Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Deceptive Self-Attack for Cyber-Defense

Jared Chandler
Tufts University
jared.chandler @tufts.edu

Abstract

The asymmetry between cyber-defense and
cyber-offense is well-known; defenders must perfectly
protect their systems, while attackers need only
find one flaw. Defensive cyber-deception has been
proposed as a way to mitigate this problem, by using
various techniques designed to require attackers
to defend themselves from misdirection, false data,
and counter-attack. In this paper, we propose a
new cyber-deception technique: deceptive self-attack
(DSA). DSA modifies network and systems to give the
appearance that an unknown third party is also at work
attacking the same systems. It is our contention that the
presence of this (deceptive) adversary pressures real
adversaries in novel ways useful to cyber-defense; and
discuss these effects. As a study in DSA, we present
and evaluate SOUNDTHEALARM, a SMT-solver
based system for generating deceptive self-attack
network traffic. SOUNDTHEALARM uses public attack
signatures from the Suricata intrusion detection system
to automatically generate network traffic consistent
with a particular cyber-attack signature.

Keywords: Traffic Generation, Intrusion Detection,
Cyber Deception, Deceptive Self-Attack, Synthesis

1. Introduction

Cyber-defense is by nature an asymmetric conflict.
A defender must do everything correct every time, while
an attacker only needs to exploit a weakness once to
gain a foothold on a network. Traditional cyber-defense
focuses on providing leverage to the defender through
tooling and analysis, attempting to extend the abilities
of a limited number of security professionals to create
out-of-scale benefits. While huge advances have been
made in these tools (including improvements in software
development methodologies that ensure the proper
operation of software, improvements in observability to

URI: https://hdl.handle.net/10125/102737
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

H{CSS

Adam Wick
Fastly
awick @fastly.com

detect intrusion, the creation of runtime access control
to limit the capability of a compromised system, etc.), at
the end of the day the attacker need focus on a relatively
small set of problems, while the defender needs to
manage many more. Cyber-deception addresses this
asymmetry by increasing the costs to the adversary
through deceit: by delaying, degrading, misleading,
and/or discouraging attacks in the hopes of denying
their goals [l1, 12, 13]. One interesting commonality
across many cyber-deceptions is a tendency to try to
mask properties of the real system with properties of
a real, reasonable, and correct false system. In this
paper, we present a new cyber-deception strategy that
instead tries to extend the real system with signatures
of a system under attack, even when it is actually in a
good state. We call our approach deceptive self-attack,
or DSA. We define deceptive self-attack as an apparent
cyber-attack on a defender’s network that an adversary
misattributes to a group other than the defender, such
as some other adversary. The goal of this work is,
much like other cyber-deceptions, to trick the adversary
into making decisions that are beneficial to the defender
through the use of misinformation. In this particular
case, if the real attacker believes that there is another
attack on the same system, this belief can potentially
cause them to reconsider the cost/benefit of attacking the
host. Even if they do remain on the host, DSA allows a
defender to impose additional burden on the adversary
by increasing the factors they must consider while
on the network and/or changing the adversary’s time
horizon, thus increasing opportunities for an adversary
to inadvertently reveal themselves.

In this paper, we outline DSA, present case
studies of three usage scenarios, and then present
a proof-of-concept tool for generating DSA network
traffic either on a host or as a network flow using
publicly available intrusion detection system (IDS)
attack signatures. The goal of our proof-of-concept
tool, which we call SOUNDTHEALARM, is to produce
traffic that is both realistic and tuned to both the kinds of
information or systems that a defender wants to protect

Page 866

and an attacker seeks to exploit.

The paper begins with an overview of the DSA
technique in Section [2] along with background on its
context, the threat model assumed, and the obstacles
to implementation. This section also includes an
argument of the benefits of DSA when successful.
Next, in Section [3] we introduce SOUNDTHEALARM,
our proof-of-concept tool that automatically generates
DSA network traffic using well-known IDS attack
signaturesﬂ Using this proof-of-concept as our
starting point, we then present case studies outlining
the use of DSA for the purposes of deterrence,
detection, and response in Section [} and evaluate
SOUNDTHEALARM’s ability to trigger both the
Suricat and Snor intrusion detection systems in
Section@ Finally, we then discuss related work to DSA,
and conclude with the risks, limitations, and future
directions for this research.

2. Deceptive Self-Attack

We define deceptive self-attack (DSA) as actions
taken by a defender to create the perception in
an adversary that another adversary (a competitor)
is attacking resources under the defender’s control.
Intuitively DSA strives to make the adversary believe
that there is another entity, with different goals, at work
with malicious intent on the same device or network.
To be successful, we believe that DSA must have
four key characteristics. First, DSA attempts must
be perceived by the adversary as something separate
from ordinary operation. In addition, the effects of
the attack must be perceivable by the adversary from
their foothold: it must generate network effects that
will be transmitted to the adversary’s open sockets or
listeners, must generate files that will be discovered by
the adversary during its normal operation, etc. Second,
the adversary must be able to recognize the perceived
change in its environment as an attack or other malicious
activity, rather than as normal operation of the system.
Third, the defender must, at all times, be able to control
the frequency and nature of actions taken by the DSA
system. Fourth, like all effective cyber-deceptions, DSA
must be unrecognizable as the actions of the defender.
However, DSA extends this misdirection by inducing
the adversary to misattribute the attack to a third party.
The first three of these characteristics are common to
many other cyber-deception techniques; it is the fourth,
coupled with the deceptive third party, that is the key
insight of DSA.

