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Abstract 

Real-time assessment of users' cognitive states has 

practical importance, allowing organizations to infer 

user behaviors. Realizing its importance, prior studies 

– specifically those using mouse cursor movements – 

have applied various theories to answer a similar 

question, i.e., how does a high cognitive load influence 

the users' device usage behavior? While numerous 

activities can increase cognitive load, we argue that 

the mechanisms behind how humans process 

information can more holistically be explained using 

Dual Process Theory (DPT) (i.e., when cognitive load 

is either low or high) and can be applied under a 

broad range of usage contexts. Using a within-

participant experiment and a simple typing task, we 

demonstrate that DPT is robust to work by examining 

DPT and mouse cursor movements. Specifically, 

users' typing speed and task execution are 

significantly slower when engaged in the task (System 

2) and significantly faster when completing the task 

with lower cognitive effort and engagement (System 1). 

1. Introduction  

Digital transformation has arrived, and the 

adoption of Internet technologies is growing 

exponentially in nearly every facet of business and 

society . With such transformation, there is a need for 

improved models for identifying and assessing factors 

that drive specific user behaviors in various domains, 

including, but not limited to, cyber security (Tuor et 

al. 2017), education(Hwang and Tsai 2011), and 

healthcare (Webster 2007). Yet, real-time assessment 

of user behavior is a substantial challenge as user 

behaviors are influenced by various cognitive 

processes, which are difficult to capture, infer, and act 

upon outside highly artificial environments (e.g., data 

collection using fMRI, EEG caps, eye tracking, and so 

on).  

Rooted on various cognitive and social science 

theories, prior Information Systems (IS) literature in 

the Human-Computer Interaction (HCI) domain aims 

to provide objective metrics that can be used to assess 

multiple online users' behaviors, including habituation 

(Vance et al. 2018), concealing information (Jenkins. 

et al. 2019), and fraud(Hibbeln et al. 2014; Weinmann 

et al. in press). Specifically, previous literature mainly 

focused on specific situations where humans would 

experience heightened cognitive load (i.e., similar 

context); thus, the leveraged theories provide the 

support that applies to a confined set of situations. For 

instance, Hibbeln and colleagues (2017) drew from 

Attention Control Theory (Eysenck et al. 2007) to 

explain how negative emotions heighten cognitive 

load and thus influence mouse cursor movements 

(e.g., feeling negative emotions resulted in slower 

mouse cursor speeds). Weinmann and colleagues 

(forthcoming) leveraged Cognitive Load Theory 

(CLT) and the Response Activation Model (RAM) to 

demonstrate that more extensive fraud (i.e., more 

cognitively demanding) increased mouse movement 

deviations and decreased movement speed (Sweller 

2011; Welsh and Elliott 2004).  

Although these prior studies suggest that mouse 

movement speed slows down because increased 

cognitive load degrades fine motor control (i.e., 

controlling your hand movements), there are several 

limitations. First, heightened cognitive load is a 

temporal state that may not persist for a prolonged 

period. Prior literature provides little explanation of 

the user behaviors under a low cognitive load state. 

Second, the foundational theories used for these 

studies do not apply to various instances of system 

usage as they are confined within specific contexts 

(e.g., feeling negative emotions). For example, users 

may experience high cognitive load when viewing 

online advertisements (Bang and Wojdynski 2016) , 
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exploring an unfamiliar website (Sénécal et al. 2015), 

and engaging in online learning (Mayer 2019) - which 

prior theories have little applicability. In summary, the 

theories that primarily focus on cognitive loads 

provide little explanation of the underlying 

mechanisms (i.e., the interplay of low and high 

cognitive load states) of how humans process 

information during live system usage. Thus, there is a 

need for a more encompassing conceptual framework 

that can be applied to a broader range of situations 

(i.e., under low or high cognitive load).  

