
The Design of Open Platforms: Towards an Emulation Theory

Daniel Rudmark
University of Gothenburg

RISE Research Institutes of Sweden
daniel.rudmark@ait.gu.se

Rickard Lindgren
University of Gothenburg
rickard.lindgren@ait.gu.se

Abstract
The enrolment of third-party developers is

essential to leverage the creation and evolution of data
ecosystems. When such complementary development
takes place without any organizational consent,
however, it causes new social and technical problems
to be solved. In this paper, we advance platform
emulation as a theoretical perspective to explore the
nature of such problem-solving in the realm of open
platforms. Empirically, our analysis builds on a 10-
year action design research effort together with a
Swedish authority. Its deliberate change agenda was
to transform unsolicited third-party development into
a sanctioned data ecosystem, which led to a live open
platform that is still in production use. Theoretically,
we synthesize and extend received theory on open
platforms and offer novel product and process
principles for this class of digital platforms.

Keywords: Open platforms, data ecosystems,
emulation theory, action design research

1. Introduction

While contemporary organizations increasingly
rely on digital innovation influenced by external
sources, such value-creation sometimes occurs
without organizational consent. Recent well-known
examples include early versions of the Xbox console,
the robot dog AiboPet, the iPhone, and Tesla cars. This
type of unsanctioned development has been coined
outlaw innovation, which refers to “non-cooperative,
non-consensual relationships in which the user may be
unknown to the supplier and in which there is likely to
be no free flow of information between the two
parties” (Flowers, 2008, p. 178).

In this paper, we report a 10-year action design
research (ADR) (Sein et al., 2011) effort together with
the Swedish Transport Administration (STA). At the
time of its inception, STA did not grant third-party
developers access to railway-related real-time data. In
this situation, multiple rail-related apps relying on
scraping had emerged and they were used by hundreds
of thousands of travelers. Instead of trying to curtail

the outlaw innovation that was going on, STA rather
perceived the problem as an opportunity to cultivate
and harvest an emerging pool of hackers with adequate
technological expertise.

To assist STA in its problem-solving, we
embarked on an ADR process to develop and
materialize “platform emulation” as a new theoretical
perspective. As such, our perspective integrates and
extends existing open platform literature (Brunswicker
& Schecter, 2019; Karhu et al., 2018; Tiwana, 2014)
by applying emulation theory (Hartman & Teece,
1990; Teece et al., 1997) to benefit from self-
resourcing activities of third-party actors (Ghazawneh
& Henfridsson, 2013). Emulation deals with situations
where an organization utilizes an external model to
develop an open platform that is not only compatible,
but also equipped with superior capabilities. Open
here implies that the same capabilities are offered to
any possible user including its owner. This is enabled
by a technologically extensible core complemented by
governance processes that mediate its interactions
with autonomous complementors engaged in joint
data-driven value creation (Saadatmand et al., 2019).
Accordingly, we seek to answer the following research
question: How can organizations emulate self-
resourcing activities of third-party developers to
design open platforms?

2. Initial Theoretical Base

We draw on emulation as a theoretical lens to
inform the design of open platforms, i.e., a class of
digital platforms that is fully open in terms of its
possible appropriation by diverse users (Eisenmann et
al., 2009). Our design agenda essentially entails a
search process by which a platform owner discovers
an alternative way to introduce a compatible platform
that embeds superior capabilities (Hartman & Teece,
1990). As such, its logic differs from that of platform
imitation (i.e., forking) (Karhu et al., 2018), simply
because it depends on resembling behavior rather than
replicating another platform configuration. Consistent
with the latest platform research (Saadatmand et al.,
2019), pursuing platform emulation as a design agenda

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 3735
URI: https://hdl.handle.net/10125/103088
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

requires paying close attention to received theory on
governance mechanisms and technology architecture
as well as the complex interaction between them.

2.1. Governance Mechanisms

In platform emulation, a platform owner’s
primary objective is to resemble behavior and equip a
platform with superior capabilities. A key determinant
when building such desirable capabilities is the related
governance mechanisms. These mechanisms concern
a platform owner’s decisions about managing an
ecosystem of complementors (Foerderer et al., 2019;
Saadatmand et al., 2019). In particular, we elaborate
on 1) what the platform offers in terms of search
opportunities and 2) how an emulator chooses to open
a platform to third-party developers.

The former decision concerns how a platform can
reconcile the tension that emerges from the need to
both maintain stability (to decrease coordination and
value capture by complementors) and at the same time
allow the platform to expand into new territories
(Saadatmand et al., 2019; Wareham et al., 2014). First,
to maintain stability, developers may enact a coherent
search strategy. Brunswicker and Schecter (2019)
refer such search to a developer being guided by past
experiences and known solutions to prevalent
problems. In this way, developers are likely to identify
solutions characterized by stability and re-use
potential. While coherent searches promise to
maintain a platform’s stability, however, a too one-
sided focus on these searches undermines changes in
the ecosystem that help the platform to stay attractive.
In contrast, Brunswicker and Schecter (2019) refer
flexible searches to a developer exploring novel
solution spaces that possibly meet anticipated future
needs. Such flexible searches that branch out of
solutions coherent with the past are more likely to
impact than those that lack this connection with the
past.

