for a mobile and a static industrial robot
arm, respectively. For both virtual robot representations,
the Digital-Twin NXT and the Digital-Twin Dobot, we
have created a 3D model based on Blender4. These
3D models were imported into our project so that the
digital twin representation was accessible by the the
Translation Layer.

In the Translation Layer, we have an Execution
engine that is responsible for steering the real robots
and controlling the simulation of the virtual robot
representations (DTs). Since Unity already contains a
toolkit for physics simulation, we decided for simulating
the Lego NXT robot with Unity physics. Simulating
a robot in Unity or the gazebo simulator5, both yield
less time in testing on the real robot and especially also
fewer real robots that can take damage. The Lego NXT
robot simulation happens in the Unity NXT Simulation
component. Apart from simulating the Lego NXT
Robot, our framework also allows executing the written
programs on real robots. The first approach to execute
the program on a robot is the Program Interpreter.
This component listens on a Bluetooth port on the
robot for a program. The Real NXTCode Translator
component can send the program in our app to the robot.
This component converts the in-app program to a short
format. In this way, the program can be transferred
quickly. Additionally to execution via interpretation,
our framework supports the Lego NXT robot execution
via code generation. For this purpose, our framework
has two different components. The first component is
the Lejos Code Generator. This component generates
Lejos6 code from the internal code representation. We
facilitate T4-Templates7 for this purpose. The generated
code in text format can be submitted to our second
component via HTTP. The Lejos Compilation Server
computes the HTTP request and generates a binary file.

2https://www.lego.com/de-de/themes/mindstorms
3https://www.dobot.cc/dobot-magician/product-overview.html
4https://www.blender.org
5https://gazebosim.org
6https://lejos.org
7https://github.com/mono/t4

Page 6770



Real DobotDigital-Twin

NXT

Unity NXT

Simulation

RosSharp

Robot Code

AR Interface On-Screen

Interface 

Digital-Twin
Dobot

Real NXT

Program

Interpreter

Real NXTCode

Translator

Gazebo

Simulation

Dobot

Execution

Lego NXT

Core

UI

Lejos

Compilation

Server

Lejos

Code Generator

Blockly Code

Code

implements

WebEditor

Compile Send to Simulate

Simulate Simulate

Execute

Compile
Translate and

synchronize

Blockly Code 

Editoredit

visualize visualize

Robotics
Layer

Translation
Layer

Programming
Layer

UI Layer
Voice Command

Manager

share
functions

share
functions

implementsimplements

Figure 1. Architectural Overview of DART Framework

This binary file can be directly deployed on the robot.
To parallelize build jobs, the Lejos Compilation Server
builds upon Kubernetes8.

On the Programming Layer, the internal structure of
a robot program is defined as well as its specification.
For this purpose, the Programming Layer consists
of two main components. The Core component is
responsible for specifying and characterizing the source
of the Robot Code based on RosSharp9. On the
other hand, we provide a component Code Web-Editor
that consists of the subcomponents Blockly Code and
Blockly Code Editor that support a traditional web-based
robot programming interface based on Blockly as
programming syntax.

The last layer in our architectural overview is the
UI Layer. This layer consists of the components AR
Interface, Voice Command Manager, and On-Screen
Interface. The AR Interface supports the interactions for
robot programming on the HoloLens 210 and a mobile
AR device. Figure 2 (left) shows an overview of the
AR interface while programming the dobot arm while
Figure 2 (right) depicts a programming scenario with

8https://kubernetes.io
9https://github.com/siemens/ros-sharp

10https://www.microsoft.com/hololens

the mobile Lego NXT robot. As can be seen in the
screenshots, the AR interface provides a block-based
syntax to create and edit robot programs. The users are
able to create and edit their program commands through
natural interactions based on gestures. This means that
the users can grab the pieces of the Blockly puzzles to
create and manipulate their robot programs. In addition
to that, they can also program the robot through direct
interaction with the digital twin of the robot system.
In the case of the dobot arm, they can program and
control the robot by moving the orange sphere (see
Figure 2 (left). For the mobile Lego NXT robot, this
is supported through setting waypoints and drawings
which tell the virtual and real robot how to move in the
task environment. Besides the AR Interface, we support
an On-Screen Interface to ease the handling of robot
programming on mobile AR devices. Finally, the Voice
Command Manager is integrated into the UI Layer to
also support voice commands for robot programming.
We added this component to enable a multi-modal robot
programming environment.