This study focuses on extending the prior 

literature by providing a more encompassing theory 

that aligns with the prior studies and can be used to 

conceptualize situations where users experience both 

low and high cognitive loads. In doing so, we present 

methods for practitioners and researchers to assess 

how low and high cognitive states interplay in device 

usage behaviors based on the motor learning literature 

and Dual-Process Theory (DPT), which asserts that 

human cognitive processes are interactions between 

intuitive (Type 1 process) and deliberate (Type 2 

process) thinking (Kahneman 2011). Since the initial 

emergence of DPT, researchers have extensively 

worked on introducing different extensions and 

variations of DPT (Bronstein et al. 2019; Cash and 

Maier 2021; Over 2020). This study's focus is not to 

pick and apply different variations and extensions of 

DPT. Thus, we will focus on how the foundational 

idea of DPT applies in the context of capturing 

changing in cognitive and emotional states using HCI 

devices.   

In the remainder of this paper, we first briefly 

review the DPT and its' relation to cognitive load and 

motor movement. Next, we review the existing IS 

literature that examines the impact of users' various 

cognitive states on fine motor control and explains 

how these prior studies (e.g., mouse movement 

literature) align with DPT. Lastly, we extend the prior 

literature that examined DPT using mouse cursor 

movements and demonstrate that the users' typing 

dynamics (i.e., multi-device) slow down as the user is 

more likely to rely on Type 2 process types of 

thinking. We draw from the DPT, framed within the 

typing behavior, to predict that the individuals will 

have a faster transition between the keys and more 

rapid progression throughout the fields when entering 

familiar information (i.e., their personal identity 

information) on a form. 

To test our hypotheses, we conducted a study 

where the participants entered a set of personal 

identity information and unfamiliar identity 

information, which is hypothesized to be more 

cognitively demanding: 

1. We looked into the behavioral differences 

observed between the two-information entry 

event to replicate the studies from prior 

literature that examined the impact of 

heightened cognitive load on device usage 

behaviors. 

2. To examine the robustness of DPT, we 

further observed whether the participants had 

executed the task in an intuitive (i.e., Type 1 

process) or deliberate (i.e., Type 2 process) 

manner. Specifically, we observed whether 

the participants had paid attention to the 

survey instructions to correctly execute the 

task (i.e., the participants carefully read and 

followed task instructions). 

3. We subsequently compared the information 

entry behaviors of the participants who had 

entered the personal information on both 

forms (i.e., likely to be answering intuitively) 

vs. participants who had followed the 

instructions and provided both personal and 

synthetic identity information (i.e., reading 

the instruction and answering deliberately). 

Our results show that the typing speed and task 

execution speed are significantly slower for the users 

who followed the instruction (i.e., entering 

synthetically generated identity information) – 

demonstrating that putting more reliance on the Type 

2 process manifests as deliberation in answering 

behaviors (i.e., typing). 

We contribute to the literature in various ways. 

First, we provide an overarching theory of existing 

theories within this research area (i.e., a metatheory) 

that relies on different theoretical mechanisms to help 

explain all prior results from mouse movement 

literature. Specifically, we extend the prior literature 

by providing examples of how the main findings of the 

prior studies can be aligned under DPT. Second, we 

extend a prior study that examined how Type 1 and 

Type 2 thinking manifests in mouse cursor movement 

(Kim et al. 2022) and demonstrate that DPT is robust 

on other HCI devices (i.e., computer keyboards). 

Lastly, our methods can be practically applied in any 

instance where users type information onto a form 

field. 

2. Background 

2.1. Prior Literature: Linkage Between 

Cognitive Processes and Hand Movements 

Prior literature has demonstrated that cognitive 

and neurological monitoring devices such as EEG, 

fMRI machines, and high-definition cameras that 

capture face and eye movements can be leveraged to 
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infer users’ cognitive states (Vance et al. 2018). 

