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Abstract

Due to the complexity of modern IT services,
failures can be manifold, occur at any stage, and are
hard to detect. For this reason, anomaly detection
applied to monitoring data such as logs allows gaining
relevant insights to improve IT services steadily and
eradicate failures. However, existing anomaly detection
methods that provide high accuracy often rely on
labeled training data, which are time-consuming to
obtain in practice. Therefore, we propose PULL,
an iterative log analysis method for reactive anomaly
detection based on estimated failure time windows
provided by monitoring systems instead of labeled
data. Our attention-based model uses a novel
objective function for weak supervision deep learning
that accounts for imbalanced data and applies an
iterative learning strategy for positive and unknown
samples (PU learning) to identify anomalous logs. Our
evaluation shows that PULL consistently outperforms
ten benchmark baselines across three different datasets
and detects anomalous log messages with an F1-score
of more than 0.99 even within imprecise failure time
windows.

1. Introduction

Modern IT services are increasingly complex,
which aggravates their operation and maintenance and
poses new challenges for operators [1]. Monitoring
solutions are commonly employed to observe and
optimize IT services (e.g. to comply with service
level agreements (SLA)). However, the amount of
monitoring data oftentimes hinders manual analysis,
which demands automated approaches. To account for
that, the emerging field of artificial intelligence for IT
operations (AIOps) intends to support engineers [2].
They can improve reliability and stability in further
service updates through detected failures in IT services
by AIOps. For this, the core components of any
AIOps system are the three pillars of observability,

namely metrics, traces, and logs [3]. The latter
are important resources for troubleshooting because
they record events during the execution of service
applications [4]. Although most log messages come
with a severity level, such as INFO, WARNING, and
ERROR, it does not necessarily reflect the overall status
and oftentimes exhibits imprecision. Hence, recent
research on anomaly detection is based on deep learning
(DL) models to analyze log messages [5–8].

While the majority of existing anomaly detection
methods focus on predictive - live - anomaly detection,
these methods are often not directly applicable in
real-world services due to insufficient performance [9]
or the explicit need for accurately labeled data,
which is costly and time-consuming to obtain [10].
These limitations can be mitigated through analysis in
retrospect - reactive - as more information becomes
available. Especially IT companies, which operate
complex services and frequently deploy new versions,
need to assume that the heterogeneity of users
and devices reveals not yet observed errors over
time. Therefore, they have an interest in thoroughly
investigating all occurred anomalies to properly update
and steadily improve their services. Reactive anomaly
detection qualifies especially for reliability engineering,
which operates in longer iterations and attempts to
maximize long-term functionality.

We propose PULL, an attention-based model for
reactive log anomaly detection. Instead of labeled
data, it relies on rough estimates of when an error
has occurred - information that can often be derived
from monitoring systems [11]. PULL utilizes PU
learning [12, 13], a weak supervision technique, to
identify abnormal log messages in the estimated
failure time windows and therefore provides substantial
insights to the reliability engineer. Our method benefits
from a novel iterative training strategy where a new
model is instantiated after every iteration. It receives
the results of the previous model as input. Specifically,
the contributions of this paper are:

• A new method for reactive anomaly detection
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Figure 1: We use rough estimates for failure times provided by monitoring systems to identify abnormal log messages
via weak supervision.

called PULL, which is based on the transformer
architecture [14] with attention mechanism [15].

• An objective function for weak supervision deep
learning that takes class-imbalanced data into
account and is applicable to our iterative learning
strategy.

• An evaluation of PULL against ten baselines
(DeepLog, LogRobust, Rocchio, Invariants
Miner, SVM, boosting methods, PCA, Logistic
Regression, Decision Tree, and Random Forest)
regarding solving the defined problem and their
applicability for our proposed iterative training
strategy.

The remainder of this paper is structured as follows.
Section 2 provides background and formally describes
our problem. Section 3 surveys the related work.
Section 4 explains our method in detail and elaborates
on its advantages. Section 5 evaluates PULL in
comparison to ten other methods. Section 6 concludes
the paper.

