
Uncovering Situations of Cargo Cult Behavior in Agile Software Development
Method Use

Tanja Elina Havstorm
CERIS, Örebro University

School of Business, Sweden
tanja.havstorm@oru.se

Fredrik Karlsson
CERIS, Örebro University

School of Business, Sweden
fredrik.karlsson@oru.se

Karin Hedström
CERIS, Örebro University

School of Business, Sweden
karin.hedstrom@oru.se

Abstract

Misinterpretations and faulty use of Software
Development Method (SDM) practices and principles
are identified pitfalls in Software Development (SD).
Previous research indicates cases with method
adoption and use failures; one reason could be the
SDM Cargo Cult (CC) behavior, where SD
organizations claim to be agile but not doing agile.
Previous research has suggested the SDM CC
framework as an analytical tool. The aim of this paper
is to refine the SDM CC framework and empirically
test this version of the framework. We use data from
an ethnographical study on three SD teams’ Daily
Scrum Meetings (DSM). The empirical material was
collected through observations, interviews, and the
organization’s business documents. We uncovered
twelve CC situations in the SD teams’ use of the DSM
practice, structured into seven categories of SDM
deviations: bringing irrelevant information, canceling
meetings, disturbing the team, receiving unclear
information, bringing new requirements, problem-
solving, and task distribution.

Keywords: Agile, Cargo cult, Self-determination
theory, Social-action theory, Software Development
Methods.

1. Introduction

Developing software is a complex endeavor. In
response to this challenge, organizations have over the
years adopted different Software Development
Methods (SDM). SDMs have moved from traditional
methods to iterative methods, such as Agile Software
Development Methods (ASDM) (Abrahamsson et al.,
2009). The ASDMs appeared around the turn of the
century, stipulating greater flexibility and more rapid
deliveries compared to traditional methods (Beck,
2000). Still, inefficient and ineffective Software
Development (SD) is a challenge for organizations
(The Standish Group, 2020). They face difficulties

meeting deadlines and customers’ requirements, both
in terms of functionality and quality. Existing research
shows that SD organizations have difficulties using
SDMs (Conboy & Carroll, 2019; Dikert et al., 2016;
Soares et al., 2022).

Even though the use of SDMs has been on the
research agenda for a long time, empirical inquiries of
less successful SDM adoption and use have not
received much attention (Dybå & Dingsoyr, 2008;
Gregory et al., 2016; Mäki-Runsas et al., 2019). Still,
prior research shows cases of SD teams failing in their
use of SDMs due to deviation from the intended SDM
(Eloranta et al., 2015; Stray et al., 2016). When
working according to ASDMs, it is important to
adhere to the underlying values, often referred to as the
Agile Manifesto (Beck et al., 2001). Thus, when an
organization chooses to adopt and use a SDM, it
implicitly chooses to adhere to the goals and values of
that SDM (Ågerfalk & Wistrand, 2003). The
organization’s choice of SDM should therefore
preferably be a rational decision, where the business
values and goals align with the SDM’s values and
goals. Such a decision is vital, because the SDM
should guide the organization’s SD teams on which
tasks to prioritize and how to achieve the stated goals.

However, a SD team could align with the rationale
of the SDM and still fail in their SDM use due to
misunderstanding or misinterpretations. For example,
a SD team might misunderstand the actions relating to
a specific goal in the SDM, which could cause
irrational behavior. Or an SD team might stick with an
old habit without paying attention to the fact that this
behavior does not contribute to the goals of the SDM.

Deviating from the SDM description without
having a proper understanding of the consequences
could be a sign of SDM Cargo Cult (CC) behavior
(Mäki-Runsas et al., 2019) leading to not reaching the
intended goals with using the SDM. The CC
phenomenon is borrowed from the field of social
anthropology. It refers to a collective behavior when a
group tries to imitate and perform certain rituals to
reach the same outcome and success as others, without

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6486
URI: https://hdl.handle.net/10125/103419
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

having a proper understanding of the underlying
reasons behind the actions (Worsley, 1957).

According to Mäki-Runsas et al. (2019),
practitioners refer to situations where the SD team
tries to mimic others’ way of working but without
reaching the intended SDM goals as CC. Although
existing research has investigated SDM deviations
(see Section 2), few studies have addressed these
deviations as CC. One reason might be that there are
few analytical tools available to uncover CC situations
in SDM use, although Mäki-Runsas et al. (2019)
suggested an initial SDM CC framework. At the same
time, being able to characterize these situations is
important, providing both practitioners and
researchers with better means to understand them, and
in the end mitigate them. Against this backdrop, the
aim of this paper is to refine the SDM CC framework
and empirically test this version of the framework. As
a starting point for the elaboration we use the SDM CC
framework of Mäki-Runsas et al. (2019).

2. SDM deviations

In previous research, different challenges with
SDM adoption and use have been identified. Several
studies have reported these challenges as method
deviations, which means that SD teams deviate from
the SDM description. One such study is Stray et al.
(2016), which reported on SD teams’ use of Scrum and
the Daily Scrum Meeting (DSM) practice. This study
shows that the SD teams deviated from the description
and goals of Scrum. Deviations could result in tailored
SDM use for the SD teams, where the software
developers show understanding of the consequence of
the tailoring. Such SDM deviations were uncovered by
Häggmark and Ågerfalk (2006) when they studied
software developers deviating from claimed SDM
principles. However, these deviations were motivated
by the case at hand. This shows that although it is
important for the SD team to have a common,
collective understanding of the SDMs, no SDM fits all
projects (Avison et al., 1998).