Based on Figure 2 (right) and the example of
the Lego NXT robot, in the following we describe
the programming workflow and the usage of the
implemented AR interface in more detail. At the start,

Page 6771



our AR application automatically connects to the robot
via Bluetooth. Afterward, the application recognizes
the world coordinate space using an image marker and
places the Program Bar (Fig. 2 (right), 1 ), containing
the main functions, in the AR space. The buttons on
the left run the virtual and real robot. On the virtual
robot, programs are simulated (Fig. 2 (right), 5 ) in
AR in place, showing collisions and problems without
risking damage. When satisfied with the result, the user
can run the program on the real robot (Fig. 2 (right),
6 ). The buttons on the right reset the virtual and

real robot to the starting position. The middle of the
Program Bar contains the programming functionalities.
The first three buttons generate Command blocks whose
style and handling are orientated on Google’s Blockly,
a modular, block-based programming editor. Move
Commands (Fig. 2 (right), 2 ) have a command type
and goal position coordinates (0/0). They also have
a button for changing the goal (blue button), which
spawns a Selection Sphere (Fig. 2 (right), 3 ) on
the current coordinates. It can be moved to a new
position in AR, which will automatically be translated
into coordinates for the Move Command. Also, there
are ClawCommands for moving the robot claw, with a
goal claw position (up/down) instead of coordinates. To
create a program, users can arrange the Code Block(s)
below the Program Bar. They can be reordered or
removed, and the route given by the current program
is visualized by a line on the floor (Fig. 2 (right), 4 )
in real-time. To ease the creation of paths even more,
there is a Drawing function (Fig. 2 (right), 1 , 4th
middle button). When used, a Selection Sphere appears
as in the selection mode, but now, users can move it
to create the complete robot path. On completion, our
application simplifies the path to a manageable number
of commands and adds them to the program. Progress
or intermediate results can be saved for later recovery.

4. Evaluation

To evaluate the usability of the DART framework,
we have conducted a user study where we analyzed the
efficiency, effectiveness, user satisfaction, and cognitive
workload of the AR programming interface of DART
against a traditional web-based programming interface
without digital twin and AR.

4.1. Participants and Setup

We invited students from a programming course
via email and were able to recruit 13 students. The
age range was from 21 to 30 years old. In addition,
each participant was a computer science student in the
bachelor’s program. We asked the participants to rate

their experience related to technology affinity, AR, and
programming from 1 to 5, where 1 is poor and 5 is
good. Technology affinity was comparatively high with
an average of 4.4, which could be due to the form of
education. AR experience is not as high, but with an
average of 3.4. The programming experience has an
average rating of 4.2, which again may be explained by
the education of the various participants.

The given task for the participants was to program
a Lego NXT robot in such a way that the robot starts
at a starting point and drives to a target point in an ”L”
shaped form. While driving the ”L” shaped path, when
turning the curve, an obstacle should be avoided. The
participants were divided into a group of seven users
who used the web-based robot programming interface
and a group of six users who used the AR-based
programming interface.

To track how efficient the users are, we stop the time
they need to fulfill a defined task. Comparing these
times, we can make a statement regarding the efficiency
of the two approaches. To measure the effectiveness
of the software we track the errors that might occur by
observation and making notes in the user study protocol.
To classify the different error types, we differentiate
between ”Interaction” concerning and ”Programming
Language” concerning error types. ”Interaction”
concerning errors can be divided up into accidental or
false interactions (Manakhov and Ivanov, 2016). An
interaction error is called accidental if the cause of the
error was carelessness rather than a misunderstanding,
but the intent was correct. An example would be
entering a greater distance for the move command than
intended (11 instead of 1). False interaction errors are
errors that occur because the user misunderstood a part
of the interface. This means that the result does not
correspond to the desired goal, although the actions he
performed are correct. For example, if the user thinks
that the ”Start Simulation” button will also trigger the
real robot, his program may execute perfectly, but the
real robot will never move. ”Programming Language”
concerning errors can be divided up into either syntactic
or semantic errors, as presented by Hristova et al., 2003
for the Java programming language, but which can also
be adapted to other programming languages as the one
that is used here. A syntactic error is every error that
will stop the program on the real robot from executing
or prevent the simulation from executing, based on a
language concerning error. One example could be to
use a Boolean as input for the move command. A
semantic error is every logical error that prevents the
robot from reaching its goal, for example turning in the
wrong direction or hitting a wall. We further split the
semantic errors into errors that occur with the simulation