2. Towards Reactive Anomaly Detection

Log events record the execution path of an IT
service. They result from logging instructions that are
part of the source code. Log events can describe failures
that occur during runtime, such as the crash of a service.
We call such log events abnormal. Log events are
marked with a severity level, that indicates how serious
a log event is regarding a potential failure. However,
even logs that are not marked with high severity can
be important indicators for faults and important for the
reliability engineers. Other log events may be assigned
a high severity, but the event has no adverse effects on
the service. Therefore, by only looking at the severity of
a log event, it can hardly be concluded if a log message
needs to be considered abnormal or not. This results in

high efforts for the engineers to find the real abnormal
log events by hand in order to investigate the causes of
failures.

Modern monitoring solutions alert when a service
operates outside of a defined norm. They observe
system metrics of hardware and software components.
Even if most failures can be classified, not all failures
can be known in advance [11]. Nevertheless, we
assume that failure times are roughly known, through
the monitoring solution. We use this information in
retrospect to detect abnormal logs on the log message
level in an automated way. Therefore we use the
failure time windows from the monitoring system as an
auxiliary source to train our method without previously
known labels.

Figure 1 exemplifies the described problem. It
displays the log of a system with two abnormal log
events colored in red for illustration purposes. As
described above, we utilize monitoring information to
estimate time windows of the length 2 ∗ δ in which we
suspect abnormal log events to be present. The goal of
the method is to identify these abnormal log messages
and classify all others as normal, regardless of whether
they are included in the respective time windows.

Our reactive anomaly detection method has the main
advantage that it enables us to determine the failures
with a high degree of precision and recall, without the
need for labeled data and thus reducing the engineer’s
workload in finding failures to improve the service.

Problem Definition. We describe our log anomaly
detection task as a weak supervision learning problem
with inaccurate labels since we cannot assign accurate
labels due to imprecision of the failure time windows.
Weak supervision with inaccurate labels is defined as
a situation where the supervision information is not
always matching the ground-truth [16]. Therefore,
we assign preliminary abnormal labels for all log
events in the estimated time windows and preliminary
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normal labels for all other log events. We utilize
PU learning [12, 13] which is short for learning from
positive and unlabeled data. PU learning is an umbrella
term for several weakly supervised binary classification
methods that classify unlabeled samples by learning
the positive (normal) and treating the unlabeled as
abnormal [12, 17, 18]. For this work, we assume that
1⃝ the approximated normal class mainly consists of

true normal samples, and 2⃝ the characteristics of the
real abnormal samples, hidden in the unlabeled samples,
differ from those of the normal samples. Furthermore,
we assume that at least 50 % of the samples are normal.

Log anomaly detection is a binary classification
problem for a log dataset L. Using weak supervision
with inaccurate labels, each log event li ∈ L is assigned
a triple (xi, ỹi, yi), where xi is the preprocessed log
message, ỹi the inaccurate label, and yi the ground truth.
The ground truth yi is only available in the experiment
setup, to evaluate and compare different methods. We
define ỹi, yi ∈ {0, 1}, where 0 is the label for normal
and 1 for abnormal log events, and form the two disjunct
classes P = (xi | ∀li ∈ L, ỹi = 0) as well as U =
(xi | ∀li ∈ L, ỹi = 1). Let Φ(x, ỹ,Θ) : li → {0, 1}
be a function represented by a trainable model, that
is trained on the incoming log messages x by using
their inaccurate labels ỹ, to learn the model parameters
Θ. We then use these parameters to predict a label
ŷi = Φ(xi,Θ) for each message xi, where Φ(xi,Θ)
is the model output.

3. Related Work

Next, we discuss related works concerning PU
learning and log anomaly detection.