The second core aspect of governance deals with
how to afford outside access to a platform. Karhu et al.
(2018) offer two key strategies to achieve such
openness: access openness and resource openness.
With regard to the former, a platform is opened by
offering a controlled way in to selected parts of its
core, i.e., “the granting of access to external
complementors to participate and conduct business on
a platform by providing them with dedicated resources
to interact with the platform” (Karhu et al., 2018, p.
481). The platform owner simply chooses what parts
of, in what form, and under which IP regime that
external users can use the platform. As such, access
openness offers the platform owner additional
flexibility in terms of the future use trajectory. When

governing third-party development in this way
boundary resources play a crucial role (Ghazawneh &
Henfridsson, 2013). These resources constitute the
thin layer of assets that both capacitate and confine
third-party complements, and include APIs, SDKs,
license terms, and testing tools.

The other approach to open a platform is through
resource openness, which involves making the
platform core available to users, i.e., “opening the
platform’s valuable resources by forfeiting the IPR of
the resource” (Karhu et al., 2018, p. 481). As such, it
is closely related to platform governance that makes
the platform core readily available to users. This
means that a platform owner may achieve greater
uptake because legal barriers to re-use have been
removed. The owner still has also limited means of
controlling the continued evolution of the platform.

2.2. Technology Architecture

Platform emulation depends on the
transformation of an organization’s resources to
resemble the existing ecosystem’s desired behavior.
Here, platform architecture constitutes a necessary
means to not only reorganize incumbent digital
resources, but also redistribute design capabilities to
third-party developers. Such architecture consists of a
stable, modular platform core, standardized visible
interfaces, and peripheral applications (Karhu et al.,
2018; Saadatmand et al., 2019). To enable seamless
additions of new complements to an open platform, the
core needs to be modular and draw on the principle of
information hiding, which posits that a designer of
modular systems should ensure that only necessary
information is available for the module users to reduce
dependencies and enable change.

When the core builds on information hiding, users
can only act on visible information. Such information
has been conceptualized as design rules (Baldwin &
Clark, 2000), which stipulate how module developers
can establish compatibility with the platform. A
complete set of design rules consists of a blueprint that
describes the modules of the architecture, the
interfaces of these modules, and accompanying
integration protocols and testing standards that enable
a developer to integrate his/her app with the platform.

To emulate by relying on design rules, a designer
must reorganize the modules of a platform to achieve
the desired capabilities. The resulting architecture
constitutes what visible modules that external
developers can interact with (Kazan et al., 2018).
Baldwin and Clark (2000) suggest that modular
operators play a crucial role within modular systems.
These operators act as a discrete set of options by
which a developer can alter such architectures. In our

Page 3736

research, three operators play crucial roles in
achieving an open platform (Karhu et al., 2018;
Tiwana, 2014). By inverting, a designer can create
modules that implement widely used or requested
functionality within a digital ecosystem. Through
substituting, a platform developer can replace existing
modules with improved qualities. By mutating,
modules are copied for usage in other application
domains (Karhu et al., 2018; Tiwana, 2014, p. 195).

However, design rules also require visible
interfaces that specify behavior of platform modules.
They serve as a description of what the platform
affords to third-party developers, i.e., boundaries of
possible platform innovation. From an architectural
standpoint, there are two key decisions that concern
interface design for open platforms: the degree of app-
platform decoupling and interface standards (Tiwana,
2014, pp. 106-114). Decoupling occurs when a
designer minimizes the visible information by
increasing a module’s encapsulation of internal
complexities. Such designs decrease dependencies
between the platform and its apps, thus making
integration and testing more straightforward
(especially for new platform developers). Though a
drawback from too far-reaching decoupling is the risk
of reducing third-party developer experiment
opportunities (Tiwana, 2014, p. 105). Interface
standards guide how boundary resources materialize
on the platform. Key considerations here include
communication protocols, compliance with existing
industry standards, and versatility.

Finally, design rules address the use of integration
protocol and testing standards to provide the necessary
information for third-party developers to connect the
platform’s core interfaces with interfaces of the
complementary app’s micro-architecture. These types
of design rules include SDKs, IDEs, or code examples.
These extensions target developers during the design
of their application, e.g., by providing entry paths for
new platform developers (e.g., code examples),
simulating the runtime environment, or ensuring

compatibility with specific devices (Tiwana, 2014). In
this way, platform complexities (Cennamo et al.,
2018) can be encapsulated to minimize coordination
costs for third-party developers (Tiwana, 2015).