Page 6772



Figure 2. AR programming interface: programming the dobot arm (left) and the Lego NXT robot (right)

and errors which happen while using the real robot,
as the simulation is intended to help the user try out
their programs and check it for possible errors. The
usability will be measured using the system usability
scale (SUS) (Brooke et al., 1996) and the raw NASA
task load index (TLX) (S. G. Hart and Staveland, 1988),
which are a standard procedure to evaluate the user
satisfaction and the mental workload of an interactive
system, respectively. In addition, we ask open questions
to get possible positive and negative feedback to draw
conclusions.

4.2. Results

In the following, we will present and discuss
the main evaluation results concerning efficiency,
effectiveness, user satisfaction, and cognitive workload.

4.2.1. Efficiency As shown in Figure 3, collected
data regarding efficiency shows that the average time
for programming the task based on the traditional web
programming interface took only 3:50 minutes, while
AR took 5:31 minutes on average. One possible
reason for this result is that AR users have the ability
to simulate the program before actually running it,
increasing the time required, but this does not fully
explain the difference, as the simulation did never last
longer than 20 seconds. Another reason may be that the
interaction with the AR environment is not as intuitive as
interacting with the web interface, since the computer is
an ordinary interface. Most people know how to interact
with computers and have been using similar interfaces
and input mechanisms for years. In contrast, AR is a
rather new approach, although the participants have had
some experience with it, in total they had less interaction
with it than with a classical computer interface. Another
factor is that the traditional web programming interface
provides the ability to copy and paste blocks of code,
which reduces the time required, as the looping solutions

always consisted of two very similar loops. On the other
hand, AR does not support this feature, which meant
that participants had to build the loops themselves.
The combination of these three reasons, which are not
exhaustive, can explain the difference in times.

Figure 3. The efficiency of AR-based and

Web-based robot programming interface

4.2.2. Effectiveness In terms of effectiveness, by
looking at the average number of errors made per each
run of task completion, we see that the AR users made
an average of 1.2 errors. In contrast, the web group made
an average of only 0.7 errors. However, when we look at
the different types of errors, we see a different picture,
as shown in Figure 4 (left). Syntactic errors were made
on both devices: 0.7 average errors in AR versus 0.4
average errors on the web interface. Regardless of
which device was used, the most common error was the
incorrect use of conditions for loops, as most errors were
made by indirectly evaluating Boolean values, such as
”if true,” even though this is not supported by any of the
software. One of the reasons for this could be that this is
a common paradigm in many programming languages
such as Java or Python. Due to the high level of
programming experience in the user group, this pattern

Page 6773



0,7 

0,6 

0,5 

0,4 

0,3 

0,2 

0,1 

0 

Syntactic 

"Programming Language" concerned errors 

■Web 

■AR 

Semantic 

0,9 

0,8 

0,7 

0,6 

0,5 

0,4 

0,3 

0,2 

0,1 

Accidental 

"Interaction" concerned errors 

False lnteraction 

■Web 

■AR 

Figure 4. Effectiveness (avg. number of errors per task) of AR-based and Web-based interface

