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Abstract 

This paper proposes a computational model 
based on the first order logic reasoning, for managing 
discoveries in polypharmacology for the purpose of 
efficient drug repositioning.  The model uses 
computational reasoning upon advances documented 
in the published literature and thus is primarily based 
on the range of discoveries in biomedical science.  The 
idea behind the model is to exploit drugs multiple 
intended and particularly unintended therapeutical 
targets and discover if they can lead us towards drug 
repurposing.  Computational pharmacology is a very 
complex field, but reasoning upon its concept can 
bring us closer to the ideal polypharmacological 
world of finding, developing and approving 
multitargeted drugs and using them in drug 
repurposing.  

 
Keywords: Semantic, Computing Polypharmacology, 
Drug Repurposing 

1. Introduction  

Polypharmacology in relation to drug discoveries 
has been in the focus of our interest for more than a 
decade.  It was initially defined as the treatment of 
diseases by modulating more than one therapeutic 
target (Boran and Lyengar, 2010).  Considering that 
each approved drug must have its single therapeutic 
target, we must not forget that the same drug may have 
adverse mechanisms, because of one or more of its 
unintended targets. This creates a natural division into 
therapeutic and adverse polypharmacology.  Lately, 
the therapeutical pharmacology focuses on having 
multiple drugs with multiple targets, thus 
polypharmacology (Readdy and Zhang, 2013). If we 
add to this problem the complexity of diseases and 
disorders, then ideas of recognizing and developing 
multitargeted drugs (Talevi, 2015) forced us to rethink 
the way we discover, develop new and repurpose 
approved drugs (Peters, 2013), (Akilesh et al., 2021), 
(Lavecchia et al., 2016). 

The knowledge about intended drug targets is 
firmly interwoven within biomedical science and the 
drug discovery and approval process.  However, the 
semantic generated by unintended drug targets, i.e. 
adverse polypharmacology, when the drug binds to a 
protein which is not a therapeutic target, is equally 
powerful, in drug repositioning (Juric and Almami, 
2019) (Juric et al., 2021). Side effects and toxicity 
affect drug discoveries and since 2013 we kept looking 
at polypharmacology as a future of drug discoveries 
(Ready and Zhang, 2013).  Are we ready to move from 
one-drug-one-target to Polypharmacology on a 
unique disease pathway? Shall we extend 
polypharmacology and allow it to penetrate multiple 
disease pathways?  These two very important 
questions from 2013 have not yet been answered.   

The initial idea in computational 
polypharmacology was to integrate data and 
knowledge from disciplines which affect drug 
discoveries and then use computational models which 
could predict the polypharmacology journey far 
beyond target families (Anighoro et al., 2014), 
(Chaudhari et al., 2017).  In 2015 (Rastelli and Pinzi, 
2015) talked about computational polypharmacology 
which could discover early multi targeted drug 
activities in drug iterative design, with statistical data 
analysis and bioinformatics.  A similar study appeared 
in 2021 during the covid pandemic (Pinzi et al., 2021). 
In (Lavecchia and Cerchia, 2015) the authors focus on 
structure-and-ligand-based strategies to address 
polypharmacology and reiterated the importance of 
finding or predicting off-target toxicities in drug 
repurposing and the design of multitargeted drugs.  
The following question is imminent: Could 
computational polypharmacology predict (or find?) all 
drug effects, results of knowing intended and non-
intended therapeutical and adverse targets and as such 
provide a better picture of targeting diseases?  We still 
do not have a computational model which would give 
us better approaches to targeting diseases. 

It appears that weaknesses and challenges in 
computational polypharmacology described in 2017 in 
(Chaudry et al., 2017) are the same today.  We have 
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not moved forward. We hoped that predictive and 
learning technologies and machine learning (ML) may 
give answers in modern drug discoveries with 
polypharmacology.  There is on  example (Zitnik et al., 
2018) which uses graph convolutional networks in 
modelling polypharmacology side effects by 
exploiting drug to drug interactions, due to drug 
combinations.  However, at the time of writing this 
paper, we could not find publications which carried on 
with advances in computational polypharmacology 
and made an impact on the process of drug discoveries 
and their repurposing. 

Unintended drug targets proved to be powerful 
knowledge even during the time of the covid pandemic 
(Akilesh et al., 2021), (Pinzi et al., 2021) and it is 
disappointing that we have not exploited the semantic 
stored within drug non-intended targets and drug to 
drug interactions in order to move towards knowledge 
systemization and discoveries of complex relationship 
between diseases, drugs and their targets.  This is 
essential if we wished to create modern computational 
models for polypharmacology.  However, the interests 
in drug combinations (Ianveski et al., 2019) and drug 
combination therapies (Paltun et al., 2017), which are 
based on predictions on the best possible drug 
combination for a particular disease, do not directly 
answer the problem of computational 
Polypharmacology.  We can predict effective drug 
combinations by looking at all possible interactions: 
chemical, proteins and targeted pathways as suggested 
in (Madani-Tonekaboni, 2018), but the essence of 
Polypharmacology should be in the using non-
intended targets and side effects to understand 
potentials of discovering multitargeted drugs.  
Looking at drug combinations does not guarantee that 
we will discovered a new and repurposed 
multitargeted drug.  Finally, our long standing and 
successful drug approval process is based solely on 
approving drug’s single intended target.  

This paper illustrates the idea of creating a 
computing Polypharmacology model, based on 
reasoning and first order logic, interwoven in 
Semantic Web Technologies (SWT), for discovering 
either new or repurposing existing drugs.  This 
computation should use all relevant knowledge on 
drug targets, intended, i.e. approved, and unintended 
targets, to drug to drug interactions, in order to create 
inference which would result in various outcomes:  
defining a new drug, repurposing of existing drugs and 
even detecting Polypharmacology side effects.  