PU Learning. The authors in [12] utilize the
Expectation-Maximization (EM) algorithm together
with Naive Bayes classification, with the EM algorithm
eventually producing a sequence of Naive Bayes
classifiers. A more conservative variant of this method is
proposed in [19] where the set of reliable negative (RN)
instances is iteratively pruned using a binary classifier,
which ultimately leads to improved final prediction
results due to the few but high quality negative instances.
In [20], the authors extract a set of reliable negative
instances via a feature strength function using a greedy
heuristic on sorted features until |P| ≃ |RN |. In another
work [21], the set RN is determined using an ensemble
strategy that integrates both Naive Bayes and Logistic
Regression, where an agreement of both models is
required to extend the set. An ensemble learning method
for PU learning is proposed in [22]. The authors
motivate bagging SVM, i.e. the aggregation of multiple
SVM classifiers to answer sources of instability often

encountered in PU learning. They find their approach to
producing competitive results while being often faster to
train, especially for |P| ≪ |U|.

Log Anomaly Detection. Various methods have
been presented for text-based problems, and more
specifically, for log anomaly detection. Existing
literature [23, 24] commonly clusters them into
supervised and unsupervised methods.

Supervised Methods assume the presence of labeled
data for training. Logistic regression [25] has
demonstrated its usefulness for classification tasks [26].
Decision Trees [27] are another solution often employed
in classification problem scenarios [28, 29]. Random
forests [30] build upon decision trees and are a suitable
tool for classification due to their ensemble learning
design. SVMs are evaluated in [31, 32] for anomaly
detection and are most often among the best performing
methods. Other publications [33,34] utilize the Rocchio
algorithm and demonstrate its effectiveness, e.g., for
the task of large-scale multi-label text classification. In
recent years, deep learning solutions have been proposed
for the problem of supervised anomaly detection on
logs. LogRobust [6] tackles the instability issue of
established methods via an attention-based Bi-LSTM
model and semantic vectorization of log events. This
idea is further developed with SwissLog [35], which
explicitly leverages semantic and temporal information
to handle diverse faults. LogBERT [36] extends BERT
for log anomaly detection via two specifically designed
self-supervised training tasks. An attention-based
encoder model is also used with Logsy [7], however,
additional anomaly samples from auxiliary log datasets
are used to enhance the learned vector representations
of normal log data. PLELog [37] designs an
attention-based GRU neural network, uses the idea of
PU learning and conducts probabilistic label estimation.

In contrast, Unsupervised Methods can be used
without labeled data. The PCA algorithm [38] is
employed for dimensionality reduction right before the
actual classification procedure. Invariant Miners [39]
retrieve structured logs using log parsing, group log
messages according to log parameter relationships,
and mine program invariants from groupings in an
automated fashion for log anomaly detection. The
authors of [40] propose a boosting-based ensemble
learning method that shows good performance on a
standard benchmark problem. LogCluster [41] is a
clustering-based method that relies on log vectorization,
clustering via Agglomerative Hierarchical Clustering,
and extraction of cluster representatives. Recently,
deep learning methods have been also introduced for
unsupervised log anomaly detection. DeepLog [5]
utilizes templates [42] and an LSTM, interprets a log
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as a sequence of sentences, and performs anomaly
detection on each. LogAnomaly [43] introduces the
representation method template2vec and fuses it with
LSTM networks into an end-to-end framework that
detects sequential and quantitative anomalies. In [44],
the authors propose the combination of Isolation Forests
and multiple Autoencoder Networks. ADA [45]
employs LSTM networks, dynamic thresholding, and
intelligent data storing.

In light of the existing deep learning methods, PULL
differentiates from them in multiple aspects. It applies
to individual log messages, hence it is not constrained
to log sequences only. Lastly, our method introduces
a novel approach to weak-supervised anomaly detection
of log messages via the idea of failure time windows and
PU learning through an iterative training strategy.

4. Method

This section introduces our method for log anomaly
detection. As the absence of accurately labeled data is
a common problem in real-world use cases, we design
a training pipeline that leverages various techniques and
proposes a novel loss function that enables us to detect
anomalies in logs, by training on inaccurately labeled
data from monitoring solutions.