is considered standard in programming languages and
therefore the participants instinctively tried to adapt this
behavior. When looking at the semantic errors, a similar
picture emerges: the web user made an average of 0.3
errors, while the user of the AR environment made an
average of 0.5 errors. However, looking at where these
errors were made, with the simulation or the robot, a
difference can be seen. In the simulation in the AR
environment, the users made an average of 0.5 errors,
while no error occurred with the real robot. On the other
hand, the web user made 0.3 errors with the real robot,
as they were not able to simulate the built program. The
number of errors made with the simulation may be a
throw higher, but since the user had the opportunity to
try out what he was doing, there were no errors on the
real robot. Since the real robot should not be damaged
in a real scenario, as robots can become very expensive
in an industrial setting, this shows that the simulation
accomplishes the desired goal by preventing the user
from making fatal mistakes. In industrial production
steps, these mistakes can lead to damage to the robot
during the execution of the program. While executing
no user of the AR environment drove the robot into
one of the obstacles or make it leave the track, as these
mistakes could be prevented using the simulation. In
contrast, such errors were the common semantic error
occuring while usage of the web-based programming
interface. The second classification of errors was to
divide them into accidental mistakes and errors caused
by false interaction. Figure 4 (right) shows the different
results. The errors made due to false interaction, i.e.
that the path to the correct goal is wrong, were higher
in the web interface of the software. One reason for
this result could be that participants lack a view of the
route and the task to be solved. Without seeing the
route, it happened that participants produced semantic
errors, such as driving too far, having the correct
destination, but missing it due to a miscalculation of
the actual distance needed. In contrast, using the AR

environment the user could always see the track and task
and by that prevent such false interaction mistakes. The
errors made in both environments were often semantic
errors, as users misinterpreted the use of conditions,
as described in the discussion of syntactic errors. The
other statistic is the difference between the accidental
errors, which is clearly in favor of the web intereface.
As mentioned earlier, this may be due to the fact that
users have more experience using computers than AR
interfaces. Another reason could be that entering data
on the computer is easier. When entering a number,
for example, the user can simply use the keyboard; in
contrast, in AR, the user must use a touch Numpad,
which is not as common. In general, AR users made
more mistakes, but they were not as fatal as users of
the web interface, leading to a safer execution of the
program, concerning the robot and its surroundings.

4.2.3. User Satisfaction The aggregate results of
the SUS can be seen in Figure 5. The AR-based
programming interface of DART received an average
aggregate score of 89.17, while the web robot
programming interface received an average score of
77.5. While this already shows a difference between the
two approaches, it is worth noting that the web interface
results cover a wider range of scores than the AR. The
range of results for the web interface was 47.5 points,
while the AR had a range of only 10 points. These
data show that the AR-based programming interface
based on a digital twin achieved a way better user
satisfaction result compared to the traditional web-based
programming interface without a digital twin and AR.

4.2.4. Cognitive Workload NASA’s TLX
framework was used to measure the mental and
physical workload of the users, and the aggregated
results can be seen in Figure 6 (left). The average
score of the AR user was 19, while that of the web user

Page 6774



Figure 5. SUS score and grade distribution of AR-based and Web-based robot programming interface

was 22.57, which is not a large difference between the
approaches. However, comparing the scores without
the physical score, since the AR approach tends to have
a much higher physical score due to the nature of the
device used, a larger difference can be seen, with an
AR average of still 19 and a Web average of 25, as
shown in Figure 6 (right). This comparison clearly
shows that the mental workload is lower when using
AR than when using the web interface. One possible
reason for this is that the user of the web interface does
not see the environment in front of him, but only the
screen he uses to program the robot. When the user
sees the environment in front of them, they can better
visualize what they need to do to successfully complete
the task. Another part is the digital twin, which can be
used to simulate the built program. With it, the user can
try different ideas without fear of failing with the real
robot. This reduces the pressure on the participant and
thus reduces the mental strain required to complete the
task.