Uhttp://rules.emergingthreats.net/open/suricata
Zhttps://suricata.io
3https://www.snort.org

2.1. Background Context

Do adversaries pay attention to network traffic?
For several different categories of malicious actors,
there is evidence that they both collect and exploit
network traffic as part of system compromise and as
part of standard cyber-reconnaissance techniques [4].
Numerous pieces of malware include mechanisms for
packet capture on infected systems [3, 16, [7], and
instances of large-scale traffic redirection have been
observed [8]. Finally, there is a robust ecosystem
of tools for the interceptiorm and exploitation m of
network traffic. We consider this evidence of a channel
for DSA to influence adversaries.

Do adversaries care about competition from other
groups? For botnet operators and crypto-mining gangs,
there is evidence that they care a great deal. For
crypto-mining malware, competitor processes running
on the system consume resources that decrease the
profitability of an adversary’s mining. Accordingly,
the adversary’s malware will terminate competitor
processes to ensure the greatest share of resources is
available for their mining purposes [9, 10} [11]].

Similarly, Botnet operators worry about losing
control of the compromised systems to other competing
botnets [12]. Such losses diminish the power and
profitability of the botnet. To prevent these losses,
botnet malware may close off or patch the vulnerabilities
used to gain initial access to a system to prevent other
botnets from stealing it [13} 14, [15]].

These two examples illustrate adversaries
acknowledging that they work in a competitive
ecosystem, and taking additional steps to detect and
degrade their competitors while defending their own
access to a resource. Our goal with deceptive self-attack
is to both promote further development of these
protections — as this development time comes at the
“expense” of building new attacks — as well as to trigger
as many of these defenses as possible, hopefully making
bots more easier to spot.

In addition, for more subtle attackers, such as
those seen in industrial or governmental espionage, our
goal with deceptive self-attack is to push adversaries
to reconsider their timelines. Espionage-focused
adversaries are much more likely to have more extended
timelines than botnet authors, as they often are much
more interested in avoiding attribution. As a result,
these attacks typically present fewer observable markers
to intrusion detection software, and can be much more

4https://mitmproxy.org

Shttps://www ettercap-project.org
Ohttps://github.com/odedshimon/BruteShark
https://github.com/lgandx/PCredz

Page 867

http://rules.emergingthreats.net/open/suricata
https://suricata.io
https://www.snort.org
https://mitmproxy.org
https://www.ettercap-project.org
https://github.com/odedshimon/BruteShark
https://github.com/lgandx/PCredz

difficult to spot. However, the existence of another
attacker — and, in particular, another less sophisticated
attacker — can complicate their cost/benefit calculus. A
less subtle operator on the same machine is much more
likely to cause a defender to notice something wrong
with the system, and potentially trigger a deeper forensic
analysis; an analysis that may trigger the discovery of
both compromises. As a result, the espionage calculus
changes: would it be better to attempt to migrate to a
different host, to avoid getting caught in this net? Or
should the adversary pursue a more aggressive timeline,
to maximize their utility before the system is shut down?
The first case is a clear win for the defender, as the
intruder is now off the network; the second case is more
complex, but we contend is also beneficial, as more
aggressive timelines are usually associated with more
easily discovered attacks.

2.2. Benefits

We consider the following possible benefits from
employing DSA.

First, DSA reduces an adversary’s window to take
action. The introduction of a competitor onto the
network forces the adversary to not only consider the
defender’s actions, but whether the competitor will
cause some change either through their action, or by
drawing the defender’s attention which prevents the
adversary’s objectives. In this manner, the adversary
has an incentive to either act immediately, or to delay
indefinitely adopting a wait-and-see attitude toward the
competitor’s actions.

Next, DSA adds realism to a network. Real
networks are broken and have flaws. The presence of
attack traffic and a competitor on the network reinforce
what an adversary already knows: the network is
vulnerable to those seeking to exploit it. DSA adds
believably to a honey-network [16} 17} 18] beyond what
simulating legitimate users can provide [19} 20} [21]], and
accordingly is complementary to such systems.

DSA creates uncertainty in the mind of the
adversary. The presence of a competitor forces the
adversary to consider that their perception of the
network or resources may be subject to manipulation by
the competitor as well as the defender. The adversary
must consider that any information they extract from the
target network could have been already manipulated by
the competitor.

DSA creates more work for the adversary, forcing
them to consider the potential motives and actions of
the competitor in addition to those of the defender. Just
as the defender tries to protect their resources on the
network, the adversary must consider protecting their

tools, techniques, and targets from the competitor.
Trying understand the scope of a competitor’s
actions, while operating in an environment with a
competitor, can cause an adversary to make unforced
errors. These errors result in an adversary inadvertently
disclosing their presence beyond what they already must
do to explore the network and accomplish their goals.

2.3. Threat Model

We assume as our threat model an adversary who
has gained access to a network and is able to intercept
network traffic [5, 16, [7]. This access may be via
a traditional computing platform, such as a server or
workstation, or through the compromise of a router,
switch or other network device. Once on the network,
we presume that our adversary has the capability to
exfiltrate data, corrupt/destroy data on the systems
they have compromised, and attempt lateral network
movement.

Finally, we assume that without intervention on the
defender’s part, or a decision on the adversary’s, the
adversary will maintain ongoing persistent access to this
network.

2.4. Obstacles

The key obstacle for DSA is providing a sufficiently
realistic attack that the adversary is likely to respond,
without actually affecting the security of the system.
One way to manage this risk is through the use of attacks
that are noisy enough to be noticed but also expected
to fail. For example, launching an exploit against a
server that could realistically have been expected to
be patched. This scenario provides the adversary with
a view that someone is attempting an attack, without
actually compromising the system. Closely related is the
issue of positioning attack traffic such that an adversary
can encounter it, either as a network flow or potentially
local to a host or honeypot expected to be compromised.
The application of DSA must be carefully planned by
administrators to strike this balance between the severity
of the perceived attack and the security of the system.

Beyond this key obstacle, we note two additional
obstacles: (1) the realism of the exploits versus the
sophistication of the deceptive competition and (2)
automation.