3. Research Method

We have pursued an ADR effort to answer our
research question. In ADR, guided by its principles
and stages, researchers collaborate with practitioners
to resolve prevalent problems through artifact design
and at the same time generate generalized design
knowledge for re-use in other design situations.
Successful ADR efforts should generate three types of
contributions: Two practice-oriented contributions
(ensemble-specific contributions and end-user utility)
and one theory-building contribution (design
principles) (Sein et al. 2011).

We conducted this research in close collaboration
with the Swedish Transport Administration (STA)
between January 2012 and August 2020. STA has the
overall responsibility for both physical and digital
transport infrastructure in Sweden. As such, the
administration is responsible for communicating
traveler-critical information like passage times,
departure platforms, and potential delays for passenger
trains. At the outset, STA did not grant third-party
developers access to railway-related real-time data.
However, despite this lack of official third-party
resources for train data, multiple railway apps relying
on scraping had emerged. These apps were written by
independent developers, primarily driven by self-
experienced needs, and a handful of these applications
had gained a high number of downloads in application
marketplaces. STA therefore sought our guidance in
designing a platform for railway data that would
satisfy needs of third-party developers.

Consistent with ADR, the platform was
developed and refined over several versions, each
drawing on various signals to guide our research
efforts (see Table 1). While the three first iterations

Table 1 - Data collected per phase
Version Interviews Workshops

/ meetings
Other vital empirical material

Alpha
2012-01-2012-05

N=13 (Tot:695 mins, 76129
words)

N=1 (390 mins) Apps’ functionality (Tot: 6 apps)

Beta
2012-05-2013-01

N=17 (Tot:604 mins, 66930
words)

N=18 (Tot: 1650
mins)

Interface specification discussions
(Tot: 28 posts, 2991 words)

Release
2013-04-2014-08

N=12 (Tot: 543 mins, 69521
words) Emails developers (Tot 4
emails, 1587 words)

N=18 (Tot: 1140
mins)

Apps’ data sources (Tot: 51 gross, 19
net)

Maintenance
2014-03-2020-08

N=6 (Tot: 406 mins, 55787
words) Emails developers (Tot 4
emails, 1424 words)

- Apps’ data sources (Tot: 51 gross, 19
net), Usage statistics, API Changelog
(Tot 19 items, 281 words)

Page 3737

closely followed the ideal model of ADR, the final
version (maintenance) unfolded without researcher
interventions. In this phase, we instead relied on
extracting case study techniques to extract the final
design principle (Van Aken, 2004).

4. Design Theory Development

Our ADR process together with STA generated
alpha (4.1), beta (4.2), release (4.3), and maintenance
(4.4) versions of the sought for open platform.

4.1. Alpha Version

4.1.1 Problem Formulation. We started our
investigation by examining the existing, unsanctioned
apps revealing that they typically implemented a
standard set of use cases. These included searching for
a station based on a search string, getting
departures/arrivals from a specific station and
platform, and getting a particular train’s status.
Moreover, we found that developers scraped data from
a variety of interfaces. Some relied on an obscure web
page designed for mobile use that, due to its
minimalistic use of HTML, made the page less
complex to parse and re-process. Another common
way of accessing data was through a JavaScript
interface at the STAs web page. This interface
provided an unsanctioned API (albeit without
developer documentation) to a system named Orion.
On top of Orion, the STA had developed a flexible
query language (similar to SQL) to retrieve
information. When interviewed about what they would

like to see in an official API from the STA, developers
stressed capabilities focusing on simplicity and
immediate problem-solving.

Based on this background material, we assessed
that the primary problem for the STA was missing
coherent search capabilities that had emerged during
unsanctioned app development and experimentation.
Moreover, given the uncertainty regarding how, if at
all, the STA would offer real-time railway data to
third-party developers, there was a need to provide
these data through access openness. This way, the
STA could investigate what data and in what form the
potentially increased openness could be implemented.
4.2.2 Building, Intervention, and Evaluation. To
address this problem, our alpha version platform as a
solution blueprint, included a new software layer that
effectively inverted observed third-party developer
behavior through an interface offering access to
coherent searches.

In April 2012, the project held a joint workshop
summoning nine representatives from STA, two from
Trafiklab.se, and the first author of this paper. This
workshop’s idea was to bring different stakeholders
together for the first time and test the design on both
third-party developers and more stakeholders within
STA. We introduced the suggested solution blueprint
(in the form of a PowerPoint presentation, presenting
both capabilities and overall implementation
structures). Regarding access openness, developers
were quite content with this type of openness regime.
In terms of solution search mechanisms, our idea was
to package these recurrent use cases as REST
endpoints to minimize developers’ need to invest in

Table 2. Product and Process Principles for the Alpha Version Platform
 Product aspect Process aspect
Principle title Principle of Platform Access to Externable data

and functionality
Principle of Artificial Platform
Demonstration

Aim,
implementer,
and user

To allow designers to emulate external development activities into alpha version open
platforms targeting external developers