4.1. Preliminaries

To increase the transparency of software systems and
to ease problem understanding, logging is commonly
employed. We differentiate the available log data
into two classes, namely the positive class P and the
unlabeled class U . While U encompasses all log
messages that occur in the time windows, P describes
the rest. The unlabeled class is called unknown since
it most likely contains normal and abnormal data, yet
its members are at first sight treated as abnormal and
thus assigned preliminary abnormal labels. This is
in contrast to standard anomaly detection where the
common notation is that the positive class are anomalous
log lines. Since we are referring to PU learning, we will
stick to the notation of PU learning.

Each log instruction results in a single log event,
such that the complete log is a sequence of events L =
(li : i = 1, 2, . . . n). A log event li ∈ L can be further
decomposed into meta-information and the content ci.
In accordance to our problem definition, the content ci
serves as the model input xi.

Tokenization. In order to input the content of log
messages ci to an algorithm, an initial transformation
with methods from the domain of Natural Language
Processing (NLP) is employed. Given a log content ci,
we refer to the smallest indecomposable unit as a token.

Consequently, each log content ci can be interpreted as
a sequence ci = (wj : wj ∈ V, j = 1, 2, . . . , si) of
tokens, where wj is the j-th token in ci, V is a set of
all known tokens and thus the used vocabulary, and si
denotes the total number of tokens in ci.

Embeddings. As the tokens themselves are
elements of the vocabulary V , they can not be passed
into a neural network directly. Furthermore, tokens do
not provide any information about their similarity or
difference to each other, hence, so called embeddings
are used to compute a representation of the tokens such
that a machine learning model can process it. An
embedding v⃗ is a real-valued vector representation v⃗ ∈
Rd of a token; a transformation function g transforms
a sequence of tokens ci with length si into a sequence
of embeddings e⃗i, i.e. with g : V |si| → Rd,|si|. To
access the j-th embedding in a sequence of embeddings
e⃗i, we write e⃗i(j). Furthermore, they are used to
obtain a representation for the whole sequence of tokens
ci. Embeddings are trainable units adapted during the
model training process to, at best, represent the meaning
of the original token or sequence of tokens.

4.2. Anomaly Detection

We design a processing pipeline for the anomaly
detection in logs, which is illustrated in Figure 2.

Log message t t t

1. Tokenization

Self-
Attention

Anomaly
Score

4. 
Output Detect AnomalyTransformer

architecture

2. 
Embedding

5. Label3. Model
Iterative Loop: New model is trained on prior anomaly scores

Figure 2: High level pipeline

First, we convert the content ci of each log event li
into a sequence of tokens ci using the symbols .,:/ and
whitespaces as separators. Subsequently, we clean the
resulting sequence of tokens by replacing certain tokens
with placeholders that adequately represent the original
token without losing relevant information. We introduce
a placeholder token ’[HEX]’ for hexadecimal values,
as well as ’[NUM]’ for any number greater or equal 10.
Finally, we prefix the sequence of transformed tokens
with a special placeholder token ’[CLS]’ which will
be beneficial later on. An exemplary log message

time.c: Detected 3591.142 MHz.

is thus transformed into a sequence of tokens
[’[CLS]’, ’time’, ’c’, ’Detected’, ’[NUM]’,

’[NUM]’, ’MHz’].
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Figure 3: Transformer encoder architecture with
multi-head self-attention. We define a novel loss
function on the encoder output operating on distances.

Since these sequences can vary in length, we
truncate them to a fixed size s and fill up smaller
sequences with padding tokens ’[PAD]’. For each
token wj in the token sequence ci, an embedding vector
e⃗i(j) is obtained using the transformation function
g. The truncated sequences of embeddings e⃗i

′ serve
as input for the model. The model computes an
output embedding for each truncated input embedding
sequence e⃗i

′, which summarizes the log message
by utilizing the embeddings of all tokens. This
output embedding is encoded in the embedding of the
’[CLS]’ token and modified during training via loss
minimization. During the training process, the model
is supposed to learn the meanings of the log messages,
thereby getting an intuition of what is normal and
abnormal, respectively. We denote the output of the
model as zi and use it throughout the remaining steps.
The anomaly score is calculated by the length of the
output vector ∥zi∥. Anomaly scores close to 0 represent
normal log messages, whereas large scores indicate an
abnormal log message. Though we conduct an iterative
training strategy where the computed anomaly scores
are transformed and used as input to subsequent training
iterations, after the last iteration, the final computed
anomaly score of each log event li is eventually used to
assign a label ŷi, i.e. either normal or abnormal, based
on a determined threshold. In the following subsections,
we will explain our model architecture, the objective
function to train the model, as well as our iterative
training strategy in more detail.

