
Proposal and Evaluation of Intermediate Content for the
Transition from Visual to Text-based Programming Languages

Katsuyuki Umezawa
Shonan Institute of Technology, Japan

umezawa@info.shonan-it.ac.jp

Makoto Nakazawa
Junior College of Aizu, Japan

nakazawa@jc.u-aizu.ac.jp

Kouta Ishida
Arrows Systems Co. Ltd., Japan

ishida-k@arrows-systems.co.jp

Shigeichi Hirasawa
Waseda University, Japan

hira@waseda.jp

Abstract

Beginners learning to program learn visual-based
programming languages, such as Scratch, whereas
experts use text-based programming languages, such
as C and Java. However, no seamless transition
from visual to text-based programming languages
has been established. In this paper, a transition
method was established between both language
types. In particular, emphasis was placed on
the features that an intermediate language between
visual and text-based programming languages should
have. Additionally, learning with the proposed
intermediate content enhanced the subsequent
comprehension of text-based languages. The
proposed intermediate content was evaluated using
questionnaires to ensure that it had intermediate
characteristics between both language types.

1. Introduction

Visual-based programming languages (referred
to as visual-based languages) have recently been
used to introduce beginners to programming.
Subsequently, they are introduced to text-based
programming languages (referred to as text-based
languages), such as C and Java languages. However,
no seamless migration method has been established
or recorded.

A research project aimed at establishing a
transition method from visual- to text-based
languages has been started. Specifically, we
study and prototype educational content (called
an intermediate language) that can be learned
using visual- and text-based languages, thereby
bridging the differences between the two languages.
Furthermore, we want to evaluate the result and the

learning state during learning through the empirical
experiment. In this way, we would like to evaluate
the effectiveness of the intermediate language and
complete educational content that will be useful
for future primary and secondary programming
education.

Several studies have been conducted on the
evaluation of intermediate languages to fill the
gap between visual- and text-based languages.
However, these studies only focused on the results
of the learning effects, such as post-learning
questionnaires and grades, and only evaluated
whether learners understood. However, these
evaluation methods cannot accurately measure the
effect of intermediate languages. In this paper,
in addition to the conventional evaluation method
after learning, biological information, such as brain
waves, eye-tracking information, heartbeat, and
facial expressions during learning and the learning
state, were measured. Then, we analyzed and
evaluated whether the intermediate language plays
an intermediate role between visual- and text-based
languages and contributes to a smooth transition.
Once this research is established, it is expected
that beginners in programming languages can start
learning with visual-based languages and seamlessly
and spontaneously transition to learning text-based
languages.

Herein, intermediate contents were first
proposed as part of the abovementioned research
project. It was shown through empirical
experiments that the degree of understanding
the text-based language improved using the
intermediate contents between both language
learning methods. Additionally, the proposed
intermediate content was evaluated using

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 83
URI: https://hdl.handle.net/10125/102639
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



questionnaires to ensure that its characteristics
are positioned between the visual- and text-based
languages.

2. Previous Work

2.1. About Visual-based Languages

Visual-based languages fall into two major
categories: block-based imperative languages and
flow-based functional languages.

Mason and Dave (2017) conducted hundreds
of experiments to create simple problems designed
to be similar in the block-based and flow-based
languages and conducted an empirical study to
evaluate the relative benefits of both categories.

Robinson (2016) studied the transition from
a block-based language (Scratch) to a text-based
language. One fascinating feature of Scratch
is that learners can avoid syntax errors and
easily understand and use them. Scratch teaches
beginners logical thinking rather than writing
programs as it places a strong emphasis on
understanding programming logic.

2.2. Comparative Study of
Visual-based and Text-based
Languages

Mladenović, Boljat, and Žanko (2018) surveyed
student misunderstandings on loops in 207
elementary school students, a basic concept
of programming. The students learned three
programming languages: block-based language
(Scratch) and text-based languages (Logo
and Python). They observed that block-based
languages minimized misunderstandings on loops.
This difference became more obvious as the tasks
became more complex, such as nested loops. They
defended the necessity of using a visual-based
language for novice programmers as it prevents
syntax errors. However, there is no mention of
bridging the gap between the languages.