Context In a situation where external development is based on self-resourcing
Mechanism Design a blueprint exhibiting access to frequently

self-resourced functionalities together with other
data available through self-resourcing through a
new, abstract software layer with dedicated
interfaces offering such emulated functionality

Execute an artificial demonstration of
the alpha version platform blueprint
including both external self-resourcing
third-party developers and managerial
decision makers

Rationale Because platform ecosystems are largely
dependent on the stability that tested and re-usable
knowledge entails, but also need to be able to
evolve beyond such functionality. Existing
systems can remain untouched when offering
designated access openness to these platform
capabilities by inverting existing systems
architectures

Because deploying an open platform
requires a substantial resource
investment, and long-term commitment
that require alignment with developer
preferences as well as managerial
anchoring enabling further
development

Page 3738

industry-specific domain knowledge and be suitable
for mobile clients' direct consumption.

While more experienced developers confirmed
the value of having the coherent search interface as a
natural entry point for novel developers, they were
surprisingly critical towards having such a design as
the only approach. More specifically, they wanted
access to all data points to enable the design of novel
services. However, the more precise formats for such
flexible searches appeared less critical. We assigned
developers to break out of the entire group during the
workshop and discuss what formats would be of
interest for such capabilities. Amid these discussions,
a joint position among developers emerged, where
data could be pretty crude.

Despite this criticism of missing flexible search
mechanisms, the blueprint's reception was overall
positive. All developers agreed to participate in
potential further development activities by providing
feedback and input on how the STA could make real-
time railway data available for third-party developers.
Similarly, the STA appreciated the format and the
ideas brought forward, but primarily meeting these
developers in person. Thus far, they had mainly
remained anonymous to the STA.
4.1.3 Reflection and Learning. Based on the
intervention, we reflected on the solution and theories
used. Regarding governance, we found support from
the developers in both interviews and the workshop to
implement non-discriminatory access openness.
Moreover, developers embraced the blueprint’s
coherent search capabilities, and we concluded that the
API needed quality-assured “shortcuts” to use-case-
bound datasets with high developer demand.
Moreover, given the unanticipated developer response
on the constraining effect of merely publishing
coherent searches, we concluded that the future
platform also needed some mechanism to channel all
data to allow for flexible searches. Architecturally, we
assessed that inverting such requested functionality
would be beneficial, and to use integration protocols
and testing standards to facilitate integration.

4.2. Beta Version

Given these overall positive signals from
workshop participants, we started to draft a more
authentic beta version. The head of passenger
information at the STA (also a workshop participant)
corroborated this interpretation. In May 2012, she
gave the go-ahead to start designing and deploying a
live beta version, alongside access to the necessary
personnel from the STA.
4.2.1 Problem Formulation.After forming the ADR
team, we started to reformulate the problem to develop

the beta version. While many of the assumptions
addressed in the alpha version held, we concluded that
access to data beyond these common use cases was
necessary. However, the participating developers also
expressed that this missing feature could be a less
sophisticated capability; the core issue was to have all
data points attainable in some way from the platform.
4.2.2 Building, Intervention, and Evaluation. As a
next step, we started to address the more specific
platform design aspects. Given the problem
formulation, we decided to include the following
elements:
First, we decided to largely reverse-engineer the
current app behaviors and “pirate” API designs.
Second, we decided to include another interface for all
datapoints. However, since participating developers
stated that they would be content with any format other
than HTML, we also hypothesized that interface could
be cruder.

In the alpha version workshop, we demonstrated
the blueprint to the participants. Still, it had only been
shown to four developers, and the details were not
fully specified. To this end, the interface specifications
were made publicly available on an open internet
forum to gather input. Of the received replies, the
feedback was overall positive. One feature request,
however, appeared twice. This request concerned a
task that developers currently struggled with, detecting
changes since their last API call. Although seemingly
simple, the STA was not able to implement this due to
underlying architectural constraints. Orion was only a
cached layer of information, and the entire dataset of
Orion was replaced periodically, not just the records
that had changed since Orion’s last update.
Consequently, this seemingly simple field addition
required a significant redesign of the underlying
system that was not feasible under the project budget
constraints.

From the STAs systems perspective, their
architecture was inverted through a new module facing
application developers. This module was a cloud-
based service hosted by an external cloud provider.
This module handled access control and caching of
data. Also, this module provided the two new
interfaces, facing third-party developers and
decoupled these from the STAs underlying systems.

The beta solution interfaces could not translate
between the STA internal geographical coordinates
(SWEREF99) into developer-friendly formats
(WGS84). To this end, we included conversion code
libraries as integration protocols to facilitate this
translation. We also included an API console (that
allowed developers to execute API calls without a
development environment) and user registration
functionality (dispensing API keys). Finally, we

Page 3739

created data model documentation and a tutorial to
expedite the development process.