However, since users do not use these devices 

regularly, they cannot be used to understand user 

behaviors in a more natural setting. Thus, to overcome 

the limitations and ecological validity concerns of 

such devices, an emerging stream of IS research has 

been leveraging non-invasive, highly scalable HCI 

devices such as computer mice, keyboards, and mobile 

(touch) devices to examine various cognitive and 

emotional phenomena (Epp et al. 2011; Hibbeln et al. 

2017; Jenkins. et al. 2019; Valacich et al. 2020). 

While exploring user behaviors in a more natural 

setting is valuable, this introduces a lack of control as 

users can multitask and be distracted. Thus, the past 

literature conducted various studies under specific 

scenarios where the user would experience heightened 

cognitive load and exhibit different device usage 

patterns (Hibbeln et al. 2017; Jenkins. et al. 2019; 

Jenkins et al. forthcoming; Weinmann et al. 

forthcoming). For instance, as referenced previously, 

Hibbeln and colleagues (2017) drew from Attention 

Control Theory (ACT) (Eysenck et al. 2007) – that 

negative emotions act to impair attentional control – to 

explain how such feelings resulted in less accurate and 

slower mouse cursor speeds. Alternatively, Jenkins et 

al. (2019) used the Response Activation Model 

(RAM) and Cognitive Load Theory (CLT) to explain 

why an orienting response will change people’s mouse 

movements when providing a predetermined 

response—participants were told beforehand how to 

respond to a particular question. According to the 

RAM, competing cognitions and reevaluation of 

response details can influence fine motor control 

(Welsh and Elliott 2004). The RAM proposes that 

hand movements respond to all thoughts that have 

even minor potential (i.e., actionable potential) to 

result in movement changes. According to CLT, short-

term or working memory is limited and can only 

handle so much information effectively 

simultaneously. Using this framing, Jenkins et al. 

(2019) show that mouse movements predictably differ 

between guilty (higher cognitive load) and innocent 

people in sanctioned deception scenarios.  

Further, Jenkins et al. (forthcoming) studied how 

user noncompliance resulted in slower and less 

accurate mouse cursor movements, also framed under 

the RAM along with CLT, but now including 

Cognitive Dissonance Theory (CDT). CDT posits that 

in situations where individuals have conflicting 

attitudes, beliefs, or behaviors, they will have feelings 

of mental discomfort (i.e., due to increased cognitive 

load and negative emotions), leading to an alteration 

in one of the attitudes, beliefs, or behaviors to reduce 

the discomfort and restore balance. Thus, CDT is 

tightly linked to CLT; as dissonance increases, so do 

cognitive load and negative emotions. When people 

knowingly provide misleading information online, 

they are likely to doublecheck, reconsider, hesitate, or 

question actions. When these cognitive events occur, 

the mind automatically and subconsciously programs 

a movement response to fulfill that intention. Thus, 

these studies show a tight linkage between cognitive 

and emotional changes and changes in mouse cursor 

movements.  

More broadly, in a review of early mouse 

tracking studies from the cognitive and neuroscience 

literature, Freeman et al. (2011) stated that the 

“movements of the hand…offer continuous streams of 

output that can reveal ongoing dynamics of [cognitive] 

processing, potentially capturing the mind in motion 

with fine-grained temporal sensitivity” (p. 1). Thus, it 

has been unequivocally demonstrated that emotional 

and cognitive changes influence fine motor control. 

Modern HCI devices have fine-grained sensors for 

capturing this information.  

One limitation of such studies is that, although 

these studies essentially examine how cognitive or 

emotional changes manifest as changes in device 

usage patterns, the source of cognitive and emotional 

changes proposed by the literature varies significantly. 

As a result, although the prior studies examine the state 

of heightened cognitive loads, they leverage multiple 

theories and concepts for motivating and interpreting 

research results. Each of these perspectives, we 

believe, is not only related but can be captured under 

a larger conceptual framework, Dual-Process Theory 

(DPT). Here, we extend the prior literature by 

introducing an overarching metatheory, DPT, to 

conceptualize our current study and reconcile the 

theories used in the prior related studies.   