Navarro-Prieto, and Cañas (2001) conducted
experiments to explain why visual-based languages
are easier to understand than text-based languages
in terms of image processing psychology. They
tested the hypothesis that visual-based languages
build mental representations of data flow
relationships faster than text-based languages
as image processing speeds up access to semantic
information. Results showed that programmers
using text-based languages first access the mental
representation of the control flow before that of the

data flow.

Xu, Ritzhaupt, Tian, and Umapathy (2019)
examined existing academic databases and observed
the overall impact of block- and text-based
programming environments on cognitive- and
emotional-learning outcomes of students. However,
they were unable to show the statistical advantages
of using block-based language and its efficiency for
novice programmers. However, they stated the
importance of further study of hybrid languages.

2.3. Proposal of Hybrid-based
Language

Daskalov, Pashev, and Gaftandzhieva (2021)
proposed an environment for beginners to use
a hybrid language of text- and visual-based
languages. It is a hybrid-based environment of
flow-based visual and text-based languages instead
of block-based languages. They claimed it is
suitable for training novice programmers.

Weintrop (2017) compared text-, visual-, and
hybrid-based languages and concluded that while
hybrid-based languages showed characteristics of
both language types, they outperformed block- and
text-based languages in certain dimensions.

Weintrop (2015) used PencilCode to compare
the impact of migration skills using block-, hybrid-,
and text-based languages. Three groups of learners
studied in each language for five weeks, and after
the sixth week, all groups switched to text-based
language using Java. Learners using block-based
languages had a better understanding of loops
and variables than those of text-based languages.
However, the drawback of block-based languages
is the difficulty in building large and complex
programs. The hybrid-based languages did not
obtain a fair learning comparison as they were
employed by switching between the text- and
block-based languages.

Alrubaye, Ludi, and Mkaouer (2019) evaluated
the transition by creating tools that displayed
blocks only, text only, or blocks and text side
-by -side. They discovered that, on average,
the hybrid-based approach improved students ’
understanding of basic programming concept,
memorization, and ease of migration by more than
30% compared with the block- and text-based
learning approaches.

Page 84



2.4. Studies on the Gap Between
Visual-based and Text-based
Languages

Tóth, and Lovászová (2021) highlighted a
gap between visual- and text-based languages.
They observed the transition from a visual-based
language (MIT App Inventor 2) to a text-based
language (Android Studio) using a Java bridge code
generator as a mediator of knowledge transfer.

Weintrop, and Wilensky (2019) experimentally
evaluated changes in knowledge transfer between
learners who started with visual-based languages
and those with text-based languages. No significant
differences were observed between the language
types. Their study did not evaluate the transition
from the visual-based to the text-based languages
but compared the knowledge after mastering
text-based language skills.

Additionally, this research promotes the use
of electroencephalography (EEG) to monitor the
learning progress of learners. The EEG information
was acquired during a keyboard typing task and
showed that the value of β/α increased with
the difficulty of the task (Umezawa et al, 2018,
Umezawa et al, 2020). In this study, considering
the EEG evaluation, a difference was confirmed in
the EEG when solving problems in a visual-based
programming language (Scratch) and a text-based
programming language (C). Specifically, for the
visual-based programming language, the value of
β/α did not increase with increasingly difficult
tasks. This result provides different thought
pathways used during the learning process of visual
and text-based programming languages (Umezawa
et al, 2021). .

3. Proposal of Intermediate Content

As shown in Sections 2.2 and 2.3, there have
been many studies comparing visual- and text-based
programming languages and hybrid programming
languages. Against these, we want to clarify
the gap between visual- and text-based languages
first, rather than simply developing a hybrid
language. Also, some studies want to clarify
the gaps mentioned in Section 2.4. However,
we would ultimately like to measure biological
information, such as changes in brain waves and
facial expressions during learning, to clarify invisible
gaps.