4.3. Model Architecture

For our network architecture illustrated
in Figure 3, we utilize the encoder of the transformer
architecture [14] with self-attention [15]. Since this
architecture does not take the order of the input
embeddings into account, we further enrich them with
positional encoding [15, 46]. Through this encoding of
the embeddings, the order of tokens is preserved.

Our employed encoder architecture utilizes the
attention mechanisms. Most importantly, the attention

mechanisms allow for attending over input embeddings
and thus determining their overall importance, whereas
the utilization of multiple attention mechanisms
simultaneously (i.e. multi-head) stabilizes the learning
process. Finally, this model outputs a transformed
vector representation r⃗i(j) for each input embedding
e⃗i(j) representing a source token wj . Furthermore,
during training, the input embedding corresponding
to the ’[CLS]’ token attends over all other input
embeddings from the original sequence of tokens, which
enables the model to summarize the context of the log
message content ci of the ’[CLS]’ token.

As we solely use this vector representation in the
subsequent steps, we hence refer to it as zi instead of
Φ(e⃗i

′; Θ) for the sake of simplicity.

4.4. Objective Function

To label log data, the transformer model must
be trained in a way that it is capable to handle the
problem of weak supervision with inaccurate labels.
For this, the model must understand the semantics of
the log messages. Thereby several log messages can
be completely different, but express the same state
of the system and have therefore the same meaning.
Thus, the objective function must be modeled in a
way that log events occurring in both P and U have
low anomaly scores. Log events that occur in U only
are most likely abnormal and must therefore induce
higher anomaly scores. In addition, the loss function
must be able to handle large amounts of incorrectly
labeled log messages, since the class U can increase
quickly for large δ, as δ is only roughly estimated
from the monitoring systems. The anomaly scores for
each input sequence e⃗i

′ are calculated as the length of
the corresponding outcome vector ∥zi∥. The length is
calculated by the euclidean distance to the zero vector.

The objective function consists of two parts. The
first part minimizes the errors of samples from class
P , from which the calculated anomaly scores should
be small and close to 0. The second part minimizes
the errors of samples from class U , by enlarging the
anomaly scores sufficiently, which makes them diverge
from 0. The general structure of the objective function is
shown in Equation 1, where ỹi is the inaccurate label, zi
is the output vector representation of the model for each
embedded input log message e⃗i

′, and m the number of
samples per batch.

1

m

m∑
i=1

((1− ỹi) ∗ a(zi) + (ỹi) ∗ b(zi) (1)

The first part a of the objective function becomes
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0 if the sample is from class U , while the second part
b becomes 0 if the sample is from class P . For a we
minimize the error for positive samples and in contrast,
we increase the error for all anomaly scores, when the
log message is of class U , with a(zi) = ∥zi∥2 and
b(zi) = q2/∥zi∥, where q is a numerator between 0 and
1 that represents the relation of the number of samples
in P and U . To ensure that q is representing the relation
of P and U and remains in the boundaries of 0 to
1 without growing too fast, we model q as a limited

function: q = f( |P|
|U| ) = |P|/|U|

(|P|/|U|)+1 = |P|
|P|+|U| , where

f(x) = x
x+1 , lim

x→∞
f(x) = 1. The limited function f

with limes of 1 enforces the requirements for q. Thus,
the total loss function is composed as

1

m

n∑
i=1

(
(1− y) ∗ ∥zi∥2 + (y) ∗

( |P|
|P|+|U| )

2

∥zi∥

)
, (2)

which effectively enables the transformer model to
train log messages with inaccurate labels by modifying
the calculated error depending on the relation of P and
U .