2.2 Dual-Process Theory 

DPT, a widely accepted model in psychology, 

explains how the interplay of Type 1 process and Type 

2 process types of thinking manifests in human 

decision-making. 

 

2.2.1. Type 1 process – Intuitive System. Type 1 

process comprises a set of sub-systems that operate 

with autonomy (Evans and Stanovich 2013). When 

given a task, the user generates autonomous, non-

reflective responses that help complete the task (Over 

2020). Generating these responses does not require 

extensive cognitive resources (i.e., it is effortless to 

know your age) and often entails behavioral outputs 

that are instinctive, immediate, effortless, and fast.  

 

2.2.2. Type 2 process – Analytic System. Type 2 

process types of thinking are used when individuals 
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confront tasks requiring reasoning and assessments 

(Evans and Stanovich 2013). For instance, when given 

a problem the individuals cannot easily comprehend or 

answer (e.g., performing a very complex 

computation), they will activate the Type 2 process to 

evaluate the problem-solving steps and the answers 

continuously. Naturally, such processes are 

cognitively demanding and require extensive 

cognitive resources. When the Type 2 process is 

active, individuals will be more careful, slower, and 

effortful when executing the task. 

2.3 Dual-Process Theory and Motor 

Movements 

Motor learning, which refers to a set of processes 

aimed at learning and refining new skills through 

continuous practice, explains how humans become 

proficient in executing various motor movements, 

including typing on a keyboard  (Filippi et al. 2018; 

Nieuwboer et al. 2009). Such skill acquisition process 

becomes less deliberate and effortful over time as they 

become more automatized (Shiffrin and Schneider 

1977). Skilled actions acquired by motor learning 

typically unfold automatically (e.g., executing strokes 

in swimming), while conscious processing can 

mediate this automatic processing (i.e.., paying 

attention to the action during execution) (Beilock and 

Carr 2001).  

Prior literature that studied motor learning and 

execution made significant progress in explaining how 

automatic processing influences motor movements. 

Yet, there was limited progress in formulating a 

construct that can be leveraged to perform a more fine-

grained analysis (Toner and Moran 2021). Thus, 

researchers studying motor movements have begun 

adapting DPT – suggesting that motor movements 

consist of cognitive and automatic processes - to 

assess the relationship between controlled thoughts 

(i.e., Type 2 process) influence motor movements 

(Furley and Memmert 2015; Masters and Maxwell 

2008; Mylopoulos and Pacherie 2017).  

Executing highly practiced motor skills can be 

influenced by external factors such as task difficulty, 

emotional pressure, and external stimuli (e.g., crowds 

at a sporting event). As a response to the external 

factors, a person executing the motor skills would 

leverage both automated (i.e., Type 1 process) and 

controlled processes (i.e., Type 2 process) rather than 

using them independently (Carr 2015).  

Motor movement and learning are closely related 

to device usage behaviors requiring hand inputs. In a 

typing context, these behaviors include but are not 

limited to transitioning from one key to another, 

pressing and holding down on a key while typing 

another character, and progressing from one typing 

task to another.       

2.4 How Dual-Process Theory and Motor 

Learning Applies to Prior HCI Studies 

Recall that Hibbeln et al. (2017) proposed that 

cognitive load would be heightened as a person's 

attention is distributed to broader spaces as they feel 

negative emotions, resulting in slower and less 

accurate movements. From a DPT perspective, the 

user is now using both the Type 1 process and Type 2 

process to execute their practiced motor skills (e.g., 

click, dragging, and moving the mouse cursor) while 

reacting to the stimuli (i.e., working memory is 

consumed on non-task related factors). Thus, DPT 

suggests that the mouse cursor movement will be 

slower as the users leverage both the Type 1 process 

and Type 2 process to complete the research tasks after 

being exposed to the stimuli (the accuracy of the 

movement is outside of the Dual Process context). 