In our research project, we plan to (1) evaluate
the learning effect after learning, (2) evaluate
the learning state using biometric data during

learning, and (3) finally develop and evaluate a new
intermediate language. This paper is related to (1).

In the following section, intermediate contents
are proposed with visual- and text-based
programming language characteristics.

3.1. Overview

The characteristics of the current visual-based
language (pleasant appearance, immediate
execution, no grammatical errors, etc.) and
those of the text-based language (only characters,;
fails to work if one character is wrong, and
takes a lot of time for graphical representations)
were compared and examined. The results show
that the proposed intermediate content is simple
(no additional knowledge peculiar to text-based
languages required), has quick feedback (execution
results can be understood immediately), has no
grammatical errors, and has easy-to-understand
logic error parts.

3.2. Realization of Intermediate
Content

Based on the abovementioned characteristics,
learning content that uses JSFiddle (2022) to create
music by employing JavaScript was developed. In
Figure 1, JSFiddle is a web version of the integrated
environment that allows coding in JavaScript and
displays execution results on a single screen using
only a web browser. Music can easily be created
by adding a library (Beeplay) for playing sounds in
the JSFiddle. For example, to make the sound of
“CDE,” it can be coded, as shown in Figure 2.

Figure 1. Screen of JSFiddle

A program that creates sounds can be realized
only by a method called play. Therefore,

Page 85



Figure 2. A Program that Sounds of CDE

memorizing many words (reserved words) and
grammar rules is unnecessary. Upon execution, a
sound is heard and the result can be confirmed
quickly. Additionally, one can easily judge by
listening to the sound at the location of the
logic error (the compiler does not output the
error because the program is not mistaken) what
makes the sound different from the expected
sound. Sometimes, a different sound is made
during the second repetition. as the music has
a repeating structure. This repeating structure
can be expressed programmatically as repetitions
(for statements) and conditional branches (if
statements). In this way, music and programming
are compatible. Moreover, creating our favorite
music gradually becomes a fun process.

4. Tools Used in the Experiment

In this chapter, the visual-based language,
intermediate contents, and text-based language
used in the experiment are explained.

4.1. Google Blockly

Google Blockly (2022) is a library provided by
Google for creating visual programming. Blockly
Games are contents created using Google Blockly
to learn visual-based programming that runs on
the web. The characteristics of Blockly Games
as a programming language are that the execution
results are seen immediately, sound can be heard
as the execution results, and error is easy to
understand. Various contents, such as puzzles,
mazes, and music, can be selected on the menu
screen.

4.1.1. Blockly Games Puzzles The Blockly
game puzzle screen is shown in Figure 3. This
puzzle familiarizes participants with visual-based
programming. You can easily operate the block
by dragging and dropping it with the mouse. For
example, connect the image of a cat to the block
labeled “Cat” and connect the blocks with the
characteristics of the cat to complete the puzzle.

You can match the answers by selecting the number
of legs from the pull-down menu and pressing the
answer button.

Figure 3. Screen of Blockly Games (Pazzle)

4.1.2. Blockly Games Maze The screen of
the Blockly game maze is shown in Figure 4. This
content is a humanoid character that goes on the
yellow line. The game progresses by dragging and
dropping blocks such as “Go straight” to the field
on the right side. It was hypothesized that simple
iterative processing and conditional branching could
be learned in this maze.

Figure 4. Screen of Blockly Games (Maze)

4.1.3. Blockly Games Music The screen of
Blockly game music is shown in Figure 5. This
content can be created by dragging and dropping a
note block into the field on the right and connecting
it to the start block. The game progresses by
appropriately changing the note blocks to match the

Page 86



score on the left side and connecting them.

Figure 5. Screen of Blockly Games （Music）

4.2. JSFiddle

As mentioned in Section 3.2, JSFiddle is a web
version of the integrated environment that codes
JavaScript and displays execution results using only
a web browser.