4.5. Iterative Training Strategy

We propose an iterative training strategy to improve
the anomaly detection capabilities of our method.
Suppose that in the first iteration, we train our model
on the available data and obtain an anomaly score
∥zi∥ for each original log event li ∈ L. Instead of
mapping the anomaly scores directly to labels based on
a threshold, we instantiate a new model and use them as
training input. Before, we smooth the anomaly scores to
eliminate previously learned biases. We assume that at
least half of all samples are normal since anomalies are
by definition [32] comparably rare. Hence we calculate
the median m of all anomaly scores and subtract it from
each anomaly score ∥zi∥ to obtain a smoothed anomaly
score. In the next step, we replace all negative scores
with 0 to ensure that each score lives in the range [0,∞).

0.1
Model Iteration 1

Anomaly Scores 0.7 12 20 2 1

tanh (x-median) 0 0 0.99 0.99 0 0

0 0 1 1 1 0Input labels

0.2
Model Iteration 2

Anomaly Scores 0.3 2 10 0.2 0.5
0 0 0.9 0.99 0 0tanh (x-median)

Figure 4: Anomaly scores are smoothed for training.

Lastly, we employ the hyperbolic tangent as a smoothing
function, which effectively squeezes all anomaly scores
to the range [0, 1) and thus diminishes the influence
of very large anomaly scores during the next training
iteration. Eventually, this yields:

∀li ∈ L : tanh(max(0, ∥zi∥ −m)) (3)

Following our problem definition, we then utilize the
transformed anomaly scores as inaccurate labels of our
log messages and train a new model.

Figure 4 depicts how the training labels are changing
from iteration to iteration. Therefore the real anomaly is
marked in dark red. The preliminary training label for
this sample denotes an anomaly as well, as the respective
log message is, along with other log messages, within
the failure time window. The anomaly scores from the
first iteration are then smoothed by utilizing Equation 3.
It can be observed that after the second iteration, the
sample that was originally mislabeled receives a lower
anomaly score than after the first iteration, and is from
then on treated as normal. This exemplifies the optimal
process and the potential of our iterative method.

Due to omitting the application of a threshold in the
intermediate iterations, both terms of our utilized loss
function are enabled, and the prediction certainty of a
model is effectively incorporated into the optimization
procedure. After a configurable number of iterations,
the final anomaly scores are eventually mapped to labels
using a determined threshold.

5. Evaluation

This section evaluates PULL next to ten common
methods from log anomaly detection and text
classification. We compare their performance on
three different data sets, considering four different time
windows δ.

5.1. Experimental Setup

We first explain our experimental setup, namely
which benchmark methods and datasets we chose and
how we constructed our evaluation datasets.

Datasets. We evaluate PULL on three well known
log datasets with anomalies that were recorded at
different large-scale computer systems and presented
in [47]. All datasets were labeled manually by experts.
The BGL dataset is collected from a BlueGene/L
supercomputer system at Lawrence Livermore National
Labs (LLNL) and originates from a period of 214 days,
with on average 0.25 log messages per second. The
Spirit dataset is collected from a Spirit supercomputer
system at Sandia National Labs (SNL). We selected the
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Table 1: Datasets with their total number of samples, number of abnormal samples in the ground truth, and number of
samples in U for different time windows (δ).

Dataset Total Abnormal U for different δ

(ground truth) ±1 000ms ±5 000ms ±10 000ms ±20 000ms

BGL 4 747 963 348 460 392 485 439 656 459 098 479 030
Thunderbird 5 000 000 226 287 1 423 207 2 368 016 2 853 171 2 924 896
Spirit 5 000 000 764 890 1 006 419 2 333 800 3 251 475 3 280 803

first 5 000 000 log messages, that cover a period of 48
days, with on average 1.2 log messages per second. The
Thunderbird dataset is collected from a Thunderbird
supercomputer system at SNL. Again, we selected the
first 5 000 000 log messages that reflect a period of 9
days, with on average 6.4 log messages per second.