The solution was officially released in October
2012. Anyone could register for access, and in three
months, 59 developers had registered. For evaluation,
we contacted developers who had signed up for the
API, inquiring into whether they would like to
participate in an interview. Out of the 59 registered
developers, 17 agreed to participate in an interview.
Summarizing their impressions, users that had focused
on the coherent interface found it utile. In this
category, two developers of existing apps were found.
The first had previously been using the pirate APIs and
now investigated transitioning their apps data source
to the new interface. Overall, they found such a
transition straightforward and appreciated the
interface’s official status. The second type of
developer who had focused on TrainInfo was new to
the railway domain but could still use the API to match
their needs and when asked to summarize their overall
views from using the API, all 8 users of TrainInfo
echoed a pleasant experience, as stated by a user:
TrainInfo is excellent. It was quick to get started and
find the information you needed to find a solution to
your problem. I don't think that STA needs to change
a thing. Developer B13

Third-party developers that had used TrainExport
conveyed a more complex picture. Users (2
developers) without live apps were quite content with
the flexible search interface. However, those users (2
developers) that had existing, popular applications

based on scraping expressed disappointment due to the
lack of benefits of switching and had, for this reason,
stuck with unsanctioned data access.
4.1.3 Reflection and Learning. As a next step we
reflected on the mixed results of the beta version
results . The primary benefit of implementing common
use cases had been the enrollment of developers new
to the railway domain. The solution proved to expand
the number of developers quickly, both regarding
minimized platform access negotiation and by
lowering the barrier for extra-industry actors by
inverting coherent searches into dedicated REST
interfaces. However, developers with existing services
expressed dislike for the flexible search capabilities
and stuck with unsanctioned data access. Second, not
only were these developers discontent with
TrainExport capabilities vis-à-vis what some scraped
resources could afford. They also expressed the need
for additional flexible search benefits to motivate the
effort of changing the data source, as commented by a
user during the beta version evaluations:
I won't stop scraping, and that's mostly because I see
no reason to, "if it ain't broken, don't fix it," something
like that. There is nothing there that attracts me; I will
stick to the current solution as long as there is no real
reason to switch. Developer B14

4.3. Release Version

The beta version was a large-scale pilot project to
inform a potential release version platform design, and

Table 3. Product and Process Principles for the Beta Version Platform
 Product aspect Process aspect
Principle title The Principle of Platform Capability

with Non-Deterministic Use Support
Principle of Authentic Platform Development

Aim,
implementer,
and user

To allow designers to emulate external development activities into beta version open
platforms targeting external developers

Context In a situation where external development is based on self-resourcing
Mechanism Offer access to production-use

capabilities encapsulating product
hackers’ frequently implemented
functionalities as well as offering non-
deterministic use support by adding a
new software layer conveying emulated
capabilities through its interfaces

Execute the development of the beta version
platform in an environment that concurrently
allows authentic third-party development to unfold
and under constraints that does not bind the
platform owner to the beta version platform design
rules.

Rationale Because an open platform requires
capabilities for both coherent and
flexible searches, and existing systems
can remain untouched when offering
access to designated, production-
mimicking platform capabilities by
inverting existing systems architectures

Because the identification of improvement
opportunities and non-negotiable capabilities for
an open platform are facilitated by third-party
developers assessing platform capabilities in
perceived release circumstances, yet a platform
owner need to retain the option to alter release
version design rules, or even to withdraw from
further development

Page 3740

the overall outcome of the trial convinced the STA to
create a more persistent solution. To this end, the STA
revised its third-party developer strategy. A new
developer segment was added and denoted Basic. This
segment should include general terms of use,
rudimentary support in the form of FAQ and web-
based support, and “simple, basic information
products”. However, while many insights on the more
precise design of the boundary resources had been
gained from the last ADR loop, the more exact design
for the Basic segment still needed refinement.
4.3.1. Problem Formulation. To resolve these
platform design issues, a new ADR project was
formed. In the permanent solution, the solution should
be implemented within the realm of the STA’s systems
rather than through Trafiklab.se. A new ADR team
was formed, consisting of a project manager
(participating in the previous iteration) and a systems
architect/developer from the STA, and the first author
of this paper. The project was funded internally and
ran from August 2013 through March 2014. In contrast
to the previous iteration (which was researcher-led),
this iteration was led by the STA and had a researcher
(the first author of this paper) as an ADR team
member.

As a next step, we reformulated the problem.
Given the beta version findings, our previous position
concerning the need for coherent searches was reified.
However, considering the disappointing result for
existing users, we hypothesized that flexible searches
also needed to be emulated, not just offered, as in the
beta version.

4.3.2. Building, Intervention, and Evaluation. This
somewhat surprising reception by experienced third-
party developers instigated a substantial release
version platform redesign. Based on these findings, we
decided to implement a query language similar to that
of Orion to cater to flexible searches. This design
afforded more precise, flexible searches, as requested
by developers.