Digital.ai (2021) reported that SDM adoptions in
SD organizations sometimes fail. These deviations
could, in some cases, be viewed as the explanation for
such failure. Heikkilä et al. (2013) studied
“ScrumBut”, i.e., mismatches between the prescribed
SDM and the actual use. Eloranta et al. (2015)
categorized such SDM deviations as Anti-patterns and
gave an example of SD teams who deviated from
Scrum. These teams adjusted the SDM in a faulty way
due to a lack of understanding of the consequences of
such deviations. Lack of understanding of the SDM
was also seen as a challenge in the implementation of
Lean (Ahmadzai & Bakhsh, 2022). Another challenge

is resistance to change due to specific mindsets
(Patanakul & Rufo-McCarron, 2018; Reginaldo &
Santos, 2020). Such resistance could lead SD teams
not to achieve the intended goals with the SDM
practices. For example, Berger (2009) found that the
culture differed between an organization that adopted
an SDM and its stakeholders, where the stakeholders
were unwilling to commit to the organization’s SDM.
This resistance to acknowledging the culture made the
SDM adoption problematic. However, few studies
seem to investigate software developers’ reasoning (or
lack of reasoning) behind these SDM deviations.

Mäki-Runsas et al. (2019) provided an initial
theoretical framework for classifying SDM CC
behavior. In addition, they theoretically grounded the
explanations of SDM CC situations, i.e., when
software developers use an SDM but do not
understand the actual purpose of the SDM or alter the
practice without any rational reasons. Mäki-Runsas
(2019) used this framework to study if an SD team’s
use of an agile practice corresponded to the SDM’s
goals and values. She found SD team activities that
deviated from the method’s goals and values, without
any attention given to these deviations. In contrast to
Eloranta et al.’s (2015) description of Anti-patterns,
SDM CC behavior could be viewed as one possible
explanation for method deviations. However, so far,
the SDM CC has been difficult to characterize, which
has limited the possibilities to study this phenomenon.

3. The core of SDM Cargo cult

The CC phenomenon stems from Worsley’s (1957)
description of collective ritualistic, uncontested
imitation by different cultures in the Melanesian
islands to replicate the western visitors’ behavior with
the purpose to be rewarded with gifts from the gods.
Refining the SDM CC concept described above, such
behavior refers to situations where a SD team has
certain collective behavior consisting of recurring
non-rational or irrational social actions in their SDM
adoption or use. These social actions are those carried
out as part of SDM practices, where these practices are
subdivided tasks of different stages of a SDM (Klein
& Hirschheim, 1991).

Following Mäki-Runsas (2019) and Mäki-Runsas
et al. (2019), our elaborated conceptual SDM CC
framework draws on Social-Action Theory (SAT)
(Weber, 1947) and Self-Determination Theory (SDT)
(Ryan & Deci, 2000). Table 1 shows the refined
framework. The leftmost column contains the
stereotypes, showing which ones that characterize CC
and which ones that characterize Non-CC. Of course,
these are to be considered ideal types of the studied
phenomenon. The second and third columns

Page 6487

respectively show the grounding of the stereotypes in
SAT and SDT. The rationality in the second column
draws on SAT and the motivation in the third column
draws on SDT.

Table 1. SDM Cargo cult framework
Stereotypes Rationality Motivation

Ca
rg

o
cu

lt

Conventional Non-rational
Traditional Amotivation

Spontaneous Non-rational
Affectual Amotivation

Conception Irrational
Value-based Internalized regulated

Fragmental Irrational
Means-end

External regulated
Internalized regulated

N
on

-
Ca

rg
o

cu
lt Credence Rational

Value-based Internalized regulated

Achievement Rational
Means-end

External regulated
Internalized regulated

The SDM CC phenomenon is viewed by Mäki-

Runsas et al. (2019) as a misuse of an SDM that could
be characterized as an irrational or a non-rational
behavior by SD teams. They described two types of
misuse. First, misuse is situations where software
developers find themselves stuck with traditional
actions (old habits) or act affectually based on
emotions. We capture these situations in the first and
second rows in Table 1. Thus, there is no reasoning
behind these actions, which Mäki-Runsas et al. (2019)
refer to as non-rational behavior. The second type of
misuse is situations where SD teams do not choose
actions that contribute to the goal of the SDM or claim
to adhere to values without allowing these values to
shape the work. These types of actions are cases of
irrational behavior, and we capture them in the third
and fourth rows in Table 1.

The purpose of an SDM is to support the SD
processes. According to Klein and Hirschheim (1991),
“a methodology can be defined as an explicit set of
assumptions, beliefs, and resources (tools and other
means).” They build on Weber’s (1947) concept of
rationality, where they use it together with the SDM
concept. They explain that “methods and tools help put
specific concepts of rationality in practice.” An SDM
consists of three fundamental aspects: concepts,
activities, and notations (Karlsson & Ågerfalk, 2004).
The pursued activity (an action) is in rational cases
grounded on an understanding of the SDMs goals and
values (Karlsson & Ågerfalk, 2004).