Similarly, Jenkins et al. (2019) proposed that 

cognitive resources are constrained when concealing 

information versus when telling the truth, resulting in 

a slower mouse movement for people concealing 

information. From a DPT perspective, when people 

are concealing information, their limited working 

memory is more likely consumed, requiring 

individuals to rely on the Type 2 process, resulting in 

slower mouse movements. 

In Jenkins et al. (forthcoming), slower and less 

accurate mouse cursor movements were exhibited for 

individuals having conflicting attitudes, beliefs, or 

behaviors due to increased cognitive load and negative 

emotions. From a DPT perspective, when individuals 

are experiencing cognitive dissonance, their limited 

working memory is consumed, and they will be more 

likely to rely on the Type 2 process, resulting in slower 

mouse movements. 

As a final example, Weinmann et al. 

(forthcoming) proposed that providing false 

information increased cognitive load and reduced 

working memory when committing fraud. Further, 

they found that giving fraudulent responses when 

completing an online form resulted in slower mouse 

cursor movements. Again, in line with the explanation 

provided by Jenkins et al. (2019), generating false 

information is more likely to require Type 2 process 

thinking, resulting in slower mouse cursor 

movements. 

Thus, we believe that Dual-Process Theory 

provides a higher-level conceptual framework, a 

metatheory, for understanding how cognitive and 

emotional changes will manifest in how individuals 

use computer mice, touch screens, keyboards, and 
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other types of HCI devices. We posit that the findings 

from prior literature that establish the linkage between 

DPT and motor movement can be applied in the HCI 

context, especially for the devices accessible via users' 

hands (e.g., computer mice and keyboards). Motor 

learning (also called motor memory) is a process of 

embedding a specific motor task into memory through 

repetition. When a given movement, such as typing 

your name on a keyboard, is repeated over time, motor 

learning occurs, which results in faster and smoother 

typing (i.e., less variability). Also, as motor learning 

happens over time, typing well-practiced words can be 

performed with less conscious effort. Thus, over time, 

a person forms a habitual typing behavior that is 

unique and consistent, whether on a traditional 

keyboard or a mobile touch keyboard. Because typing 

is a task where people increase their fluency (i.e., 

typing speed and accuracy) through practice, motor 

memory increases as a person repetitively type the 

exact words over time. This results in less variability 

when typing those words than for words not typed as 

frequently. Thus, as motor memory increases, the 

variability of typing dynamics decreases.  

We address two important research gaps by 

proposing a meta-theory that can explain the prior 

studies. First, we provide theoretical explanations for 

the differences in users' typing behaviors. Second, we 

extend the findings from the motor learning literature 

that leverage DPT and examine how the results could 

be generalized in an IS context, specifically in device 

usage behavior. Based on the identified gaps, we draw 

the following research question: 

 

1. Could the DPT be used to identify valid and 

reliable relationships between the users’ 

underlying cognitive processes and device usage 

behaviors (e.g., typing)? 

We address both research questions using simple 

typing tasks involving high and low motor memory 

levels (i.e., entering identity information on a form). 

For example, users would have higher motor memory 

when typing their identity information versus someone 

elses' identity information. We utilize a repeated-

measures experimental design (i.e., use the same 

typing forms for baseline and experimental 

conditions) to mitigate the risks associated with 

potential confounding effects of the differences in 

individuals' cognitive capacity while ensuring the 

generalizability of the study. Precisely, we define: 

 

1. High motor memory task (i.e., Type 1 process) – 

entering their own identity – on a form  

2. Low motor memory task (i.e., Type 2 process) – 

entering an unfamiliar identity (e.g., synthetically 

generated first name, last name, date of birth) – on 

a form. 

The external factors at a sporting event differ 

vastly from the potential factors influencing the users' 

device usage. However, the concept of motor learning 

and DPT still applies to instances where the user uses 

a device that requires any motor movements. Thus, we 

hypothesize that: 

 

H1: Users will exhibit slower key transition times on 

motor execution tasks, likely relying more on the 

Type 2 process.  