4.3. Python

Python is a text-based programming language.
Unlike C and Java programming languages, it has
a relatively simple description. Therefore, it was
used as the text-based language for this experiment.
The purpose of this content is to confirm the
learning effect of Blockly Games and JSFiddle
mentioned above. The execution environment of
Python used Google Colaboratory (2022). The
Google Colaboratory is an integrated environment
where Python can be written and executed on a
browser. Some of the Python problems with Google
Colaboratory are shown in Figure 6.

Figure 6. Python Screen on Google Colaboratory

5. Experimental Method

5.1. Outline of the Experiment

In this experiment, the participants were
divided into two groups to investigate whether
the intermediate content was effective in learning
text-based programming. Group A experimented
with intermediate content between visual and
text-based languages. Additionally, Group B
conducted the experiment with and without
sandwiching the intermediate content for
comparison with Group A. The flow of the
experiment is shown in Figure 7. Nine people
participated in Group A, and 12 people participated
in Group B. Group A solved puzzles, mazes, and
music problems. in the Blockly Games experiment.
However, Group B played puzzles and mazes in the
first Blockly Games experiment, and music in the
second Blockly Games experiment. The details of
the task are shown in the following sections.

Figure 7. Experimental Flow

5.2. Experiments Using Visual-based
Language (Blockly Games)

Blocky games were used to study the learning
state using a visual-based language, as shown
in Section 4.1. Participants were asked to
answer 4 of 4 questions about puzzles, 10 of 10
questions about mazes, and 9 of 10 questions about
music. Regarding music, the 10th question was
omitted because of the problem of freely creating
music. Here, the experimenter did not explain the
operation method because the system of Blockly
Games gave a lecture on how to use it. If the
participants did not understand the problem or its
meaning, the experimenter explained it.

Page 87



5.3. Experiments Using Intermediate
Content (JSFiddle)

In the experiment using the intermediate
contents, JSFiddle (Section 4.2) was used. Groups
A and B conducted the same experiment.
Questions, including playing a C major scale,
repeating music using a for statement, conditional
branching using an if statement to play music,
and incorporating an if statement in a for
statement (2 questions), were prepared. They were
asked to answer a total of six questions about
reproducing the music answered in Blockly Games
in the previous section of JSFiddle. Here, the
experimenter gave a lecture on how to use JSFiddle
and how to write a program. Next, they were asked
to work on the problem. When participants did
not understand, they were asked to reference the
materials or ask the experimenter directly.

5.4. Experiments Using Text-based
Language (Python)

In the experiment using the text-based language,
Python was used, as mentioned in Section 4.3.
Here, there were 30 questions and a time limit
of 20 min. Participants answered questions on
basic programming. Specifically, they were asked
to answer questions, such as the basic usage of
print statements and variables, for statements, if
statements, and replacing if statements with for
statements. Different questions were prepared for
Group B with the same difficulty in the first and
second sessions. The second Python question in
Group B was the same as the Python question
in Group A. Participants were asked to see the
reference materials or skip the questions they did
not understand. The number of correct answers was
used for evaluation.

6. Evaluation of the Number of
Correct Answers in a Text-based
Language

6.1. Experimental Result

Participants (PART) answered 30 questions
using the text-based language Python in 20 min.
The number of correct answers to the question is
shown in Tables 1 and 2. As the data of Participant
18 were not collected, his data were excluded from
the analysis target.