To understand how the SDM CC framework
combines SDM theory with SAT, we can examine
Klein and Hirschheim (1991) use of SAT. They
explain that by associating the rationality concept with
the SD process, SDM can be viewed as mental

constructs that structure complex social actions.
Consequently, they identified the rationality concepts
in SDMs as being the key challenge for successful SD.
Therefore, understanding the core idea of an SDM
becomes crucial, otherwise the SD team risks ending
up in an SDM CC situation (Mäki-Runsas, 2019;
Mäki-Runsas et al., 2019). Software developers’ use
of an SDM consists of social actions, i.e., actions
performed by individuals and directed towards other
individuals. Weber’s (1947) SAT provides a typology
of social actions that contains explanations about the
intentions or lack of intentions behind these actions.
The typology distinguishes four social actions:
traditional, affectual, value-based and means-end.

According to SAT (Weber, 1947), social actions
can be of four different characters. The first type of
actions, traditional actions, are governed by habits.
The second type of actions, affectual actions, are
governed by emotions. According to Weber (1947)
these social actions are non-rational, because they do
not include any conscious mental processes. The third
character of social actions, value-based, are governed
by a set of values where the ambition is to adhere to
these values. The fourth type of social actions, means-
end, are governed by specific goals (Weber, 1947)
where the software developer select the most effective
means to reach these goals. Both value-based actions
and means-ends actions can be rational or irrational
depending on how successful the software developers
are with their reasoning. If a software developer
succeeds with the intended value-based or means-end
actions these actions are rational, otherwise they
become irrational (Mäki-Runsas et al., 2019).

Drawing on Mäki-Runsas et al. (2019) we also use
the SDT (Ryan & Deci, 2000) to assess software
developers’ use of SDM. Gagné and Deci (2005) put
forth work motivation theory and made SDT
applicable to understand the motive behind actions in
organizational behavior, in our case SD. It is essential
to distinguish between perceived self-determination
and perceived external control. In SDT, self-
determination refers to a behavior where an individual
is intrinsically motivated. In our case, when software
developers execute a social action as part of a SDM
practice, there are feelings of interest or sometimes
enjoyment connected to the action. Intrinsically
factors related to such actions are feelings of
competence, autonomy, challenge, positive feedback,
and enjoyment (Gagné & Deci, 2005). These intrinsic
factors are called autonomous motivations.

In contrast, when describing perceived external
control, it refers to a behavior where a software
developer is extrinsically motivated. It means that the
software developer executes a particular activity for
some consequence separate from the activity, called

Page 6488

deviating. Extrinsic factors are, for example, tangible
rewards, deadlines, surveillance, and evaluations.
These extrinsic factors are controlled motivation
(Gagné & Deci, 2005).

In SDT, Ryan and Deci (2000) describe a third
motivation aspect, which Gagné and Deci (2005)
explained as negative feedback. It decreases perceived
competence and leads software developers to become
amotivated (non-motivated). Therefore, it is essential
to be aware of “that external factor that provides
choice of task engagement tend to enhance feelings of
autonomy, i.e., it increases intrinsic motivation”
(Gagné & Deci, 2005). Thus, autonomous motivation
could be divided into intrinsic motivation and
integrated extrinsic motivation (Gagné & Deci, 2005).

The underlying factors of perceived motivation
combined with the underlying reasons behind the
software developers’ actions are the basis for
understanding if there potentially exist any SDM CC
situations. Our elaborated SDM CC framework in
Table 1 contains four CC stereotypes and two non-CC
stereotypes (capturing rational SDM use). As said
above, the leftmost column contains the stereotypes,
the second column contains the type of rationality, and
the third column contains the type of motivation
related to the stereotype. Below we discuss the
stereotypes and how they relate to SAT and SDT.

The first two rows in Table 1, contains two non-
rational CC stereotypes. Non-rational social actions
lack intention, i.e., they are not founded in any
reasoning at all, and are considered amotivating. We
label these stereotypes Conventional and
Spontaneous. Behavior related to amotivation
involves having no intentions for the actions and not
knowing why one is executing the action, which could
be referred to as non-rational social actions (Weber
(1947).

The first stereotype is Conventional. This
stereotype refers to situations where it possible to
identify that software developers’ actions are based on
old routines and habits. It means the rationale has been
forgotten since old routines and habits are followed
without knowing why or software developers being
unaware of why a certain action is carried out. Thus,
the pursued action lack intention, which is the same as
behaving amotivated (Gagné & Deci, 2005).

The second stereotype is Spontaneous. Affectual
actions are situations where the action is carried out
based on emotions, brief ideas, and a willingness from
each software developer to achieve the success of
others. It could also be due to following a current trend
without thinking and/or being aware of the deviation
from the SDM. Having a sense of being onboard on
the current trend, the behavior is considered as

amotivating. Consequently, the behavior is an emotive
response without rational reasoning.

The irrational CC stereotypes are found on the
third and fourth rows in Table 1: Conception and
Fragmental. In contrast to non-rational social actions,
irrational social actions are failed reasoning attempts.
When executing these actions, software developers
intend to adhere to values or do not choose the
appropriate action to achieve one or more goals in the
SDM. Irrational actions are driven by perceived
external control, either external regulated or
internalized regulated, i.e., different types of extrinsic
motivation. Internalized regulations could have three
characters, introjected, identified, or integrated. Thus,
these actions are not considered to have an intrinsic
motive, since SDM CC situations are work practices.
This means that software developers’ actions are
related to their work, and that their use of SDM
practices will be expected by the organization. Thus, it
is not their own choice entirely. Instead, the focus is
on the level of autonomy and volition to pursue a
certain action.