Moreover, from the beta version design and
onwards, ensemble signals conveyed a need for
functionality that allowed them to retrieve records that
changed since their last request. At this point,
developers had to download a complete snapshot of all
running trains in Sweden and then write an algorithm
that detected any potential changes since their last
request. To further investigate whether this feature
was necessary, we triangulated our findings towards
apps using Stockholm Public Transport real-time data
that had a history of scraping but offered non-
discriminatory access openness since September 2011.
For those still using unsanctioned data access (4/21),
one important rationale given to use scraping over the
Open API was the lack of incentives to switch to the
open API. Hence, to influence such developers to
desert unofficial interfaces, the ADR team decided to
implement new functionality that the current solution
did not include – the ability to deliver changes since
the previous request.

Moreover, the ADR team decided to apply a new
governance regime for the platform’s openness,
resource openness, a far-reaching decision that came
about for several reasons. In this platform context,

Table 4. Product and Process Principles for the Release Version Platform
 Product aspect Process aspect
Principle title The Principle of Platform Growth by Experiment

Flexibility
The Principle of Target Platform
Implementation

Aim,
implementer,
and user

To allow platform designers to emulate external development activities into release version open
platforms targeting external and internal developers

Context In a situation where external development is based on self-resourcing
Mechanism Offer the improved capabilities to both external and

internal users under the same conditions, including
shortcuts to product hackers’ frequently implemented
functionalities as well as non-deterministic
experiment flexibility by substituting the digital
resource subject to self-resourcing with modules
providing non-deterministic interfaces and common
functionality through integration protocols.

Ensure that both desired third-party
developer behavior is persevered in
target platform implementation as well
as warranting a flexible upgrade plan
for internal applications in their
adoption of the release version platform

Rationale Because an open platform requires coherent and
flexible search capabilities for both internal and
external users, and such resource openness requires
that the underlying system is substituted with a
resource implementing the desired emulated behavior.

Because transforming internal digital
resources to an open release version
platform may infer altered design rules
compared to both the beta version, as
well as substituted release versions

Page 3741

resource openness entailed offering the same platform
to external as well as internal clients. First, since the
STA now planned to provide its internal (albeit
improved) query language for external developers,
there were little incentives to encapsulate it behind a
software layer providing access to the resource.
Second, two of those still scraping Stockholm Public
Transport did this as the data was not available through
the API. Consequently, any data access deviations
between the interfaces offered to third-party
developers and public applications risked introducing
new self-resourcing. Finally, the STA did want to
maintain more interfaces than necessary. By providing
improved interfaces similar to those of Orion, through
the new platform, DataCache, the STA could easily
upgrade its own applications to use the new platform
while still serving external third-party developers'
needs.

However, this resource openness decision
entailed challenges for the platform’s architecture. At
this point, the ADR team decided to substitute
functionality that had been residing in Orion. This
redesign enabled both the STA and third-party
developers to use the new platform when developing
end-user services. However, Orion’s query language
was designed for internal usage, making it unsuitable
for publishing in its current form. To this end, the
query language was redesigned for reduced
redundancy, syntax strictness and clearness, and data
model congruence

Data was retrieved through a query interface –
where developers could construct their own data
retrieval composition based on three underlying
information objects (one for trains, one for passenger
announcements, and one for stations). The interface
required an authentication token, what information
objects and fields the user intended to query, and
optional selection criteria (such as a given station).
Moreover, all these information objects now included
ModifiedTime signifying the most recent update of a
given data post. This field enabled developers to
retrieve only the records that had been changed since
their last request and resolved the previously tedious
work of sorting out changes to real-time information.
Finally, the information objects now included the
WGS84 geographic coordinate system, effectively
scrapping developers’ need to perform the conversion
between SWREF99 and WGS84.
The query interface was non-deterministic and thus
inherently supported flexible searches. Consequently,
it was no longer possible to use the interface level to
implement coherent searches. Instead, we opted for a
revised architectural configuration. Here, we used
integration and testing protocols, i.e., predefined
example queries, to implement the coherent searches

in previous ADR iterations. This way, the exact syntax
of the question, e.g., the departures from a given train
station, was provided by STA but simultaneously
served as a starting point for those who wanted to
develop the query further. Moreover, given the
developers' positive reception regarding the API
console, documentation, and tutorial/example API
calls, we also implemented those as integration
protocols.

The platform went live on March 18. For
evaluation, we interviewed another 12 developers that
had registered as users of the platform. Although
minor technical shortcomings were identified by the
interviewees, when developers were asked to
summarize their experience of the APIs, they were all
positive and stated that they would recommend this
API to other developers interested in developing
railway services.
4.3.3 Reflection and Learning. At this point, our
evaluations showed that developers appeared to be
content with platform capabilities., based on
emulation. However, for the ensemble platform to
persevere after release we decided to continue the
observe the design moves by the STA.