We create our datasets by including all abnormal log
events as well as their surrounding events within a time
window 2 ∗ δ in U ; all remaining log events are in P .
As different systems with different quality of monitoring
solutions can only provide failure time windows
with varying degrees of accuracy, we investigate
the performance at four different time windows:
±1000ms (2s), ±5000ms (10s), ±10000ms (20s),
and ±20000ms (40s). Table 1 presents the number of
samples in U for each datasets. For small failure time
windows, class U does not deviate too much from the
ground truth at BGL and Spirit. Consequently, these
evaluation datasets contain only very few incorrectly
labeled normal log messages. For Thunderbird, on the
other hand, U is already about six times larger than the
ground truth at δ = 1000ms, meaning it is the hardest
dataset for this task.

For larger δ, U grows rapidly in all datasets until a
certain limit. At the largest observed windows, between
δ = 10000 and δ = 20000, only relatively few new
samples are added to U . This is reasonable, because
systems often produce significantly more logs when an
error occurs, placing them in close temporal proximity.

Benchmark Methods. To obtain a significant
and wide benchmark, we compare PULL to ten
state-of-the-art text-classification and anomaly detection
methods presented in a recent text-classification
survey [24] as well as in an established survey for
anomaly detection in system logs [23]. Namely, we
choose Deeplog, LogRobust, Rocchio, Invariants Miner,
SVM, Boosting, PCA, Logistic Regression, Decision
Tree, and Random Forest as benchmarks. Many of
these methods are explained in more detail in Section 3.
DeepLog, Invariants Miner, and PCA are only able to
train on samples in P to then detect deviations, while all
others train on all samples in P and U .

Preprocessing and Model Setup. The tokenization
process as described in Section 4 is applied for all

methods to ensure a fair comparison. Each sequence
of tokens ti is truncated to have a length of 26 for
Thunderbird, 18 for Spirit, and 12 for BGL. The
dimensionality d of our embeddings is set to 128.
We use Xavier weight initialization initially for model
weights and embeddings. For the training of our PULL
model, we use a hidden dimensionality of 256, a batch
size of 1024, a total of 8 epochs, and a dropout rate of
10%. For optimization, we use the Adam optimizer with
a learning rate of 10−4 and weight decay of 5 · 10−5.

5.2. Effect of Iterative Training

Before comparing the performance of PULL to
the benchmarks, we analyze the effect of iterative PU
learning on all available methods to find out which
methods benefit from this technique. For this, we trained
all methods three times on their respective output and
observed the model performance after every iteration.
We chose three iterations to detect general trends for
each method - in practice, the number of iterations
would be determined by a suitable stopping condition
or constraint. Figure 5 displays the results of some
exemplary methods after every iteration.

The performance improvement or degradation was
consistent across the three datasets for every method and
can be classified into three categories:

• Performance Improvement. Besides PULL, also
the Roccio algorithm’s performance improved
consistently and often significantly after every
iteration of training. For both methods, the range
of possible anomalies is becoming smaller in
each iteration, as more normal log messages are
now labeled as such. Consequently, there are
now more actually anomalous messages in U .
Similarly, also the Random Forest’s performance
increased on every iteration, albeit only at the 4th
digit behind the comma.

• Performance Degradation. DeepLog and PCA’s
performance degraded after retraining, meaning
that an increasing number of actual anomalies
are classified as normal by these methods. As
a result, anomalies are now considered normal
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Figure 5: Performance after iterative training for δ =
±10000ms. While PULL and Rocchio improve on each
iteration, other methods degrade (e.g. DeepLog and
PCA) or stay the same (e.g. Invariant Miners and SVM).

during further iterations, whereby the model tends
to classify similar anomalies as normal as well.

• No Change in Performance. LogRobust, Decision
Tree, Logistic Regression, and Invariants Miner
did not change their performance at all between
rounds of training as these methods have obtained
their optimal result already during the first
iteration. The boosting method and the SVM did
not change their performance either, albeit minor
fluctuations in the precision and recall at 4 or 5
digits behind the comma.