 

H2: Users will exhibit slower field transition times on 

motor execution tasks, likely relying more on the 

Type 2 process. 

 

While H1 and H2 are useful, factors such as 

differences in individuals’ cognitive capacity can 

introduce potential confounding effects. To mitigate 

these risks, we first categorize the instances where the 

users’ are executing the tasks based on intuition versus 

the cases in which users’ are performing tasks in a 

controlled manner: 

1. Intuitive Responding (Type 1 process): entering 

the same information on both conditions (i.e., not 

following the instructions) 

2. Controlled Responding (Type 2 process): entering 

different information on both conditions (i.e., 

carefully following the instructions) 

Users who are intuitively responding are likely to rely 

more on the Type 1 process, as the responses are 

effortless, automatic, and often independent of 

cognitive ability (Neys 2006; Raoelison et al. 2021). 

In other words, intuitively responding users are likely 

to pay less attention and spend less cognitive resources 

on task-specific factors while executing the tasks 

promptly. Thus, we hypothesize that: 

 

H3: Users executing the tasks by providing intuitive 

responses will likely utilize the Type 1 process and 

have faster key transition times.  

 

H4: Users executing the tasks by providing intuitive 

responses will likely utilize the Type 1 process and 

have faster field transition times. 
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3. Methodology 

3.1. Procedure and Manipulation 

During the experiment, participants were asked to 

enter their personal information, including first name, 

last name, date of birth, and zip code. This serves as 

the baseline condition for our analysis. They were 

also asked to fill in information for a fictional 

character (imposter) and provide his personal 

information on a form. This serves as the imposter 

condition. We randomized the order in which form 

was presented first to the participants to negate the 

impact of the ordering effect.  

3.1.1. Baseline Condition. All participants entered 

their permanent information in a form. The first two 

fields are character fields where the participants 

entered their first and last names. Subsequent fields 

were the date of birth and zip code fields (See Figure 

1).  

 
Figure 1. Example of identity information form 

provided to the participants 

 
3.1.2. Imposter condition. Participants were 

instructed to navigate to an external link to find the 

imposter information (See Figure 2). Subsequently, 

participants were asked to complete the form that 

requested the same information as the baseline 

condition. Similarly, unexpected questions were 

created upon form submission. 

 

 

 
Figure 2. Imposter identity information 

(distributed using an external link) 

3.2. Participants 

We recruited 202 participants from a large public 

university in the United States. As we recruited 

participants from a university, most participants were 

young adults between 18-24 years old (94%). The 

male-to-female ratio was about 57 to 43. Participants 

were awarded extra credit points for completing the 

study.  

4. Results  

We evaluate hypotheses H1, H2, H3, and H4 

using Welch’s t-tests. First, we conduct field-to-field 

analysis (e.g., first name – baseline condition vs. first 

name – imposter condition) to examine whether the 

users have entered information differently on specific 

fields. As each field entails a different level of task 

complexity (e.g., typing numbers vs. alphabetic 

characters are inherently different), the typing 

behaviors across each field can vary. Second, we 

conduct a form-to-form comparison to examine the 

overall behavioral differences across the form. While 

the field-to-field analysis is useful, a limitation of the 

field-to-field analysis is that the total number of key 

entries on a field is often too small to extract 

meaningful insights (e.g., five numbers for a US Zip 

code). Thus, by aggregating the key entry instances at 

a form level, we alleviate the concerns associated with 

the number of text entries. Lastly, we examine H3 and 

H4 by dividing the participants into Type 1 dependent 

and Type 2 dependent groups and evaluating how they 

completed the personal identity entry task. 

4.1. Testing Hypothesis 1 

H1 stated that when users engage in tasks that are 

likely to put more reliance on the Type 2 process, their 

Key Transition times will be higher (i.e., slower 

transition). The Key Transition measure was 

compared at a field and a form level using Welch’s t-

tests to examine the differences across the task (see 

Table 1, and 2).   