4.4. Maintenance Version

The API platform persevered long after its release
and is at the time of writing (2022-05-18) still in
production. In the following, we summarize the
evolutionary trajectory after the platform’s launch by
paying specific attention to developer adoption,
continued emulation activities since the ADR
interventions, and finally, how the platform has been
received within the STA and the Swedish public
transport industry.

In September 2016, the first author of this paper
investigated the actual data sources used for the apps.
The review was performed in the same way as the
scraping follow-up for SL: by intercepting the apps’
API calls. The investigation revealed that development
towards unsanctioned interfaces had ceased. At the
time, 28 services for smartphones using real-time
information were available in the application
marketplaces for Apple iPhone, Google Android, and
WindowsPhone. Out of the 28 real-time services, 19
used the open API, 6 used interfaces connected to
other STA third-party development segments, and 3
were not functioning (no longer maintained).

Moreover, API usage statistics (see Table 5) from
the platform showed that not only existing developers
seemed to have adopted the API, but external clients
are also currently generating more calls than internal
clients. Also, the STA continued to incorporate new
data fields in the railway data, based on developer

Page 3742

requests and feedback. One such illustrative example
concerned “ViaToLocation”. Typically, a train is
announced by several stations the train is passing
during a trip (the significant stations along the line).
However, the order in which these stations are passed
was not explicit in the API response. While it was
possible to derive the order by examining the
estimated/actual passing time along line, the STA
decided to incorporate a clear indicator of the order of
the location a particular train passes. Such cognizant
changes to the data models had become more
institutionalized after the ADR project.

The final aspect that surfaced in the follow-up
study concerned how the emulated platform was
adopted within the STA. Until 2015, DataCache had
only been deployed once within the STA. This
instance was the open platform for both external third-
party developers and end-user services catered for by
the STA. However, in 2015, the systems development
team responsible for DataCache suggested using

DataCache codebase for an internal project. After this
first usage, the platform had continuously grown in
popularity. These new, internal instances contained
the same functionality, included a test console, API
documentation, relevant query examples, and required
internal developers to register to get access tokens.
The only thing that differed was that the data objects
were different from those present in the open platform.
When asked what helped the DataCache team to
embrace this approach, they pointed to the increased
understanding of third-party developer needs through
the ADR project.

In 2020, the STA performed an internal
investigation to appoint an official integration
platform to be used throughout the agency. After going
through existing solutions at the STA and other
external products, the inquiry recommended
management at the STA to choose and appoint the
DataCache platform. This recommendation was
primarily based on the teams’ experiences using the
platform and their reported development velocity. In
August 2020, STA IT Management did decide in favor
of this investigation, thus making DataCache the
official integration platform of the entire STA.

5. Concluding Remarks

The trajectory of the maintenance version
suggests that our ADR project delivered both end-user
utility and ensemble-specific contributions. Given our
agenda to advance new design theory, we here discuss

Table 5. New user registrations, external and
internal API calls

Period New
users

External calls
millions/month

Internal calls
millions/month

2014 338 No data No data
2015 422 No data No data
2016 639 22,2 78,7
2017 702 41,1 95,6
2018 1466 69,7 83,5
2019 1377 90,7 63,2
2020 783 100,5 63,2

Table 6. Product and Process Principles for the Maintenance Version Platform
 Product aspect Process aspect
Principle title The Principle of Platform Equilibrium

through Internal Integration
The Principle of Ensemble Platform
Manifestation

Aim, implementer,
and user

To allow platform designers to maintain open platforms targeting external and internal
developers

Context In a situation where external development based on self-resourcing has been emulated
Mechanism Offer new public datasets with the same

capabilities and restrictions to both external
and internal users, including shortcuts to
projected frequently implemented
functionalities as well as non-deterministic
experiment flexibility and mutate the open
platform for internal usage.

Maintain the platform in a way that
ensures that both sides of the ensemble
are content, by conditioning publishing
of new datasets with having support for
desired behavior and by encouraging
internal use of emulated capabilities.

Rationale Because continual offering of data ex-post
open platform release with coherent and
flexible search capabilities for both internal
and external users will maintain platform
integrity, and mutating the open platform
allows for the emulated capabilities to be
used in internal settings

Because publishing new data ex-post
open platform release having support
for desired behavior will facilitate
platform usage and stall new self-
resourcing, and by encouraging internal
use in new contexts, the platform owner
may harness emulated capabilities for
proprietary organizational purposes

Page 3743

our developed design principles as a third type of ADR
contribution. To develop them, we have followed the
design principle schema suggested by Gregor et al.
(2020). We have also embraced a design-theoretical
tradition that emphasizes the importance of not only
articulating product properties, but also providing
process-oriented guidance to help designers to
effectively meet their goal (Walls et al., 1992). Indeed,
developing an open platform by relying on our
emulation theory requires a deliberate process
intervention capable of accumulating relevant design
knowledge over time. In the same vein, our
collaboration with STA has generated both product
and process insights in the realm of designing open
platforms as a particular class of digital platforms.