With regard to the first, it is important that users
of DSA do not accidentally disclose vulnerabilities to
adversaries that the adversaries were not previously
aware of. As a result, the kinds of attacks pursued
by DSA agents are likely to be based on well-known
vulnerabilities or botnets.

With regard to automation, we note that one

Page 868

approach to DSA would be to conduct self-attack
in the same manner as a penetration test, using a
red-team to attempt to gain access to resources on
the network. This approach has several disadvantages
and risks. First, red-teams are costly and can’t be
everywhere at once [22, 23]. Two of our case studies
describe using DSA in an ongoing and continuous
fashion. Utilizing actual red-teams to perform this sort
of continuous attack is unrealistic. Second, by observing
actual red-team or penetration-testing operations on the
network, the adversary could gain insight into what
exploits and techniques might actually work, as these
teams would need to use real exploit methodologies to
discover real vulnerabilities on the network.

Our approach to DSA, which we call
SOUNDTHEALARM, automates the process of DSA
to achieve its goals without requiring costly human
intervention. It also uses off-the-shelf attack signatures,
rather than attacks, to (intuitively) create the smoke of
an attack without the accompanying fire. We perform
this deception by automatically creating detectable
network traffic with the signatures of real-world
well-known attacks, rather than running the attacks
themselves. The generated traffic can then be introduced
to the network as a flow, or generated on and confined
to the interface of a single host.

3. DSA Traffic Generation Method

Our approach to DSA starts with the requirement
that our end result must be readily and unambiguously
identifiable as an attack. In trying to determine
how to ensure this, our first key insight is that
intrusion detection systems (IDS), which exist to
monitor for attacks, leverage public — and continuously
updated — signatures of malicious network traffic. As
new attacks are uncovered by security researchers,
system administrators and cyber-security organizations,
corresponding signatures to identify the traffic are
created and shared so that other users may identify
malicious activity and take action. Our second key
insight is that we can use these detection signatures as
recipes to generate network traffic that will match the
signature and be flagged as malicious.

For our implementation, we use signatures from the
open source Suricata threat detection engine.[24] Each
signature is composed of a set of properties a packet or
packets must satisfy in order to be considered malicious
by the IDS. An example Suricata signature is shown in
Figure[I] Signatures may include network IP addresses,
source and destination ports, the contents of the packet
at various locations, the order between packets and
other relationships within the data. These signatures are

alert tcp $EXTERNAL_NET any -> $HOME NET any
(msg:"ET TROJAN Possible Metasploit Payload Common
Construct Bind API (from server)";

flow:from server,established; content:"|60 89 e5
31|"; content:"|64 8b|"; distance:1; within:2;
content:" |30 8b|"; distance:1; within:2;
content:"|0Oc 8b 52 14 8b 72 28 0f b7 4a 26 31 f£f|";
distance:1; within:13; content:"|ac 3c 61 7c 02 2c
20 cl cf 0d 01 c7 e2|"; within:15; content:"|52 57
8b 52 10|"; distance:1l; within:5; metadata:
former_category TROJAN; classtype:trojan-activity;
$id:2025644; rev:1l; metadata:affected product Any,
attack_target Client_and_Server, deployment
Perimeter, deployment Internet, deployment Internal,
deployment Datacenter, tag Metasploit,
signature_severity Critical, created at 2016_05_16,
updated_at 2018_07_09;)

Figure 1. Example Suricata Signature.

commonly written using a domain specific language

For this work, we focused the packet payload
portions of signatures drawn from the Suricata IDS.
These descriptions specify portions of the packet
payload to match, the values required for a match,
and positioning relationships between matches. The
descriptions of matches use a domain specific language
for regular expressions to describe the byte-values
matched by the signature, which then describes a
finite state-machine [25] which can act as a Boolean
function, recognizing some byte-strings and excluding
others. Fundamentally, in SOUNDTHEALARM, we
invert these finite state-machines such that they become
generating functions, producing only strings which the
original state-machine would recognize. We then use an
SMT-solver [26] to order and position these generated
strings in a manner satisfying the constraints.

In more detail, our approach to creating a DSA
message from a Suricata signature is broken into five
main steps, as illustrated in Figure 2}

1. Signature Parsing. @We parse the signature
and identify the portions specifying content
to be matched. These are either content
portions specifying an exact byte-string which
should appear in the payload, or pcre portions
specifying a regular expression which should
recognize a portion of the payload. These
match specifications may also contain positioning
constraints describing where the match should
be located in terms of absolute position from
the start of the payload (offset, depth),
and in position relative to previous matches
(distance, within). We illustrate these
position constraints and meanings in Figure 3]

Shttps://suricata.readthedocs.io/en/suricata-6.0.0/rules

Page 869

https://suricata.readthedocs.io/en/suricata-6.0.0/rules

@ Signature is parsed.

content offset:0;

"; distance

POSITIONING.

C(A+)T”; distance:2;
ithin:20;

‘ USERID= | ‘ C(A+)T | ‘ ACTION=SAT |
Content generated for ﬂ
regular expressions.

‘ USERID= | ‘ CAAAAAAAT | ‘ ACTION=SAT |
Generated content and POSITIONING POSITIONING
positioning constraints USERID= | |_caaaaaAT | |_ACTION=SAT
encoded as SMT problem.

Z3 SMT-Solver

‘ USERID= | XX | CAAAAAAAT | xxxxxxl ACTION=SAT |

Generated content

to SMT solution.

Empty regions filled. ‘ USERID= | PQ | CAAAAAAATl DERTG | ACTION=SAT |

‘ 1P | TCP | USERID= | PQ | CAAAAAAATl DFRTG | ACTION=SAT |

Figure 2. Steps for generating payloads from
signatures.

2. Regular Expression Content Generation. For
each content and pcre entry we generate
a matching byte-string. For content entries
we use the match value directly, while for
pcre entries we use an open-source library E| to
generate matching byte-strings from the regular
expression.