From Tables 1 and 2, comparing the NCA in
Group A with intermediate content and that in

Table 1. Number of Correct Answers (NCA) in
Text-based Language Python in Group A

Group A NCA
Participant 1 25
Participant 2 25
Participant 3 26
Participant 4 28
Participant 5 25
Participant 6 26
Participant 7 22
Participant 8 28
Participant 9 27

Avg. 25.78

Table 2. NCA in Text-based Language Python in
Group B

Group B 1st NCA 2nd NCA
Participant 10 26 30
Participant 11 24 30
Participant 12 24 28
Participant 13 25 29
Participant 14 29 29
Participant 15 22 29
Participant 16 14 16
Participant 17 21 24
Participant 19 21 29
Participant 20 20 24
Participant 21 21 20

Avg. 22.45 26.18

Group B without intermediate content shows that
the NCA in Group A is higher. Additionally,
even within Group B, comparing the NCA with
and without intermediate content shows that the
NCA in the former was higher. Especially, the
introduction of the intermediate content increased
the level of comprehension of the text-based
language. Similar scores were found when
comparing the NCA in Groups A and B with the
intermediate content. In particular, this does not
imply that Group B has a poor understanding.
These things will be examined statistically in the
next section.

6.2. Analysis of Experimental Results

A test was performed to verify the description
in the previous section. First, we tested whether
there was a difference in the average NCA in the
text-based language Python of groups A and B. An

Page 88



F -test was performed to determine if there was a
difference in the variance of the NCA in Groups A
and B. The results of the F -test are shown in Table
3. When the F -test was performed at a significance
level of 5%, p = 0.024 and p = 0.008 were obtained
in Groups A and B(first time), and Groups A and
B(scond time), respectively. In both cases, p < 0.1
and the variances were not equal.

From this result, a t-test was performed using
two samples assuming that the variances were
unequal. The results of the t-test are shown in Table
4. The one-sided p-value of the significance level
5% of the average NCA in Groups A and B (first
time) was p = 0.012(< 0.05). Therefore, there was
a difference in the average value of the NCA for
groups A and B (first time). Next, the p-values
on both sides of the significance level 5% of the
average NCA in Groups A and B (second time)
was p = 0.796(> 0.05). Hence, there was also a
difference in the average NCA in Groups A and B
(second time).

Additionally, to confirm whether the difference
in the average NCA for the first and second time
in Group B was statistically significant, a two-sided
t-test was performed at the significance level of 5%.
As the participants were the same, a paired t-test
was performed, and the p-value on one side was
p = 0.001(< 0.05). Therefore, it was concluded
that there is a difference between the average values
of the Group B (first time) and Group B (second
time). A graph representing these results is shown
in Figure 8.

Figure 8. Average Score Of Text-Based Language
(Python) For Each Group

From these results, it was confirmed that the
above assumption, i.e., the understanding of the
text-based language, improved by inserting the

intermediate content. Moreover, the level of
understanding in Group B was not lower than that
in Group A.

Note that the total learning time in the
experiment differs between Group A and Group B
(1st). In particular, Group A has a longer total
learning time due to learning with intermediate
content. Concern remains that this may affect the
score that expresses comprehension. A rigorous
experiment in which there is no difference in the
total learning time is a future issue.

7. Evaluation by Questionnaire

A questionnaire was administered after the
experiment to confirm the characteristics of the
intermediate content of our proposal.

7.1. Questionnaire Items

The questionnaire consisted of the following
questions. All the answers had four levels of
response.

Question 1: Did you enjoy creating music with
JSFiddle?

　Answer 1–1: I enjoyed it.

　Answer 1–2: I enjoyed it a little bit.

　Answer 1–3: I had little enjoyment.

　Answer 1–4: I did not enjoy it.

Question 2: Do you think there are many English
words (e.g., play) to memorize when using the
music program in JSFiddle?

　Answer 2–1: There are very few English words
to memorize.

　Answer 2–2: There are a few English words to
memorize.

　Answer 2–3: There are many English words to
memorize.

　Answer 2–4: There are several English words
to memorize.

Question 3: Is it possible to immediately verify
the results of the music program (e.g., can you
check the sound immediately after execution?)
in JSFiddle?

　Answer 3–1: I can quickly check the execution
results.