4.3. Discussion

In summary, we were not able to show an advantage
in the efficiency of the AR-based programming interface
compared to the web interface due to several factors,
such as the interaction model on the HoloLens that
users were not used to. Since users made more errors
with the AR programming environment, we cannot
conclude that its effectiveness is better than the web
interface. However, as described, the nature of the
errors was different because the potential damage to the
real robot can be prevented by the simulation through
the digital twin in the AR environment. In addition,
user satisfaction is higher in the AR environment. Last
but not least, the mental workload is lower in the AR
environment. We can conclude that the AR environment
helps the user to solve a given task as it enhances the
understanding of the environment and helps to imagine
the steps that need to be done for programming the

robot.
In addition to the above-mentioned points, it

should be noted about this evaluation that the group
of participants all have a programming background,
which means that the results cannot be generalized
to all possible users. Especially for inexperienced
users regarding programming skills, an evaluation with
layperson is necessary, as they may not understand
the presented concepts as fast as users with a
professional background. Besides the background
of the participants, also the age and amount of the
participants could lead to a bias in the results, why
the above-mentioned evaluation results should be seen
as observed tendencies. Thus, further user studies
with larger groups of heterogeneous users are required
to derive significant results about the usability of the
programming environments.

5. Summary and Future Work

In this paper, we have presented a solution approach
on how to combine the concept of digital twin
(DT) with augmented reality (AR) to enhance the
complex, cumbersome and error-prone task of robot
programming. For this purpose, we have introduced
the DART framework which supports an integrated DT-
and AR-based robot programming environment. DART
supports users to program a robot through interactive
gestures, offers AR in-place program simulation through
DTs of real robots, and direct building of finished
programs to the real robots. We evaluated our AR-based
programming approach regarding usability compared
to a web-based robot programming approach without
the integration of DT and AR. The evaluation showed
that our approach is more usable than the conventional
method, especially in terms of user satisfaction and
cognitive workload, and has the potential to enrich and
ease current robot programming processes.

In future work, we plan to conduct larger user studies

Page 6775



Figure 6. NASA TLX score of AR-based and Web-based robot programming interface

with heterogeneous users also covering other target
platforms. Furthermore, we plan to apply our solution
to further domains and robot types. Another possible
extension is the inclusion of robot collaboration in our
solution approach. Apart from that, the advantages
of the AR interface could be used to ease the process
of debugging robot code as the digital twin and AR
simulation can help to find errors before executing the
final code on the real robot system.

6. Acknowledgement

We would like to thank André Ortmann for his
support during the implementation and evaluation of the
presented approach.

References

Brooke, J. et al. (1996). Sus-a quick and dirty usability
scale. Usability evaluation in industry,
189(194), 4–7.

Burghardt, A., Szybicki, D., Gierlak, P., Kurc, K.,
Pietruś, P., & Cygan, R. (2020). Programming
of industrial robots using virtual reality and
digital twins. Applied Sciences, 10, 486.

Gadre, S. Y., Rosen, E., Chien, G., Phillips, E., Tellex,
S., & Konidaris, G. D. (2019). End-user robot
programming using mixed reality. Int. Conf.
on Robotics and Automation, ICRA 2019,
2707–2713. https : / / doi .org /10 .1109 / ICRA.
2019.8793988

Garg, G., Kuts, V., & Anbarjafari, G. (2021).
Digital twin for fanuc robots: Industrial robot
programming and simulation using virtual
reality. Sustainability, 13(18), 10336.

Hart, J. W., DePalma, N., Pryor, M. W., Hayes,
B., Kruusamäe, K., Mirsky, R., & Xiao,
X. (2021). Exploring applications for
autonomous nonverbal human-robot
interaction. Companion of the 2021 ACM/IEEE

International Conference on Human-Robot
Interaction, 728–729.

Hart, S. G., & Staveland, L. E. (1988). Development
of nasa-tlx (task load index): Results of
empirical and theoretical research. Advances in
psychology (pp. 139–183). Elsevier.

Hristova, M., Misra, A., Rutter, M., & Mercuri,
R. (2003). Identifying and correcting java
programming errors for introductory computer
science students. In S. Grissom, D. Knox, D. T.
Joyce, & W. P. Dann (Eds.), Proc. of the 34th
SIGCSE technical symposium on computer
science education (pp. 153–156). ACM. https:
//doi.org/10.1145/611892.611956

Josifovska, K., Yigitbas, E., & Engels, G. (2019). A
digital twin-based multi-modal UI adaptation
framework for assistance systems in industry
4.0. In M. Kurosu (Ed.), Human-computer
interaction HCI (pp. 398–409). Springer.