. Constraint Solving. The expressive nature of
the Suricata signature domain-specific-language
means that the constraints on each byte-string and
their positioning can be very complex, due to
the ability to express relative position constraints
between matches. SOUNDTHEALARM solves
this problem by encoding the constraints for
a message as a boolean satisfiability problem
using the Z3 SMT-solver [26]]. Z3 searches for
placements of each byte-string such that all of the
position constraints are satisfied. If it finds a set
of such positions that meet all of these constraints,
73 reports these as a solution.

. Payload Generation = SOUNDTHEALARM
then creates a payload by positioning each
byte-string at a specific position determined by
7Z3. SOUNDTHEALARM can then either fill any
gaps with random values, or leverage a set of
existing packets to transcribe the attack signature
portions onto an otherwise innocuous payload for
added realism.

. Encapsulation. We then encapsulate the
generated packet in the appropriate IP, TCP
and UDP wrappers using any port information

9https://github.com/asciimoo/exrex

Example Signature
Fragment

content:"cat” ; offset:9; depth:16; distance:4; within:10;

Absolute Offset 9 Bytes

Previous

Relative Distance 4 bytes

Jie)g peojhed

Relative Within 10 bytes

Absolute Depth 16 Bytes

Relative Match Window | 08 | 09 | 10 | 1" | 12 | 13 |

Absolute Match Window | 09 | 10 | " | 12 | 13 | 14 | 15 |

Combined Match Window

Possible Valid Matches for “CAT”

00|01|02|03

04|05|06|07|08|09|10|11|12|13|14|15|16|

Byte Position in Message

Figure 3. Example of Suricata content position
constraint meanings.

specified by the signature. We generate
these wrappers using an open-source packet
manipulation library In cases where the
signature specifies that a 3-way TCP handshake
has taken place, we create the appropriate
precursor packets to give the appearance of a TCP
connection having been established.

If we desire another message from the same
signature, we can do so by restarting this process at step
2, to generate new byte-strings for content and pcre,
or at step 3, by repeating the call to Z3 but asking for a
different solution that satisfies the signature constraints.

Our proof-of-concept tool is implemented as a
Python script, which takes Suricata format signatures
as input and produces DSA messages as output. Such
messages can be generated and validated in real-time or
stored for transmission at a later time.

The design of SOUNDTHEALARM has several key
advantages. First, we can generate attack traffic for
new signatures as they are developed, allowing our
method to stay current as new attacks are uncovered.
Second, we are able to leverage a large baseline set
of signatures from which to generate attacks, sufficient
to give coverage for many network environments and
services. Third, when kept in sync with the IDS
or host-based security system, our method does not
introduce vulnerabilities or vulnerable systems to the
network, nor does it risk exploit tools being uncovered;
the IDS will catch any real uses of the attack generated
by an adversary. Finally, our method does not disclose

10https://scapy.net

Page 870

https://github.com/asciimoo/exrex
https://scapy.net

anything which is not already public knowledge, as all
signatures used are freely available.

Next, we focus on how our DSA traffic generation
technique could be employed to achieve cyber-defense
objectives in Section [followed by our evaluation of
SOUNDTHEALARM in Section 3

4. DSA Operation Case Studies

To characterize how we envision DSA being used,
we present three scenarios as case studies reflecting the
cyber-defense objectives of deterrence, detection, and
disruption.

4.1. Case Study 1: Deterrence

In our first case study, the adversary has gained
access to the network, and is performing a basic
reconnaissance by sniffing network traffic. They do
this to understand what systems are active on the
network, to understand which services are being used
on the systems, and to look for information (such as
credentials) that could aid in exploitation.

With DSA enabled, the adversary will see our attack
traffic, and potentially recognize it as an attack by
some other entity. Whether automatically, or based
on a command and control thread back to a human
operator, the adversary concludes they have already have
competitor on the network. They then weight their goal
of exploiting the network against:

* the risk that data may have already been altered,

e the risk that the competitor may detect the
adversary’s actions and respond, and

* the risk that the defender may have or soon will
be alerted to the presence of one or both groups
on the network.

In this scenario, the adversary determines that the
risk outweighs the benefit and conducts no further
exploitation.

4.2. Case Study 2: Detection and Distraction

Our second case, shown in Figure [] study proceeds
in line with the first, however once realizing there is
a competitor on the network, the adversary elects to
explore further. The attacker spends time considering
what the competitor is attacking, as opposed to looking
at real systems for exploit. Reasoning that the systems
of interest to their competitor might be of interest to
themselves, the adversary probes both the target of the
competitor’s attack (a honeypot) and the competitor’s

infrastructure for launching the attack. In doing each
of these, the defender is alerted to the presence of the
adversary. The defender detects the probing, and any
exfiltrations of honey-data or honey traffic back to the
adversary’s infrastructure, gaining insight helpful for
later attribution.

Adversary’s View of Network Real Structure of Network

. . - . “ -
A A A A A A
Tap | Tap |

#r \/ JV #r

System System

Honey

System | | System | | System e

Figure 4. lllustration of the adversary’s perception
of a network using DSA compared to reality.

Next, the adversary reasons that the competitor
gained access either through the same method as the
attacker, potentially left unpatched or misconfigured,
or through some other vulnerability. As a result, the
adversary spends time searching for other “unlocked
doors” such that they could gain exclusive control of
the network, and disrupt the competitor. This effort
requires the adversary to expend time and resources
which would otherwise go toward further exploitation.
The adversary reasons incorrectly that the attacks being
used by their competitor have so far gone unnoticed by
the defender, and consequently attempts to use these
attacks to exploit other real systems on the network.
By leveraging these ineffective attack techniques, the
adversary characterizes to the defender the extent and
nature of their interests. Having been alerted to the
presence of the adversary, having indicators of their
interest and the infrastructure under their control, the
defender can choose an appropriate response.