5.3. Comparison of Methods

We now assess the performance of PULL and all
baselines in terms of precision, recall, and F1-score
metrics. We depict the best F1-scores for each method
in Figure 6. For methods that benefit from the
iterative approach (PULL, Rocchio, Random Forest),
the F1-scores after the third iteration are displayed.
For the remaining methods, we display the F1-score
after a single iteration of training. PULL achieves the
highest F1-score across all experiments. As expected,
with increasing δ and thus growing size of U , the
performance across all methods tends to decrease.

For δ = ±1000ms, most methods achieve good
performance. An exception is the Thunderbird dataset,

which is characterized by a large U class, even for
δ± 1000: No methods but PULL and DeepLog manage
to achieve an F1-score higher than 0.35, while PULL
reaches 0.999 precision at perfect recall and DeepLog
reaches 0.925 precision at nearly perfect recall.

For δ = ±5000ms, the performance of all methods
but PULL, DeepLog, and Rocchio now also degrades on
the Spirit dataset. We can observe that simple methods
tend to have a close-to-perfect recall but suffer from bad
precision, meaning that they fail to identify normal log
messages in U . In contrast to Thunderbird and Spirit,
most methods continue to achieve very good results on
the BGL dataset.

The biggest drop in performance becomes evident
at the time window of δ = ±10000ms. For the
BGL dataset, we notice a notable drop in F1-scores of
other methods to 0.97, while only PULL maintains its
high performance of more than 0.994. On the Spirit
dataset, the F1-score of most methods drops below 0.5
while PULL still reaches 0.997. For Thunderbird, the
precision of other methods drops to only 0.1, meaning
that only one out of 10 log events labeled as abnormal
are actually abnormal.

Although, as explained above, the size of U does not
change significantly when increasing the window from
δ = ±10000ms to δ = ±20000ms, we notice some
notable drops in performance. Specifically, PULL now
only reaches an F1-score of 0.87 on the Spirit dataset,
followed by DeepLog with an F1-Score of 0.83. On
Thunderbird, DeepLog’s performance decreases to 0.67
while PULL maintains its F1-Score of 0.9995 from the
previous time window.

Overall, it can be observed that PULL and DeepLog,
which are both based on neural networks, perform
significantly better than most traditional methods. An
exception to this is LogRobust, which is also based
on a neural network, but suffers from overfitting
and is not able to reclassify incorrectly labeled input
data. Therefore, LogRobust is not applicable for a
PU learning strategy, which demonstrates that neural
networks are not generally superior. While traditional
methods try to distinguish between black and white,
some neural network based methods get a better
intuition of what constitutes an anomaly.

Nevertheless, some threats to validity remain. On
the one hand, we make the assumption that at least half
of the data is normal, however, in practice it can be
assumed that the majority of data is normal and only
few anomalies exist. On the other hand, the failure
times must be roughly known, which, however, is not
as strong a precondition as labeled data, since they
can be deduced from commonly employed monitoring
solutions whereas labeling requires manual effort.
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Figure 6: F1-scores of all experiments. PULL performs best across all evaluated datasets and time windows.

6. Conclusion

This paper presents PULL, a weakly supervised
model for reactive anomaly detection in log data.
PULL requires rough estimates of failure time
windows provided by monitoring systems and identifies
anomalous log messages within these windows with
very high precision and recall, which qualifies it for
application in real-world use cases. Therefore, labeled
training data, which is usually difficult to obtain due to
the required need for time-consuming manual labeling
through experts, can be omitted. PULL is based on
the attention mechanism and uses a custom objective
function for weak supervision deep learning techniques
that accounts for imbalanced data and deals with
inaccurate labels. We further propose and investigate
a novel training strategy that iteratively trains a newly
instantiated model on the regulated output of previous
models, thereby improving the performance of PULL
specifically while leaving most baselines unchanged.

We evaluated PULL in comparison to ten benchmark
methods on three common datasets and at four different
failure time windows. It outperforms other methods
across all experiments and reaches a performance of
more than 0.994 F1-score, even for failure time windows
as large as ±10000ms.

Regarding future work, we want to incorporate

additional data sources to obtain other weakly and
inaccurately labeled data for the training process.
Moreover, we want to further develop our method such
that it does not only localize the anomalies but also
identifies the underlying root causes.
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