The self-determination continuum (Ryan & Deci,
2000) contains three different types of internalized
regulated motivations to describe the level of
autonomy. First, Introjected regulations are situations
when the regulation is controlling the software
developers, which is a controlled form of internalized
extrinsic motivation (Gagné & Deci, 2005). Second,
Identified regulations are when software developers
feel greater freedom and volition as the behavior is
more congruent with their personal goals and
identities. In this case, software developers identify
with the value of behavior for their own self-selected
goals (Gagné & Deci, 2005). Software developers’
actions are defined as being of the character identified
regulations, which means they are autonomously
extrinsically motivated (Gagné & Deci, 2005). Third,
Integrated regulations are when software developers
are motivated by their view that the activity is
instrumentally vital for personal goals. Thus, they are
not interested in the activity itself.

Returning to our irrational stereotypes in Table 1,
the Conception stereotype addresses irrational value-
based actions. Irrational value-based actions are
situations where software developers claim to adhere
to the values of the SDM. However, while having
internalized regulated motivation the software
developers fail in understanding how the values need
to shape their work. Misunderstandings or
misinterpretations of the SDM are the basis leading to
irrational actions, as the SD team fails to adhere to the
SDM values.

The next irrational CC stereotype is Fragmental.
This stereotype captures means-end actions where the

Page 6489

software developers are trying to achieve a goal (end)
by choosing between different actions (means).
However, in this case, the chosen mean is not suitable
for the claimed goal. The software developers perceive
to a larger extent external control as the goals are the
controlling factor that affects the software developers’
actions. The perceived self-determination depends on
the software developer’s volition to pursue the SDM
practice. As the software developers do not follow
their own ideas or goals, instead being told by the
management to carry out certain practices within the
SDM. Misinterpreted selection of relevant actions
leads to irrational actions, which are malpractices, as
the fundamental understanding of the SDM goals is
non-existent or limited.

The last two rows in Table 1 contain the Non-CC
stereotypes: Credence and Achievement. Non-CC
stereotypes capture rational reasoning and represent
situations where an SD team succeeds with its use of
an SDM. Their executed actions are in line with
claimed SDM values, i.e., value-based, or contribute
to one or more goals specified in the SDM, i.e., means-
end. The Credence stereotype addresses value-based
actions where the software developers’ action is based
on a belief in the values of the SDM and the executed
action successfully aligns with these values.
Consequently, the software developers understand the
SDM values claimed by the organization. This also
means that there is no malpractice. In these cases, the
software developers perceive external control and self-
determination are characterized as internalized to the
level of identified regulations, where the importance
is focused on values and regulations.

The sixth and final stereotype is Achievement. This
stereotype addresses means-end actions where the
software developers’ action contributes to fulfilling
the goal(s) in the SDM. The perceived self-
determination depends on the software developers’
volition to pursue the SDM practice. The motives in
these situations are categorized as external regulated
situations where the SD team perceives external
control or internalized regulated to the level of
integrated regulated – which are situations where
there is a coherence among the goals, values, and
regulations. The latter means the software developers
are interested in the goals of an activity, not the
activity itself (Gagné & Deci, 2005). By having a
proper interpretation of the chosen SDM, the software
developers choose an action that is relevant to the goal
and use it to reach the goal.

4. Research approach

This study took place at an international product
company, Alpha (pseudonym), and its SD department

Beta (pseudonym). This department has one office in
Sweden and one in the US that develop advanced
software for industrial machines. Beta previously used
a traditional SDM, but since a couple of years back
they have adopted an agile way of working. Today
they claim to use Scrum.

The goal with their Scrum adoption was to reach
an iterative and incremental development to deliver
further continuous integration and continuous delivery
to their customers. In total, Beta’s office in Sweden
has 24 software developers divided into three SD
teams. Table 2 shows the roles in Beta and the SD
teams. Beta has two managers, one for the Swedish
site and one for the U.S. site. The three Swedish
development teams are each led by a Scrum Master
(SM). At the U.S. site there is one SM that leads a team
that focuses on testing the software with industrial
machines. This site also includes product owners and
customers.

Table 2. Roles in the software development teams
Role Description

Manager Managing the department and
facilitated management meetings.

Product owner Facilitating iteration planning and
prioritization of backlogs.

Customer
Provides business needs and

deciding focus. Gives feedback on
demonstrations.

Scrum Master Facilitating daily scrum meetings,
and demonstration.

Technical architect Facilitating architectural design
issues.

Test responsible Running tests at team level: unit
tests and regression tests.

Developer Executing research and
development of software.

Integration tester
Responsible for system

integration tests on the industrial
machines.

4.1. Data collection

An ethnographic research approach was chosen for
this study (Czarniawska, 2007). The first author
followed the SD team members’ daily work on-site for
three years. The data collection method was chosen
due to the need of developing a deep understanding of
the SD teams’ use of Scrum and their entire decision-
making chain and value stream. In total, we use three
primary data sources: field notes from observations,
interviews, and business documents. Observations are
fundamental in ethnographical studies as the
researchers spend extensive time at the research site

Page 6490

observing what people say and do (Van Maanen,
2011). Our observations account to approx. 800 hours.