Lipton, J. I., Fay, A. J., & Rus, D. (2018).
Baxter’s homunculus: Virtual reality spaces for
teleoperation in manufacturing. IEEE Robotics
and Automation Letters, 3(1), 179–186. https:
//doi.org/10.1109/LRA.2017.2737046

Manakhov, P., & Ivanov, V. D. (2016). Defining usability
problems. In J. Kaye, A. Druin, C. Lampe,
D. Morris, & J. P. Hourcade (Eds.), Proc. of
the 2016 CHI conference on human factors
in computing systems (pp. 3144–3151). ACM.
https://doi.org/10.1145/2851581.2892387

Muszyńska, M., Szybicki, D., Gierlak, P., Kurc,
K., Burghardt, A., & Uliasz, M. (2019).
Application of virtual reality in the training
of operators and servicing of robotic stations.
Working Conference on Virtual Enterprises,
594–603.

Olabi, A., Damak, M., Bearee, R., Gibaru, O., &
Leleu, S. (2012). Improving the accuracy
of industrial robots by offline compensation

Page 6776



of joints errors. 2012 IEEE international
conference on industrial technology, 492–497.

Rosen, E., Whitney, D., Phillips, E., Chien, G.,
Tompkin, J., Konidaris, G. D., & Tellex,
S. (2019). Communicating and controlling
robot arm motion intent through mixed-reality
head-mounted displays. Int. J. Robotics Res.,
38(12-13). https : / / doi . org / 10 . 1177 /
0278364919842925

Shepherd, D. C., Francis, P., Weintrop, D., Franklin,
D., Li, B., & Afzal, A. (2018). [engineering
paper] an IDE for easy programming of simple
robotics tasks. 18th IEEE Int. Work. Conf.
on Source Code Analysis and Manipulation,
209–214. https : / / doi . org / 10 . 1109 / SCAM .
2018.00032

Shepherd, D. C., Kraft, N. A., & Francis, P. (2019).
Visualizing the ”hidden” variables in robot
programs. Proceedings of the 2nd International
Workshop on Robotics Software Engineering,
RoSE 2019, Montreal, QC, Canada, May 27,
2019, 13–16. https://doi.org/10.1109/RoSE.
2019.00007

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H.,
& Sui, F. (2018). Digital twin-driven product
design, manufacturing and service with big
data. The International Journal of Advanced
Manufacturing Technology, 94(9), 3563–3576.

Thanigaivel, N. K., Ong, S. K., & Nee, A.
(2019). Augmented reality-assisted
robot programming system for
industrial applications. Robotics and
Computer-Integrated Manufacturing, 61.
https://doi.org/10.1016/j.rcim.2019.101820

Theofanidis, M., Sayed, S. I., Lioulemes, A., &
Makedon, F. (2017). Varm: Using virtual
reality to program robotic manipulators.
Proceedings of the 10th International
Conference on PErvasive Technologies
Related to Assistive Environments, 215–221.

Weintrop, D., Shepherd, D. C., Francis, P., & Franklin,
D. (2017). Blockly goes to work: Block-based
programming for industrial robots. 2017 IEEE
Blocks and Beyond Workshop (B B), 29–36.
https : / / doi . org / 10 . 1109 / BLOCKS . 2017 .
8120406

Weintrop, D., Afzal, A., Salac, J., Francis, P., Li,
B., Shepherd, D. C., & Franklin, D. (2018).
Evaluating coblox: A comparative study of
robotics programming environments for adult
novices. In R. L. Mandryk, M. Hancock, M.
Perry, & A. L. Cox (Eds.), Proc. of the 2018
CHI conference on human factors in computing

systems (p. 366). ACM. https : / / doi . org / 10 .
1145/3173574.3173940

Whitney, D., Rosen, E., Ullman, D., Phillips, E.,
& Tellex, S. (2018). Ros reality: A virtual
reality framework using consumer-grade
hardware for ros-enabled robots. 2018
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1–9.
https://doi.org/10.1109/IROS.2018.8593513

Zhang, C., Zhou, G., He, J., Li, Z., & Cheng, W. (2019).
A data-and knowledge-driven framework for
digital twin manufacturing cell. Procedia
CIRP, 83, 345–350.

Page 6777