4.3. Case Study 3: Disruption

Our third case study assumes an adversary has
gained access to a network on which DSA is not
being actively conducted, but where the defender has
gained awareness of the adversary through some other
technique; a technique that they do not wish to disclose
as doing so would risk identifying the source of the
intelligence. The defender, however, does wish to take
action to remove the adversary from the network.

To do so, the defender initiates DSA, creating
a believable subtext for their network remediation.
The adversary encounters and perceives the DSA
to be indicative that a competitor has also gained

Page 871

access. When the defender remediates the network
and the adversary loses access, the adversary conclude
erroneously that the defender’s actions were the result
of the noisy competitor, and not through failing of their
own security.

5. Evaluation and Discussion

We evaluate our proof-of-concept tool for generating
DSA traffic towards the goal of determining how
effective our technique is in generating a broad amount
of attack traffic. To do so, we split our evaluation
into two components: determining what percentage
of our input IDS signatures SOUNDTHEALARM can
generate traffic for, and then what percentage of the
generated traffic successfully can trigger an IDS. The
first result shows how effective our technique is at
parsing, processing, and synthesizing traffic given the
wide variety of signatures in our corpus; we argue that
our strong result shows that our technique is flexible
across a wide range of signatures. Once we had done so,
we then fed the generated traffic back into the IDS, to
determine if our generation techniques were capable of
triggering alerts; our results suggest that our approach
is promising, as we were able to successfully emulate
approximately 96% of the signatures we evaluated.

While our ultimate goal is to assess the impact of
DSA on red-team or adversary subjects through a honey
environment, in this work we focus on first generating a
plausible stimulus for follow-on evaluation described in
Section[7]

5.1. Experimental Setup

To perform our evaluation, we selected the
state-of-the-art Suricata and Snort intrusion detection
systems. To evaluate SOUNDTHEALARM, we used the
Proofpoint Emerging Threatﬂ community signature set
containing 19988 unique signatures, and then filtered
this set down to include only TCP and UDP signatures.
We excluded signatures that inspect http traffic, leaving
these for future work, as a means of scoping the research
for initial evaluation. We also excluded signatures
that contained protocol-specific field identifiers, and
advanced criteria such as sampled packet frequency and
message size thresholds, as again, we wished to identify
our technique’s utility before expanding to cover all
cases. For reference, our TCP evaluation set contained
692 candidates drawn from an initial 3399 signatures,
and our UDP evaluation set contained 95 candidates
drawn from an initial 369 signatures. All experiments

Uhttps://rules.emergingthreats.net/open/suricata-5.0

were run on an instance of Google Colaboratory{?] with
2 Intel® Xeon® 2.20Ghz CPUs and 12GB of RAM.

5.2. Evaluating Generation

For each signature, we used SOUNDTHEALARM
to generate a triggering message by inverting the
signature as described in Section [3] Once the payload
was generated, each message was then appropriately
embedded in TCP or UDP packets with the source and
destination ports pulled from the signature definition,
and then into IP packets.

Our initial result is that we were able to generate
messages for 685 out of the 692 TCP signatures (99%),
and 89 out of the 95 UDP signatures (94%) we provided
to SOUNDTHEALARM. This result suggests that our
technique, which uses Z3, can scale reasonably to
this class of generation problem. Since SMT-solvers
can sometimes face significant performance (or halting)
problems unexpectedly, we were encouraged that we
saw none of this behavior in our sample set, with no
message taking longer than 1 second to generate.

5.3. Evaluating Believability

From the generated packets, we then constructed
a candidate network trace (PCAP) for analysis by
the IDS. Each PCAP was provided to a Suricata
instance configured to use only the candidate signature
under examination; this improved startup time and
also ensured that we did not generate false positives
by generating a message for one signature that was
incidentally flagged by another. We also used an
automatic process to parse the output of the IDS to
determine if the provided PCAP triggered an alert for
an attack, to avoid transcription errors.

Of the 685 candidate TCP signatures our tool
generated payloads for, 672 were identified as attacks
by the IDS, while 13 were not, resulting in a success
rate of 98%. Of the 89 candidate UDP signatures
our tool generated payloads for, all 89 were identified
as attacks by the IDS; a success rate of 100%,
resulting in an overall (TCP and UDP) success rate of
98%. We consider this a strong positive result for a
proof-of-concept system, as it was able to effectively
generate deceptive self-attack messages on demand for
almost every candidate signature.

Next, we sought to evaluate how our generated
payloads generalized on Snort, a well known IDS
alternative to Suricata. Both Snort and Suricata use
a common signature syntax. Suricata allows protocol
specific extensions in signatures, but rules are otherwise

1Zhttps://colab.research.google.com

Page 872

https://rules.emergingthreats.net/open/suricata-5.0
https://colab.research.google.com

interchangeable, allowing our candidate Suricata
signatures to be used directly with Snort. For each of
the 672 TCP and 89 UDP signatures which Suricata
identified as an attack, we provided the signature rule
and PCAP generated by SOUNDTHEALARM to an
instance of Snort. Snort identified all 672 TCP and 89
UDP pairs as attacks, indicating our proof-of-concept
approach generalized across IDS systems. Interestingly,
some of our message generation failures appear to be
due to malformed signatures. We observed 4 signatures
which specified that the same portion of the payload
should simultaneously have two different values. In
those cases, our solver would simply state that it was
impossible to generate a valid message, and halt.