The results from the field-to-field analysis 

suggest that, except for the last name field on the main 

form and state field on the follow-up questions, the 

average transition time was faster for all the other 

fields. Further, the t-test results (Table 2) of the Key 

Transition measure for form-to-form analysis 

demonstrate that the average Key Transition time is 

faster for personal identity. Thus, we conclude that H1 

was supported. 
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Table 1. Field-to-field key transition (Welch’s t-
tests) 

Field P-value Significance Direction 

First 

Name 

0.03274 * Faster for 

Personal 

Identity 

Last 

Name 

0.1983 N/S Faster for 

Personal 

Identity 

Date of 

Birth 

< 2.2e-

16 

*** Faster for 

Personal 

Identity 

Zipcode 9.995e-

05 

*** Faster for 

Personal 

Identity 

Key:  N/S = p > 0.10 ; . = p < 0.10 * = p < 0.05; ** 

= p < 0.01; *** = p < 0.001 

 
 

Table 2. Form-to-form key transition (Welch’s t-
tests) 

Measure P-value Significance Direction 

Key 

Transition 

5.503e-

15 

*** Faster for 

Personal 

Identity 

Field 

Transition 

8.288e-

15 

*** Faster for 

Personal 

Identity 

Key: . = p < 0.10 * = p < 0.05; ** = p < 0.01; *** = 

p < 0.001 

 

4.2. Testing Hypothesis 2 

H2 stated that when users engage in tasks that are 

likely to rely more on the Type 2 process, their Field 

Transition times will be higher. Similar to how we 

examined hypothesis H1, the Field Transition measure 

was compared at a field and a form level using 

Welch’s t-tests (See Table 2, 3). 

The results suggest that the participants had a 

higher average field transition time when entering 

imposter identity in all cases. The results were 

consistent for both field-to-field and form-to-form 

analysis. Thus, we conclude that H2 was supported. 

 

 
Table 3.  Field transition 

Transition  P-value Significance Direction 

First 

Name to 

Last 

Name 

< 2.2 e-16 *** Faster for 

Personal 

Identity 

Last 

Name to 

Date of 

Birth 

0.0002 *** Faster for 

Personal 

Identity 

Date of 

Birth to 

Zipcode 

< 2.2 e-16 ** Faster for 

Personal 

Identity 

Key: . = p < 0.10 * = p < 0.05; ** = p < 0.01; *** = 

p < 0.001 

 

4.3. Testing Hypothesis 3 and Hypothesis 4 

H3 and H4 stated that users who provide intuitive 

responses would likely rely more on the Type 1 

process and have faster key and field-to-field 

transition times. To examine H3 and H4, we coded 

whether participants followed instructions and 

correctly entered both their own identity information 

and that of the imposter identity in the requested order 

(Type 2 dependent) versus those that failed to follow 

instructions and incorrectly entered their own identity 

information when imposter identity information was 

requested (Type 1 dependent).  

Because the Type 1 dependent and Type 2 

dependent participants executed the tasks in the 

imposter condition differently (i.e., entering familiar 

when imposter information was requested), the 

inclusion of these erroneous data points from the 

imposter condition biases our results. Thus, they were 

excluded when testing H3 and H4. Note that 

participants who failed to follow task instructions were 

removed when testing H1 and H2. The results suggest 

that when entering the same types of information on 

an identical form, participants classified as Type 1 

dependent had faster key transition times and field 

transition times – suggesting that Type 2 dependent 

progressed slowly when entering personal identity 

information (See Table 4). Thus, we conclude that H3 

and H4 were supported. 

 
Table 4. Differences in typing dynamics between 

Type 1 and 2 processing 
(Welch’s t-tests) 

Measure P-value Significance Direction 

Key 

Transition 

0.01626 * Faster for 

Type 1 

dependent 

Field 

Transition 

0.00669 *** Faster for 

Type 1 

dependent 

Key: . = p < 0.10 * = p < 0.05; ** = p < 0.01; *** = 

p < 0.001 
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5. Discussion 

The overall results suggest that users had 

significantly slower key transition and field transition 

times when entering imposter identity on a form. Thus, 

H1 and H2 were supported. Further, H3 and H4 

suggest significant behavioral differences exist 

between intuitively and deliberately responding 

participants typing familiar and unfamiliar 

information. Most importantly, our results suggest that 

behavioral differences based on Type 1 and Type 2 

thinking can be captured using users’ typing 

dynamics.  