Page 89



Table 3. F -test results
Group p-value Note
A and B (1st) 0.024(< 0.1) Variances were not equal
A and B (2nd) 0.008(< 0.1) Variances were not equal

Table 4. t-test results
Group p-value Note
A and B (1st) 0.012 (<0.05) A significant difference
A and B (2nd) 0.796 (>0.05) No significant difference
B (1st) and B (2nd) 0.001 (<0.05) A significant difference

　Answer 3–2: I can somewhat quickly check the
execution results.

　Answer 3–3: I cannot somewhat quickly check
the execution results.

　Answer 3–4: I cannot quickly check the
execution results.

Question 4: Is it easy to hear where the notes are
out of tune in the music program by JSFiddle?

　Answer 4–1: It is easy to hear where the notes
are out of tune.

　Answer 4–2: It is a little easy to hear where
the notes are out of tune.

　Answer 4–3: It is not easy to hear where the
notes are out of tune.

　Answer 4–4: It is not at all easy to hear where
the notes are out of tune.

7.2. Questionnaire Results

Upon completing the experiment, we shared
questionnaires to get reviews on the characteristics
of the intermediate contents. The results are shown
in Table 3. The results of the questionnaire revealed
that the content of the programming class for
composing music with JavaScript has intermediate
characteristics between the visual- and text-based
programming languages.

Figure 9 shows the results of the questionnaire.
A summary and interpretation of the results are
shown in Table 5.

7.3. Comparison of Questionnaire
Results

In our previous research (Umezawa et al, 2022),
classes were conducted using the intermediate

Table 5. Questionnaire Results
Question No. Mode Interpretation
Question 1 2 They enjoyed it a little.
Question 2 2 English words

to memorize are
somewhere between
“few” and “many.”

Question 3 1 Confirmation of
execution results is
between “quickly” and
“somewhat quickly.”

Question 4 2 It is a little easy to hear
where the notes are out
of tune.

content explained so far for students of the high
school attached to Shonan Institute of Technology.
The same questionnaire was administered. In
this section, the questionnaire results of university
students andwere compared with high school
students. Figure 10 shows the results of the
questionnaire for high school students. Table 6
shows a comparison of questionnaire results.

Looking at these, it can be seen that high
school students had more fun than college students
in terms of enjoyment (Question 1). Moreover,
regarding the number of English words that must be
memorized (Question 2), many students answered
that high school students had to memorize many
words because they did not know the number of
words that text-based programming languages had
to memorize. I would like to conduct further
experiments targeting programming beginners of
various age groups, including junior high school
students. Additionally, regarding Questions 3 and
4, it can be seen that both college students and high
school students show similar tendencies.

Page 90



Figure 9. Questionnaire Results for College Students

Figure 10. Questionnaire Results for High School Students

Table 6. Comparison of questionnaire results
Mode

Question No. College High School
Question 1 2 1
Question 2 2 3
Question 3 1 1
Question 4 2 1 and 2

8. Summary and Future Work

This research demonstrates how using
intermediate materials between visual- and
text-based languages can help learners better
understand text-based languages. The results
from our questionnaires showed that the proposed
learning content has intermediate characteristics
between the visual- and text-based languages.

As a future task, we intend to increase the
number of participants in experiments and perform
analysis to achieve the overall goal of our research
project. We intend to examine the learning state
using biological data, such as brain waves during

learning, in addition to examining the results. We
also intend to apply our proposal to actual classes.

About Research Ethics

The Research Ethics Committee of Shonan
Institute of Technology has approved these
experiments. We have also received consent to
participate in this experiment from the participants
and their parents.

Acknowledgments

Part of this research was conducted as part
of the research project “Research on e-learning
for next-generation” of the Waseda Research
Institute for Science and Engineering, Waseda
University. Part of this work was supported by
JSPS KAKENHI Grant Numbers JP22H01055,
JP21K18535, JP20K03082, and Special Account
1010000175806 of the NTT Comprehensive
Agreement on Collaborative Research with the
Waseda University Research Institute for Science
and Engineering. Research, leading to this paper,

Page 91



was partially supported by the grant funded by the
ICT and Education of JASMIN research working
group.