The first author observed seven Scrum practices
during the three SD team’s daily work and Betas’
management meetings with the Swedish and U.S.
offices. This researcher took a passive role in
observing the SD team members’ discussions and
actions. Observations enabled the possibility to
identify what happened and, to some extent, the
reasons why. An observation protocol was used to
structure the field notes. The observation protocol
focused on the SDM practices, and the activities
carried out in the room. In addition, notes were taken
about the context and thoughts that arose during the
observations. In addition to following work activities,
the first author participated in coffee and lunch breaks,
as well as playing board games with the team members
during these breaks. These latter actions were
important to develop trust, get access, and to
understand the context. The first author also spent time
learning the working language of the SD teams. All
these actions served the purpose of becoming one of
the natives.

To better understand and collect more detailed data
about the reasons for why the observed actions
occurred, a “follow-up” session with nine semi-
structured interviews (Kvale & Brinkmann, 2009) was
conducted at the end of the third year. These
interviews also served to validate the observations. To
this end, the first author interviewed three software
developers individually from each SD team for 1-1,5
hours. The interviews were semi-structured, to create
a focus on the observed action patterns and at the same
time allow the respondents to elaborate on the reasons
behind these actions. Consequently, the questions
followed an interview guide developed based on the
previous observations (Kvale, 1994). Each interview
was recorded and transcribed. Regarding business
documents, the company’s description of Scrum was
collected in the beginning of this study. This was
important because it allowed us to elicit the goals of
the SDM that Beta claimed to adhere to. The intended
goals of the SDM practice Daily Scrum Meeting
(DSM) are below referred to as Beta’s reference point.

4.2. Data analysis

Due to space limitations, we focus our analysis on
Beta’s use of their DSM, where each SD team had its
daily meetings. We chose this practice over the other
six, due to being a daily activity that generated
extensive empirical data. The analytical steps
described below are not contextually bound to this
practice. Our analysis was theory-driven using the
SDM CC framework and the four analytical steps

were, although described in sequence below,
conducted iteratively. The first author executed the
steps below, and the co-authors later verified the
analysis with the empirical data.

The first step was to identify the reference point,
i.e., the company´s claimed SDM goals for each
practice. We use the company’s SDM description as
input, to build on their contextualized version of
Scrum. Consequently, we acknowledge that SDM can
be tailored to organizational characteristics and needs.
In this case, we elicited the intended goals with the
DSM practice. For example, one of Betas’ goals with
their DSMs was for the SD teams “to communicate
their daily status”. For this practice Beta aligned with
the original SDM description. Thus, we resorted to this
latter method description to understand the goals and
values of the SDM and its practices. Since Scrum is
one SDM in the ASDM family, it is based on the Agile
Manifesto’s four values and twelve principles
followed by specific goals for each agile method and
its practices (Beck et al., 2001).

The second step focused on eliciting recurrent
actions performed by the SD teams, i.e., to identify
patterns. We used our observation protocols as input
for our coding. According to Weber (1947), social
actions are carried out “for someone and something
else”. In our case, the social actions of interest were
those executed by software developers with the
intention to contribute to the SDM practice (i.e., for
someone) practices performed by the SD teams. In this
particular analysis, we focused on recurrent actions on
DSMs or associated with that practice. For example,
one identified recurrent action performed by the SD
teams was canceling DSM when the SM was absent.

The third step focused on categorizing the
recurrent actions into deviations and non-deviations
from the reference point. The coding was done by
using the coarsest part of the SDM CC framework in
Table 1, i.e., cargo cult and non-cargo cult. It meant
that the recurrent actions were sorted into two separate
categories, 1) recurrent actions that deviated from the
reference point, for example, “meeting participants
disturbs the team during their daily scrum meeting”,
and 2) recurrent actions that aligned with the reference
point, non-deviations, for example, “team members
report on identified obstacles”.

The fourth step focused on refining the analysis of
the recurrent actions, sorting them using the SDM CC
stereotypes (see Table 1). We used the interviews and,
when possible, the observations for this interpretation.
The interpretations were based on a) type of rationality
and b) type of motivation that was behind each
recurrent action. The reason for doing so was to
understand why the recurrent actions were carried out.

Page 6491

5. Results

We elicited three goals with Beta’s DSM, i.e., their
reference point, from their Scrum description. The
following goals were elicited: “(1) to communicate
their daily status, progress, and plans, (2) to identify
obstacles so that the team can remove them, and (3) to
set direction and focus”. Beta’s reference point also
included guidelines for their DSMs, called meeting
rules. For example, these meetings should only take 15
minutes. In total, over the three years we identified 250
recurrent actions performed by the SD teams during
their DSMs. Of these recurrent actions, 63 actions
were classified as deviations from Beta’s reference
point and are included in our analysis below. Thus, we
also found non-deviations, i.e., non-CC situations in
Table 1, which have not been included in the analysis.
In the following subsections, we present the identified
SDM deviations and how they are situated in the SDM
CC framework. In our analysis, we identified seven
categories of SDM deviations in the recurrent actions.
These categories are shown in the leftmost column of
Table 3. This column is followed by a deviation
number and the classified stereotype.

Table 3. Identified SDM deviations

Description Deviation no. Stereotype

Bringing irrelevant
information

D1 Conventional
D2 Fragmental

Canceling meetings
D3 Conventional
D4 Fragmental

Disturbing the team D5 Spontaneous

Receiving unclear
information

D6 Fragmental
D7 Fragmental

Bringing new
requirements

D8 Conventional
D9 Fragmental

Problem-solving D10 Fragmental

Task distribution
D11 Conventional
D12 Fragmental

5.1. Bringing irrelevant information

During Betas’ DSMs we observed that the SD
teams were facing difficulties to stick to the intended
topic. This was due to the participants bringing
irrelevant information to the meeting. These
deviations belong to two kinds (stereotypes): (D1)
Conventional and (D2) Fragmental.