A further 8 signatures failed to generate messages
due to a non-standard ordering of the content portions
of the signature. Once corrected, SOUNDTHEALARM
was able to successfully generate messages which
triggered an alert. Finally, 1 signature failed to generate
a message due to a failure of the regular expression
inversion step. For cases where a message was
generated correctly, but the IDS failed to trigger on the
input we identified several interesting root causes. 7
signatures escaped specific characters which Suricata
ignores, but which were included in our generated
messages. 5 signatures contained malformed regular
expression. Finally, one signature used both content
and pcre elements to reference the same portion of the
byte-string. One assumption we had made is that each
content or pcre element in a signature correspond
to non-overlapping portions of the payload. We believe
that our choice of a SMT-solver based approach will
allow us to handle such instances in future work.

6. Related Work

The goal of DSA is to help a defender deter,
detect and disrupt the activities of adversaries on
their network through deception. We consider three
categories of relevant related work: general approaches
to cyberdeception, works related to DSA as a strategy,
and works related to our generation of network traffic
from IDS signatures.

The use of cyberdeception [1]] to detect adversaries
within a network is not new [27], although much of
this work focuses on heavyweight [28]], virtual [29] or
lightweight 30, [31] honeypots meant as decoys for real
systems, rather than SOUNDTHEALARM’s deceptive
annotation approach. Honeypots typically serve as
ablative detection systems and as an observational
platform to expose the adversary techniques. DSA seeks
to complement this approach by baiting an adversary
into disclosure through the presence of deceptive attack

traffic on the network and/or hosts.

Works related to DSA as a strategy include game
theoretic approaches with multiple adversaries [32],
which led us to consider how to add decoy players
to a two-player game. Related research focuses
on how cyber-security professionals attack and
defend networks [2} 133, [34]. Works which involve
compromising systems and then defending from
competitors [35] 36] are most relevant to DSA.

Related traffic generation works focus on testing
if an IDS is configured correctly [37] or measuring
its effectiveness at identifying attacks [38, [39].
While some approaches replay real traffic, others
generate simple packets; these include Erlacher
et al’s idsEventGenerator [40]], Nidsbenc and
IDSwakeud'] ~ SOUNDTHEALARM’s SMT-solver
approach synthesizes messages which adhere to
the positioning constraints in the Suricata signature
language, unlike other works. SOUNDTHEALARMiIs
also uniquely able to create stateful sequences of packets
wrapping synthesized messages.

The second approach to the generation of network
traffic focuses directly on generating realistic,
non-adversarial network messages, either for the
purposes of direct human deception [41] or to skew
traffic flow data [31]. While our immediate aim is
to to trigger an IDS, ultimately our goal is deceiving
adversary into misidentifying our generated messages
as an attack. Dyer et al.’s work on format-transforming
encryption [42] focuses on embedding an encrypted
communication channel in messages easily mistaken
for three innocuous protocols. Our approach attempts
to generate deceptive messages for any Suricata attack
signature. Yu et al’s work [43] leverages a program
and corresponding attack-pattern regular expression
to generate attack strings. Finally, Chandler et al.’s
work [44] on botnet cyber-deception presents a network
approach for deceiving a botnet operator that their
botnet is functional throughout mitigation and removal.
SOUNDTHEALARM instead focuses on generating
traffic capable of indicating another botnet is at work on
the same network.

7. Scope and Future Work

Our proof-of-concept tool illustrates a coarse
approach to automatically generating attack traffic, and
is thus limited in which IDS signatures it can generate
traffic for; we have discussed examples in Section E}
We believe that many of the technical limitations of our
approach can be overcome with additional engineering

Bhttps://packetstormsecurity.com/UNIX/IDS/nidsbench
14https://github.com/SavSanta/idswakeup

Page 873

https://packetstormsecurity.com/UNIX/IDS/nidsbench
https://github.com/SavSanta/idswakeup

while maintaining the existing technique. For example,
extending our support for DNS and HTTP requires
extending our infrastructure to deal with more extensive
use of strings. That being said, support for strings
already exists within Z3, so this presently appears to
primarily be an engineering problem. One possible
direction is using our technique to automatically write
attack-signatures onto existing network flows at the
host level. Similarly, we would like to evaluate
our technique’s ability to trigger alerts on host-based
security systems. We see this approach as having the
potential benefit of tailoring DSA traffic in real-time
to that of a host using the its existing traffic as a
template, and creating attack alerts in host log files for
an adversary to discover.

Perhaps more critically, our method of generating
attack traffic may be sufficient to trigger an IDS, but
whether it would stand up to human scrutiny by a a
forensics expert is unknown. Now that we have shown
the basic approach is feasible, however, we hope to
explore evaluation of our generated traffic by human
operators. Along a similar line of investigation, we note
that DSA is only useful if an adversary notices it. There
is no guarantee that an adversary will look at network
traffic or perform analysis such that they conclude an
attack is taking place, or even that they will change
their behavior should they notice it. Again, we hope
to evaluate responses to these deceptive inputs in future
experiments using red teams and by placing DSA traffic
on honeynets.

8. Conclusion

In this paper, we introduced the concept of
deceptive self-attack (DSA), a technique for improving
cyber-defense by through deterrence, detection, and
disruption. We outlined three case studies describing
possible use cases for DSA, and presented our
proof-of-concept approach to automatically generating
DSA traffic from open-source intrusion detection
signatures, successfully generating traffic classified as
an attack in 96% of our evaluation cases.

Acknowledgments

This material is based upon work partly supported
by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HRO0011-19-C-0073.
The views, opinions, and/or findings expressed are
those of the author(s) and should not be interpreted
as representing the official views or policies of the
Department of Defense or the U.S. Government.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(1]

[12]

(13]

(14]

E. Al-Shaer, J. Wei, W. Kevin, and C. Wang,
“Autonomous cyber deception,” Springer, 2019.

K. Ferguson-Walter, T. Shade, A. Rogers, M. C. S.
Trumbo, K. S. Nauer, K. M. Divis, A. Jones,
A. Combs, and R. G. Abbott, “The Tularosa Study: An
Experimental Design and Implementation to Quantify
the Effectiveness of Cyber Deception.,” tech. rep., Sandia
National Lab.(SNL-NM), Albuquerque, NM (United
States), 2018.