References
[1] Mason, D., & Dave, K. (2017). Block-based versus

flow-based programming for naive programmers,
2017 IEEE Blocks and Beyond Workshop (B&B)
, pp. 25–28. doi: 10.1109/BLOCKS.2017.8120405

[2] Robinson, W. (2016). From scratch to patch:
Easing the blockstext transition, In Proceedings
of the 11th Workshop in Primary and Secondary
Computing Education (ACM), pp. 96–99.

[3] Mladenović, M., Boljat, I., & Žanko, Ž. (2018).
Comparing loops misconceptions in block-based
and text-based programming languages at the K-12
level, Education and Information Technologies
23(4), pp. 1483–1500.

[4] Navarro-Prieto, R., & Cañas, J. J. (2001). Are
visual programming languages better? The role of
imagery in program comprehension, International
Journal of Human-Computer Studies, Volume 54,
Issue 6, pp. 799–829.

[5] Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy,
K. (2019). Block-based versus text-based
programming environments on novice student
learning outcomes: A meta-analysis study,
Computer Science Education, pp. 177–204.

[6] Daskalov, R., Pashev, G., & Gaftandzhieva, S.
(2021). Hybrid Visual Programming Language
Environment for Programming Training, TEM
Journal. Volume 10, Issue 2, pp. 981–986.

[7] Weintrop, D., & Wilensky, U. (2017). Between a
Block and a Typeface: Designing and Evaluating
Hybrid Programming Environments, IDC ’17:
Proceedings of the 2017 Conference on Interaction
Design and Children, pp. 183-192.

[8] Weintrop, D. (2015). Blocks, text, and the
space between: The role of representations in
novice programming environments, In 2015
IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp.
301–302.

[9] Alrubaye, H., Ludi, S., & Mkaouer, M. W. (2019).
Comparison of block-based and hybrid-based
environments in transferring programming skills to
text-based environments, Proceedings of the 29th
Annual International Conference on Computer
Science and Software Engineering, pp. 100–109.

[10] Tóth, T., & Lovászová, G. (2021). Mediation
of Knowledge Transfer in the Transition from
Visual to Textual Programming, Informatics in
Education. DOI 10.15388/infedu.

[11] Weintrop, D. & Wilensky, U. (2019). Transitioning
from introductory block-based and text-based
environments to professional programming
languages in high school computer science
classrooms, Computers & Education, Volume 142,
103646.

[12] Umezawa, U., Saito, T., Ishida, T., Nakazawa, M.,
& Hirasawa, S. (2018). Learning state estimation
method by browsing history and brain waves

during programming language learning, Proceeding
of the 6th World Conference on Information
Systems and Technologies (World CIST 2018), p.p.
1307–1316.

[13] Umezawa, K., Saito, T., Ishida, T.,
Nakazawa, M., & Hirasawa, S. (2020).
Learning-state-estimation Method using Browsing
History and Electroencephalogram in E-learning
of Programming Language and Its Evaluation,
Proceeding of the International Workshop on
Higher Education Learning Methodologies and
Technologies Online (HELMeTO 2020), pp.22-25.

[14] Umezawa, K., Nakazawa, M., Kobayashi, M.,
Ishii, Y., Nakano, M., & Hirasawa, S. (2021).
Comparison Experiment of Learning State
Between Visual Programming Language and Text
Programming Language, Proceeding of the IEEE
International Conference on Teaching, Assessment
and Learning for Engineering (TALE2021), pp.
1-5.

[15] JSFiddle, https://jsfiddle.net/
[16] Blockly Games, https://blockly.games/
[17] GoogleColaboratory,

https://colab.research.google.com/notebooks/
[18] Umezawa, K., Nakazawa, M., & Hirasawa, S.

(2022). Seamless transition from visual-type to
text-type languages, Proceedings of the 84th
National Convention of IPSJ, Vol. 4, pp. 519–520.

Page 92