The first deviation, D1, captures situations where
no reasoning behind the bringing irrelevant
information could be found. The meeting participants
acted upon old routines and followed their traditions

of having meetings with their team managers. “The
meetings let us have daily contact with our team
manager, the meeting itself is not very interesting” –
team member 8. Since there is no reasoning behind
these actions these were referred as being amotivation.

The deviation D2 captures situations where the
team members working in multiple teams told the
others about everything that they had working on, even
though the information was not related to the current
team. The reasoning behind these actions were the
intention to contribute to the goal about daily status
and progress. Bringing this type of information to the
team is irrational since it does not contribute to the
goal of their DSM. “I want to tell the others about
what is going on in the other projects and contribute
to the discussion on the progression” – team member
5. The underlying motivation was identified as
internalized regulated as the team members were
focused on self-worth contingent of performance to
show to other team members what the team member
has done.

5.2. Canceling meetings

During Betas’ DSMs it was possible to observe
that the meetings got cancelled when the SM was not
available. This led the team not understanding the
status for the project. These deviations belong to two
stereotypes: (D3) Conventional and (D4) Fragmental.

The first deviation D3 captures situations where no
reasoning behind the cancelling the DSM could be
found. The meeting participants acted upon old
routines, in line with their old way of working. The SD
teams followed their traditions by not pursuing these
meetings without their immediate manager, although
the presence of the manager is not required. Since
there is no reasoning behind these actions, they were
referred as being amotivation. “We just receive an
email notification in the morning if our team manager
cannot come then we assume that it is canceled” –
team member 6.

The second deviation D4 is situations where the
SM cancelled the DSMs because the project changed,
and top management steered the project away from an
agile way of working. These situations, when the SD
team deviated from the agile way of working, were
situations when the project was approaching release
date. As one of the SM said with a slightly discouraged
tone, “Well, we do not follow any sprint
now…everything regarding agile and methods has
stopped due to coming releases”. The underlying
reasoning behind these actions was to follow the top
management’s call on focusing on their requested
demand, which made the SM to stop facilitating the
DSMs. The intended goal was to make sure that the

Page 6492

SD team focused on working software, by providing
status reports on their DSM. Due to request from top
management, the team was not able to fulfil the
intended goal of communicate their daily status,
progress, and plans. The SD team deviated from the
DSM reference point. Not fulfilling the intended goals
make these actions irrational. The identified
motivation for D4 was external regulated. The team
members were experiencing external control from the
SM with new priorities and distributed tasks to focus
on. In turn, these new priorities were given to the SM
by top management and product owners.

5.3. Disturbing the team

During Betas’ DSMs it was possible to observe the
team members getting disturbed and interrupted by
other meeting participants when they were having the
word to report on their status. These deviations belong
to one stereotype: Spontaneous. Deviation D5 captures
situations with no reasoning behind the actions. The
interruptions are based on emotional and affectual
stimuli, i.e., a response of engaging in the
conversation. Since there is no reasoning behind these
actions, they are viewed as amotivation.

5.4. Receiving unclear information

During Betas’ DSMs it was possible to observe
that the SD team often left out relevant information,
which later created difficulties for the team members
to know what to focus on. These deviations belong to
the Fragmental stereotype, having two different types
of motivations: (D6) Internalized regulated, and (D7)
External regulated.

The deviation D6 captures situations where SD
team members did not know what to work on next due
to unclear information on their Scrum board. The
scrum board was supposed to include a list of
prioritized items/tasks, so the team could focus on the
most urgent features of the development. During
observation, one of the team members said after one
of the DSMs, “Our overall board is a total mess
where, for example, the items submitted for review are
never moved to the last column” (From field notes).
Another team member pointed out, “our backlog is not
prioritized so it is not possible to find the most urgent
task to work on, so I ask my team manager what to
work on instead” – team member 4.

By not having these prioritized items the team
members often ended up with not having anything
specific to work on until the SM provided new tasks at
the next DSM. Situations like this is identified as
irrational means-end, where the team members were
to fulfil the SDM goals by looking at the Scrum board

for their upcoming task for the day. However, this type
of action became disrupted by the unclear information.
For instance, they did not have clear information to
select their next task. The motivation in these
situations has been identified as internalized regulated
to the extent of self-worth contingent on performance.
The self-worth of the team members was an important
factor on not making their own decision on choosing a
new task, by not making their own decision indicates
a moderately controlled motivation, so-called
introjected regulated.

The next deviation, D7, captures situations where
the SMs faced difficulties to create a proper overview
of the sprint goals due to unclarities from the product
owner. The underlying reasoning behind these actions
was for the SM to keep the team updated at the DSMs
and keep the DSMs focused on their ongoing sprint.
Due to unclear information from the Product owner,
the SM became uncertain and could not fulfil the
intended goal. The SMs faced control by the Product
owner. These situations are identified as irrational
means-end actions having external regulated
motivation.

5.5. Bringing new requirements

During Betas’ DSMs it was possible to observe
that the teams received new requirements during their
ongoing sprints. These deviations belong to two
stereotypes: (D8) Conventional and (D9) Fragmental.