S. Achleitner, T. La Porta, P. McDaniel, S. Sugrim,
S. V. Krishnamurthy, and R. Chadha, “Cyber deception:
Virtual networks to defend insider reconnaissance,” in
Proceedings of the 8th ACM CCS international workshop
on managing insider security threats, pp. 57-68, 2016.

W. Mazurczyk and L. Caviglione, “Cyber
reconnaissance techniques,” Communications of the
ACM, vol. 64, no. 3, pp. 86-95, 2021.

“LightBasin: A Roaming Threat to Telecommunications
Companies.” https://www.crowdstrike.com/blog/an-
analysis-of-lightbasin-telecommunications-attacks.
Accessed: 2022-09-03.

“Quick and Simple: BPFDoor Explained.”
https://thehackernews.com/2022/06/quick-and-simple-
bpfdoor-explained.html. Accessed: 2022-09-03.

“ZuoRAT Hijacks SOHO Routers To Silently Stalk

Networks.” https://blog.lumen.com/zuorat- hijacks-
soho-routers-to-silently-stalk-networks, Accessed:
2022-09-03.

C. C. Demchak and Y. Shavitt, “China’s maxim—leave
no access point unexploited: The hidden story of china
telecom’s bgp hijacking,” Military Cyber Affairs, vol. 3,
no. 1, p. 7, 2018.

“This is what happens when two ransomware
gangs hack the same target - at the same time.”
https://www.zdnet.com/article/two-ransomware- gangs-
hacked- the-same-target-at-the-same- time- heres- what-

happened-next/. Accessed: 2022-06-03.

“New Jenkins Campaign Hides Malware, Kills
Competing Crypto-Miners.” https://www.{5.com/labs/
articles/threat-intelligence/new-jenkins-campaign-
hides-malware--kills-competing-crypto-miner.
Accessed: 2022-06-03.

“Kingminer patches vulnerable servers to lock out
competitors.” https://www.bleepingcomputer.com/
news/security/kingminer-patches- vulnerable-servers-
to-lock-out-competitors/. Accessed: 2022-06-03.

H. Griffioen and C. Doerr, “Examining Mirai’s Battle
Over the Internet of Things,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 743-756, 2020.

J. Choi, A. Abusnaina, A. Anwar, A. Wang, S. Chen,
D. Nyang, and A. Mohaisen, “Honor Among
Thieves: Towards Understanding the Dynamics
and Interdependencies in IoT botnets,” in 2019 IEEE
Conference on Dependable and Secure Computing
(DSC), pp. 1-8, IEEE, 2019.

C. Brierley, J. Pont, B. Arief, D. J. Barnes, and
J. Hernandez-Castro, “Persistence in Linux-Based IoT
Malware,” in Nordic Conference on Secure IT Systems,
pp. 3-19, Springer, 2020.

Page 874

https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks
https://www.crowdstrike.com/blog/an-analysis-of-lightbasin-telecommunications-attacks
https://thehackernews.com/2022/06/quick-and-simple-bpfdoor-explained.html
https://thehackernews.com/2022/06/quick-and-simple-bpfdoor-explained.html
https://blog.lumen.com/zuorat-hijacks-soho-routers-to-silently-stalk-networks
https://blog.lumen.com/zuorat-hijacks-soho-routers-to-silently-stalk-networks
https://www.zdnet.com/article/two-ransomware-gangs-hacked-the-same-target-at-the-same-time-heres-what-happened-next/
https://www.zdnet.com/article/two-ransomware-gangs-hacked-the-same-target-at-the-same-time-heres-what-happened-next/
https://www.zdnet.com/article/two-ransomware-gangs-hacked-the-same-target-at-the-same-time-heres-what-happened-next/
https://www.f5.com/labs/articles/threat-intelligence/new-jenkins-campaign-hides-malware--kills-competing-crypto-miner
https://www.f5.com/labs/articles/threat-intelligence/new-jenkins-campaign-hides-malware--kills-competing-crypto-miner
https://www.f5.com/labs/articles/threat-intelligence/new-jenkins-campaign-hides-malware--kills-competing-crypto-miner
https://www.bleepingcomputer.com/news/security/kingminer-patches-vulnerable-servers-to-lock-out-competitors/
https://www.bleepingcomputer.com/news/security/kingminer-patches-vulnerable-servers-to-lock-out-competitors/
https://www.bleepingcomputer.com/news/security/kingminer-patches-vulnerable-servers-to-lock-out-competitors/

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

“Gafgyt Targeting Huawei and Asus Routers and Killing
Off Rival IoT Botnets.” https://www.t5.com/labs/
articles/threat-intelligence/gafgyt-targeting-huawei-
and-asus-routers-and-killing-off-rival-iot-botnets,
Accessed: 2022-06-03.

I. Kuwatly, M. Sraj, Z. Al Masri, and H. Artail, “A
dynamic honeypot design for intrusion detection,” in
The IEEE/ACS International Conference on Pervasive
Services, 2004. ICPS 2004. Proceedings., pp. 95-104,
IEEE, 2004.

A. Mairh, D. Barik, K. Verma, and D. Jena, “Honeypot
in Network Security: A Survey,” in Proceedings of
the 2011 International Conference on Communication,
Computing & Security, pp. 600-605, 2011.

N. Provos, “Honeyd-A virtual Honeypot Daemon,” in
10th DFN-CERT Workshop, Hamburg, Germany, vol. 2,
p- 4, 2003.

H. Lin, S. Dunlap, M. Rice, and B. Mullins, “Generating
Honeypot Traffic for Industrial Control Systems,” in
International Conference on Critical Infrastructure

Protection, pp. 193-223, Springer, 2017.