With regard to the alpha version, we stress the
importance of designing a blueprint that exhibits
coherent and flexible searches without necessarily
binding them to the design rules. On the process side,
despite the artificial nature, we emphasize the value of
involving self-resourced developers and decision-
makers in the client organization (see Table 2).

As for the beta version, we assert that it should
include capabilities for coherent and flexible searches
suitable for live use, but without binding the platform
to the current design rules. In terms of our process
insight, we point to the importance of performing
authentic evaluations to ensure that emulated
capabilities materialize (see Table 3).

The release version should include emulated
capabilities for both coherent and flexible searches
that are suitable for both internal and external clients.
What we learned about the process is that it is key to
not only preserve third-party developer preferences,
but also prepare internal clients for the changed design
rules (see Table 4).

Finally, speaking of the maintenance version, we
recognize the centrality of both introducing new
datasets with emulated capabilities and mutating the
platform to leverage emulation also internally. Our
process insight here is that a platform owner should
take actions that help to ensure that both internal and
external clients are satisfied (see Table 6Error!
Reference source not found.).

6. References

Baldwin, C., & Clark, K. (2000). Design Rules. MIT Press.
Brunswicker, S., & Schecter, A. (2019). Coherence or

Flexibility? The Paradox of Change for Developers’
Digital Innovation Trajectory on Open Platforms.
Research Policy, 48(8), 103771

Cennamo, C., Ozalp, H., & Kretschmer, T. (2018). Platform
Architecture and Quality Trade-offs of Multihoming
Complements. Information Systems Research, 29(2),
461-478

Eisenmann, T., Parker, G., & van Alstyne, M. (2009).
Opening Platforms: How, When and Why? In A. Gawer
(Ed.), Platforms, Markets and Innovation (pp. 131-162).
Edward Elgar Publishing.

Flowers, S. (2008). Harnessing the Hackers: The Emergence
and Exploitation of Outlaw Innovation. Research Policy,
37(2), 177-193

Foerderer, J., Kude, T., Schuetz, S., & Heinzl, A. (2019).
Knowledge Boundaries in Enterprise Software Platform
Development: Antecedents and Consequences for
Platform Governance. Information Systems Journal,
29(1), 119-144

Ghazawneh, A., & Henfridsson, O. (2013). Balancing
Platform Control and External Contribution in Third‐
Party Development: The Boundary Resources Model.
Information Systems Journal, 23(2), 173-192

Gregor, S., Kruse, L., & Seidel, S. (2020). Research
Perspectives: The Anatomy of a Design Principle.
Journal of the AIS, 21, 1622-1652

Hartman, R., & Teece, D. (1990). Product Emulation
Strategies in the Presence of Reputation Effects and
Network Externalities: Some Evidence From the
Minicomputer Industry. Economics of Innovation and
New Technology, 1(1-2), 157-182

Karhu, K., Gustafsson, R., & Lyytinen, K. (2018).
Exploiting and Defending Open Digital Platforms with
Boundary Resources: Android’s Five Platform Forks.
Information Systems Research, 29(2), 479-497

Kazan, E., Tan, C.-W., Lim, E., Sørensen, C., & Damsgaard,
J. (2018). Disentangling Digital Platform Competition:
The Case of UK Mobile Payment Platforms. Journal of
Management Information Systems, 35(1), 180-219

Saadatmand, F., Lindgren, R., & Schultze, U. (2019).
Configurations of Platform Organizations: Implications
for Complementor Engagement. Research Policy, 48(8),
103770

Sein, M., Henfridsson, O., Purao, S., Rossi, M., & Lindgren,
R. (2011). Action Design Research. MIS Quarterly,
35(1), 37-56

Teece, D., Pisano, G., & Shuen, A. (1997). Dynamic
Capabilities and Strategic Management. Strategic
Management Journal, 18(7), 509-533

Tiwana, A. (2014). Platform ecosystems: aligning
architecture, governance, and strategy (1st ed.). Morgan
Kaufman.

Tiwana, A. (2015). Platform Desertion by App Developers.
Journal of MIS, 32(4), 40-77

van Aken, J. (2004). Management Research Based on the
Paradigm of the Design Sciences: The Quest for Field-
Tested and Grounded Technological Rules. Journal of
Management Studies, 41, 219-246

Walls, J., Widmeyer, G., & El Sawy, O. (1992). Building an
Information System Design Theory for Vigilant EIS.
Information Systems Research, 3(1), 36-59

Wareham, J., Fox, P., & Cano Giner, J. (2014). Technology
Ecosystem Governance. Organization Science, 25(4),
1195-1215

Page 3744