The first deviation D8 captures situations where no
reasoning behind the receiving of new requirements
could be found. Instead, the meeting participants acted
upon old routines, following their traditions of taking
order from top management. There were rapid changes
due to software bugs that needed attention, as the
software was used in the industry. The SD teams
received this information at DSMs during ongoing
sprints in their DSM. “Sometimes customers panic
and want something done very quickly. And then it's
urgent. So, there can be a total stop in the other things
you're dealing with. Then you must put it aside” –
team member 3. The old routines had been to pay
attention to these software bugs immediately. This
shows non-rational traditional actions and they are
viewed as amotivation.

The second deviation D9 addresses situations
where the SD teams received either new priorities or
new requirements during their ongoing sprints. The
underlying reasoning behind the team’s actions was to
comply with top management’s request. The intended
goal, the reference point, was to make sure that the
team focused on working software, by providing status
report at their DSMs. One of the team members said
“the requirements could change whenever, so we have

Page 6493

to look for changes within the requirements log
everyday” – team member 1. The interruptions that
new requirements caused, resulted in irrational
actions. The SD team deviated from the reference
point of their DSMs, as the actual executed actions did
not contribute the goals. The underlying motivation
was identified as external regulated. The SD teams
received external control directly from the SM, who
gave new priorities or new requirements to focus on
during the DSMs.

5.6. Problem-solving

During Betas’ DSMs we observed how the team
members described the SD obstacles that they could
foresee. However, they also discussed how to
overcome these obstacles, which mean turning DSMs
into problem-solving. The identified deviations belong
to the same stereotype: Fragmental.

The deviation D10 captures situations where the
intended goal and underlying reasoning was to identify
obstacles, as part of the status report. However, the
focus often changed to problem-solving during the
execution of the DSMs. This is exemplified by several
of the team members “we tend to almost every day go
into details to solve issues and the meetings gets
extended” – team member 3, and “we discuss
problems that someone needs help with” – team
member 5, and “it’s very common to answer to each
other’s questions during our morning meetings” –
team member 4. The change of focus, from identifying
obstacles to discuss potential solutions, has been
identified as irrational means-end. The underlying
motivation was identified as internalized regulated.
The SD teams were focused on the importance of the
goals and values related to identifying obstacles as the
team member wants to help the projects move forward.

5.7. Task distribution

During Betas’ DSMs it was possible to observe
that the SD team members were in much need of their
SMs approval on what to work on next. In addition to
these approvals, the team members received new tasks
directly from the SM. These deviations belong to two
stereotypes: (D11) Conventional and (D12)
Fragmental.

The first deviation D11 captures situations where
team members during the DSM asked the SM what
they should work on next, instead of selecting their
next task. We identified no reasoning behind these
actions, instead it was uncovered that the SD teams
acted upon old routines where they received work
tasks from their team manager. “I usually ask the
project manager what needs to be done first” – team

member 4. Since there was no reasoning behind these
actions, they are viewed as amotivation.

The second deviation D12 captures situations
where the team members received new tasks to work
on by the SM during their DSMs. We uncovered that
the reasoning behind these actions was the SM’s need
to change the focus of SD team. By delegating new
tasks, the SM does not allow the SD team to freely
choose what to do next on the Scrum board to do. “If
it's something that really needs to be done now, when
it's time-critical, you might be told to do it, and then
there is no chance to do anything else” – team member
9. These situations were identified as irrational
means-end actions having external regulated
motivation. The SD team members were in these
situations facing external control by the SM.

6. Discussion and Conclusion

We contribute to previous research on SDM CC
behavior (Mäki-Runsas et al. 2019; Mäki-Runsas,
2019) by a refined version of the SDM CC framework.
Compared to the initial framework in (Mäki-Runsas et
al., 2019) we provide a refinement on how to integrate
and use Self-Determination Theory (SDT) in analysis
of SDM CC behavior. This has resulted in a new set of
stereotypes. The refined framework allowed us to
identify 12 CC situations in the three SD teams’ use of
Daily Scrum Meetings, structured into the following
seven categories: (1) Bringing irrelevant information,
(2) Canceling meetings, (3) Disturbing the team, (4)
Receiving unclear information, (5) New requirements,
(6) Problem-solving, and (7) Task distribution. These
categories are an empirical contribution to existing
research on method deviation (e.g. Ahmadzai &
Bakhsh, 2022; Reginaldo & Santos, 2020).

The refined framework can act as a starting point
for similar studies on the use of SDM to empirically
confirm the identified patterns as well as identify new
ones. In addition, the identified patterns may help
practitioners uncover CC situations by acknowledging
the identified situations in their organizations. Also,
previous research has discussed method deviations as
ScrumBut (Heikkilä et al., 2013) or Anti-patterns
(Eloranta et al., 2015). We contribute to these studies
by providing an understanding of why such method
deviations arise. Having said that, we do not claim that
there is a perfect match between our categories and
previously identified ScrumButs and Anti-patterns.
Still, such understanding can enhance the possibilities
to mitigate SDM deviations.

An obvious limitation of this study is it being based
on one ethnographic case study. Consequently, we do
not claim that the findings are valid beyond the case
investigated. Furthermore, in this paper, we have used

Page 6494

Self-Determination Theory (SDT) from a work
motivation perspective. Therefore, we limited our use
of the theory by focusing on the motivational aspects
that can be related to work situations only. Thus, we
have not related software developers’ actions to any of
the psychological needs found in the SDT theory,
which opens opportunities for future research.