I. Siniosoglou, G. Efstathopoulos, D. Pliatsios, 1. D.
Moscholios, A. Sarigiannidis, G. Sakellari, G. Loukas,
and P. Sarigiannidis, “NeuralPot: An industrial honeypot
implementation based on deep neural networks,” in 2020
IEEE Symposium on Computers and Communications
(ISCC), pp. 1-7, IEEE, 2020.

“Ostinato Traffic Generator for Network Engineers.”
https://ostinato.org/. Accessed: 2022-06-03.

J. Schab, “Tackling DoD cyber red team deficiencies
through systems engineering,” SANS Information
Security Reading Room. Sans Institute, 2019. Accessed:
2022-06-03.

J.J. Li and L. Daugherty, “Training cyber warriors: What
can be learned from defense language training?,” tech.
rep., RAND National Defense Research Institute Santa
Monica CA, 2015.

J. S. White, T. Fitzsimmons, and J. N. Matthews,
“Quantitative Analysis of Intrusion Detection Systems:
Snort and Suricata,” in Cyber sensing 2013, vol. 8757,
pp. 10-21, SPIE, 2013.

M. Sipser, “Regular Languages,” Introduction to the
Theory of Computation, pp. 31-98, 2006.

L. d. Moura and N. Bjgrner, “Z3: An efficient
SMT solver,” in International conference on Tools and

Algorithms for the Construction and Analysis of Systems,
pp- 337-340, Springer, 2008.

F. Cohen, “A note on the role of deception in information
protection,” Computers & Security, vol. 17, pp. 483-506,
12 1998.

L. Spitzner, Honeypots: Tracking Hackers.
Addison-Wesley Professional, 2002.

N. Provos and T. Holz, Virtual Honeypots: From
Botnet Tracking to Intrusion Detection. Addison-Wesley
Professional, 2007.

N. Provos, “A virtual honeypot framework,” in
Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, (Berkeley, CA,
USA), pp. 1-1, USENIX Association, 2004.

A. Wick, “I Want Your Flow To Be Lies,” in FloCon,
2017.

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

P. Lee, A. Clark, B. Alomair, L. Bushnell, and
R. Poovendran, “A Host Takeover Game Model for
Competing Malware,” in 2015 54th IEEE Conference
on Decision and Control (CDC), pp. 4523-4530, IEEE,
2015.

K. Ferguson-Walter, M. Major, D. Van Bruggen,
S. Fugate, and R. Gutzwiller, “The World (of CTF)
is Not Enough Data: Lessons Learned from a Cyber
Deception Experiment,” in 2019 IEEE 5th International
Conference on Collaboration and Internet Computing
(CIC), pp. 346-353, IEEE, 2019.

T. Shade, A. Rogers, K. Ferguson-Walter, S. B. Elsen,
D. Fayette, and K. Heckman, “The Moonraker Study:
An Experimental Evaluation of Host-Based Deception,”
in Proceedings of the 53rd Hawaii International
Conference on System Sciences, 2020.

K. Bock, G. Hughey, and D. Levin, “King of the hill: A
novel cybersecurity competition for teaching penetration
testing,” in 2018 USENIX Workshop on Advances in
Security Education (ASE 18), 2018.

K. Leune and S. J. Petrilli Jr, “Using capture-the-flag
to enhance the effectiveness of cybersecurity education,”
in Proceedings of the 18th Annual Conference on
Information Technology Education, pp. 47-52, 2017.

N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and
R. A. Olsson, “A Methodology for Testing Intrusion
Detection Systems,” [EEE Transactions on Software
Engineering, vol. 22, no. 10, pp. 719-729, 1996.

R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines,
K. R. Kendall, D. McClung, D. Weber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham, et al., “Evaluating
intrusion detection systems: The 1998 DARPA off-line
intrusion detection evaluation,” in Proceedings DARPA
Information Survivability Conference and Exposition.
DISCEX’00, vol. 2, pp. 12-26, IEEE, 2000.

J. McHugh, “Testing Intrusion Detection Systems: A
Critique of the 1998 and 1999 DARPA Intrusion
Detection System Evaluations as performed by Lincoln
Laboratory,” ACM Transactions on Information and
System Security (TISSEC), vol. 3, no. 4, pp. 262-294,
2000.

F. Erlacher and F. Dressler, “How to test an ids?
genesids: An automated system for generating attack
traffic,” in Proceedings of the 2018 Workshop on Traffic
Measurements for Cybersecurity, pp. 46-51, 2018.

S. Maucione, “Loose lips may better Air Force security
with ‘Prattle’,” Federal News Network, 2017.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton,
“Protocol ~ Misidentification = Made Easy with
Format-Transforming Encryption,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security, pp. 61-72, 2013.

F. Yu, M. Alkhalaf, and T. Bultan, “Generating
Vulnerability ~Signatures for String Manipulating
Programs using Automata-Based Forward and Backward
Symbolic Analyses,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering,
pp. 605-609, IEEE, 2009.

J. Chandler, K. Fisher, E. Chapman, E. Davis, and
A. Wick, “Invasion of the Botnet Snatchers: A
Case Study in Applied Malware Cyberdeception,”
in Proceedings of the 53rd Hawaii International
Conference on System Sciences, 2020.

Page 875

https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://www.f5.com/labs/articles/threat-intelligence/gafgyt-targeting-huawei-and-asus-routers-and-killing-off-rival-iot-botnets
https://ostinato.org/

	Introduction
	Deceptive Self-Attack
	Background Context
	Benefits
	Threat Model
	Obstacles

	DSA Traffic Generation Method
	DSA Operation Case Studies
	Case Study 1: Deterrence
	Case Study 2: Detection and Distraction
	Case Study 3: Disruption

	Evaluation and Discussion
	Experimental Setup
	Evaluating Generation
	Evaluating Believability

	Related Work
	Scope and Future Work
	Conclusion