5.1. Implications for Research 

We contribute to the literature by (1) explaining 

how the prior mouse movement literature’s findings 

align in the context of DPT and (2) demonstrating that 

DPT is robust across different devices. Specifically, by 

explaining how the prior mouse movement literature 

can be explained under the theoretical lens of DPT, we 

provide an overarching explanation of how the 

interplay of Type 1 process and Type 2 process types 

of thinking influence fine motor control that can be 

captured using mouse cursor movements and other 

HCI devices. In a controlled experiment, we 

empirically validated that DPT is robust on any HCI 

devices that the user will interact with their hands (i.e., 

computer keyboard) 

In summary, we not only present a metatheory 

that could explain all prior HCI literature that 

examined the impact of heightened cognitive load on 

HCI device usage, but also present a new method that 

can be applied to social science research that collects 

data from an online platform. 

5.2. Implications for Practice 

There are several practical implications for using 

computer keyboards to measure an individual’s 

reliance on Type 2 process types of thinking.  

First, the real-time assessment of user behavior is 

a substantial challenge as user behaviors are 

influenced by various cognitive processes, which are 

difficult to capture, infer, and act upon outside highly 

artificial environments (e.g., data collection using 

fMRI, EEG caps, eye tracking, and so on). When the 

same techniques are used in a more natural 

environment, the constructed model can generate 

strange insights that may lead to poor management 

decisions. As computer keyboards are widely adapted, 

they are adequate for capturing user behaviors (i.e., 

typing) in a more natural setting.  

Second, entering information on a form is a 

typical online task executed regularly. Some examples 

include, but are not limited to, instances where users 

sign up for a website, apply for a loan application, and 

fill out the identity information for public institutions. 

By looking into the typing dynamics, practitioners can 

identify different points within the form where the user 

may be having difficulties (i.e., putting more reliance 

on the Type 2 process) while filling out a form online. 

Third, our results examining H3 and H4 suggest that 

when users are more engaged in the Type 2 process, 

their device usage behaviors are likely to be slower.  

Practitioners can apply our results to identify various 

points where the users can potentially be using Type 2 

processes (e.g., paying attention to an online 

advertisement) to identify improvement areas. 

5.3. Limitations 

There are several limitations of our study. First, 

although we have demonstrated the robustness of DPT 

using typing dynamics, we still do not know how the 

results would generalize to other commonly used 

devices (e.g., mobile phones). Second, the users may 

multi-task while being on the internet. The measures 

such as field transitions may be influenced by such 

behavior and potentially generate biased results. 

Third, though our methods could virtually be 

implemented in any instances where the user enters 

information on a form, the results may not generalize 

well to typing instances where the information is not 

as structured (e.g., academic writing). Lastly, given 

the limited experimental material (e.g., only using one 

form and examining DPT using a single device), 

further research should be conducted to examine 

whether our results are robust concerning design-

specific factors (e.g., form designs). Future research 

should examine how DPT may apply to a broader 

range of contexts (i.e., device types, users’ browsing 

behaviors, and task complexity) to alleviate these 

concerns. 

6. Conclusion 

By leveraging DPT, we contribute to the 

literature by explaining how providing intuitively and 

deliberately responding manifests as faster and slower 

typing behaviors. Specifically, we present a 

metatheory that could explain prior mouse movement 

literature that examined the impact of heightened 

cognitive load on mouse cursor movements. We 

further believe that the methodology of measuring 
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cognitive load in the DPT context could be applied in 

various other disciplines and HCI devices.  
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