12. References

Abrahamsson, P., Conboy, K., & Wang, X. (2009). ´Lots
done, more to do´: the current state of agile systems
development research. European Journal of Information
Systems, 18, 281-284.

Ahmadzai, S., & Bakhsh, M. (2022). An Empirical
Investigation on Lean Method Usage: Issues and
Challenges in Afghanistan. In AI and IoT for Sustainable
Development in Emerging Countries: Challenges and
Opportunities (pp. 255-264). Springer International
Publishing.

Avison, D., Wood-Harper, A., Vidgen, R. T., & Wood, J. R.
G. (1998). A Further Exploration into Information
Systems Development: The Evolution of Multiview2. IT
and People, 11(2).

Beck, K. (2000). Extreme Programming explained: embrace
change. Addison-Wesley.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith,
J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.
C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas,
D. (2001). The agile manifesto.

Berger, B.-D. (2009). The utility of rapid application
development in large-scale, complex projects.
Information Systems Journal.

Conboy, K., & Carroll, N. (2019). Implementing Large-
Scale Agile Frameworks: Challenges and
Recommendations. IEEE Software, 36, 44-50.

Czarniawska, B. (2007). Shadowing and other techniques
for doing fieldwork in modern societies. Liber AB.

Digital.ai. (2021). 15th Annual State of Agile Report.
Digital.ai.

Dikert, K., Paasivaara, M., & Lassenius, C. (2016).
Challenges and success factors for large-scale agile
transformations: A systematic literature review. Journal
of Systems and Software, 119, 87-108.

Dybå, T., & Dingsoyr, T. (2008). Empirical studies of agile
software development: A systematic review.
Information and Software Technology, 50, 833-859.

Eloranta, V.-P., Koskimies, K., & Mikkonen, T. (2015).
Exploring ScrumBut - An empirical study of Scrum anti-
patterns. Information and Software Technology, 74, 194-
203.

Gagné, M., & Deci, E. L. (2005). Self-determination theory
and work motivation. Journal of Organizational
Behavior, 26(4), 331-362.

Gregory, P., Barocca, L., Sharp, H., Despande, A., & Taylor,
K. (2016). The challenges that challenge: Engaging with
agile practitioners’ concerns. Information and Software
Technology, 77, 91-104.

Heikkilä, V. T., Paasivaara, M., & Lassenius, C. (2013).
ScrumBut, but does it matter? A mixed-method study of
the planning process of a multi-team scrum organization.
International Symposium on Empirical Software
Engineering and Measurement, Baltimore, MD, USA.

Häggmark, M., & Ågerfalk, P. J. (2006). Why software
engineers do not keep to the principle of separating
business logic from display: A method rationale
analysis. 18th International Conferenece, CAISE 2006,

Karlsson, F., & Ågerfalk, P. J. (2004). Method
Configuration: Adapting to Situational Characteristics
while Creating Reusable Assets. Information and
Software Technology, 46(9), 619-633.

Klein, H. K., & Hirschheim, R. (1991). Rationality concepts
in information system development methodologies.
Accounting, management, and information
technologies, 1(2), 157-187.

Kvale, S. (1994). InterViews: An introduction to qualitative
research interviewing. Sage Publications, Inc.

Kvale, S., & Brinkmann, S. (2009). InterViews : learning the
craft of qualitative research interviewing. Sage
Publications.

Mäki-Runsas, T. E. (2019, August). Towards Identifying
Information Systems Development (ISDM) Cargo Cult
Behavior 25th Americas Conference on Information
Systems (AMCIS), Cancun, Mexico.

Mäki-Runsas, T. E., Wistrand, K., & Karlsson, F. (2019).
Cargo Cults in Information Systems Development: A
Definition and an Analytical Framework. In Advances in
Information Systems Development. Springer Link.

Patanakul, P., & Rufo-McCarron, R. (2018). Transitioning
to agile software development: Lessons learned from a
government-contracted program. Journal of High
Technology Management Research, 29(2), 181-192.

Reginaldo, F., & Santos, G. (2020). Challenges in Agile
Transformation Journey: A Qualitative Study
Proceedings of the 34th Brazilian Symposium on
Software Engineering, Natal, Brazil.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic
Motivations: Classic Definitions and New Directions.
Contemporary Educational Psychology, 25, 54-67.

Soares, E., Sizilio, G., Santos, J., da Costa, D. A., & Kulesza,
U. (2022). The effects of continuous integration on
software development: a systematic literature review.
Empirical Software Engineering, 27(3).

Stray, V., Sjoberg, D. I. K., & Dybå, T. (2016). The daily
stand-up meeting: A grounded theory study. The Journal
of Systems and Software, 114, 101-124.

The Standish Group. (2020). CHAOS 2020: Beyond Infinity.
Van Maanen, J. (2011). Ethnography as Work: Some Rules

of Engagement. Journal of Management Studies, 48(1),
218-234.

Weber, M. (1947). The theory of social and economic
organization (T. Parson, Ed.). The free press.

Worsley, P. (1957). The Trumpet Shall Sound - A Study of
'Cargo' Cults in Melanesia. Macgibbon & Kee.

Ågerfalk, P. J., & Wistrand, K. (2003, April). Systems
Development Method Rationale: A Conceptual
Framework for Analysis. ICEIS, Setúbal, Portugal.

Page 6495