The paper is organized as follows.  Section 2 
describes the background of the problem and proposes 
the potential way forward. Section 3 introduces 
conceptual ontological model for computational 
Polypharmacology and sections 4 shows the proposal: 

the OWL model and the reasoning process which 
infers potential drug repurposing.  The explanation of 
the implementation of the proposal is in section 5, 
related work is in 6 and conclusions  in section 7. 

2. The Background 

There are various pathways for enhancing 
research in computational Polypharmacology. 

First, the environment where drugs and their 
biological targets interact is a complex portion of 
biomedical science.  It ranges from network analysis 
of the relationships between drugs and drug targets, 
the power of therapeutic Polypharmacology in 
designing combination therapy and off-target binding 
in non-target tissue, to application of 
Polypharmacology to underlying diseases, the 
treatment of diseases through the analysis of signaling 
networks of the disease state, multiple disease 
pathways, and multifaceted etiology of diseases, to 
mention just a few.  Therefore, chemical and 
biological space for understanding and improving 
Polypharmacology is complex and vast.  It is 
extremely difficult to place all these components of 
Polypharmacology into one special computational 
model, hoping that it will address the main goal: 
efficient drug discoveries and repurposing.  Also, the 
data we have now and will collect in future, relevant 
to Polypharmacology, is not necessarily directly 
computable.  A new way of thinking on how to “store 
and manipulate the data semantic” to serve 
computational polypharmacology, is needed. 

Second, outcomes of experiments and research in 
biomedical science are very often buried in published 
research papers and as such they are not directly 
available for any type of computations.  However, 
there are many repositories, mostly databases, created 
in the last decade, which store data on intended and 
unintended drug targets.  There are non-commercial 
software tools claiming to predict drug-target 
interaction networks (DINES). There are repositories 
where, for example, structural and ligand-based 
strategies in Polypharmacology and the processes of 
in-silico methods, which address them, are freely 
available, (Lavecchia and Cerchia, 2015), Chopra, G., 
& Samudrala, R. (2016), (Proschak et al., 2019). 
However, we are in the same boat here, as in the 
paragraph above: the data available need additional 
restructuring for running computing programs upon 
them to either PREDICT or REASON upon the facts 
which would take us to drug discoveries and their 
repurposing.  This means that we cannot place all these 
repositories in one “basket” and assume that semantics 
stored in them would be computable (Juric et al., 
2021). Creating centralized repositories for excessive 
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amounts of data, with complex semantics, is a no-go 
area for efficient computational models today (Juric, 
2022). The time of complex and centralized software 
solutions are long gone. 

There is one sentence which appears too often in 
the latest biomedical literature: “We tend to produce a 
huge amount of unstructured data which creates 
terminological problems regarding semantic 
transparency, and humpers their re-use and parsing 
by computers” (Vogt, 2019).  Therefore, it is difficult 
to talk about centralization/ integration of data or/and 
computations and we must find a new way forward. 

2.1. Potential Way Forward 

The first step would be to perform systemizations 
and create taxonomies of the knowledge in 
polypharmacological data, and categorize computing 
models, where only excerpts from these taxonomies 
are used.  The purpose of a particular drug discovery 
process and the environment in which we perform it 
are important.  Therefore, we need both: taxonomies 
and categorization of data and computations.  

The good news is that in the last decade, we have 
had successes with taxonomies in biomedical science 
in the format of formal ontologies (Hoehndorf et al., 
2015) which systemize knowledge and outcomes of 
biomedical and chemical experiments.  The phenotype 
ontologies (Gkoutos et al, 2017) are very powerful and 
popular in translational research (Robinson and 
Weber, 2014).  There are also ontologies which 
address a particular disease and drug discoveries 
related to them (Vaszuez-Naya et al., 2010). 
Ontologies are instruments to (i) reducing the 
complexity of polypharmacology (Farish and Grando 
2013), (ii)  organizing phenotypic data by creating a 
semantic data model for anatomy (Vogt, 2019) (iii) 
enhancing computational polypharmacology with text 
mining and ontologies (Plake and Shroeder, 2011) and 
creating phenotype ontologies (Gkoutos et al., 2018).  

Considering that the road for using ontologies in 
the biomedical science was paved almost 10 years ago, 
formal ontologies may help in this research by 
supplying either data (ontological individuals) or 
ontological concepts.  However formal ontological are 
not suitable to be a core of computational models 
because they are collection of knowledge and 
controlled vocabulary.  They are very useful but not 
effective for computations.  We would rather use 
reasoning upon SWRL enabled OWL ontologies to 
create new computational models, which means that 
we do not wish to be directly dependent on formal 
ontologies. They may potentially contribute towards 
data sharing and possibly updating our computational 
model with new advances in biomedical research.  

They are very important, but they shouldn’t become a 
backbone of computational polypharamcology. (Juric, 
2016) (Almami et al., 2016a). 

It is important to note that the idea of reasoning 
when using SWT and the first order logic, within 
computational models, does NOT include predictions 
with ML. We accept that predictions are derived from 
statistical models, available within learning 
technologies, known as ML algorithms, which shape 
current AI. However, reasoning and predicting are two 
different types of computations, and they cannot be 
mixed and matched without having a specific software 
architectural solution (Juric and Ronchieri, 2022), 
(Juric and Kim, 2017).  Therefore, advances in 
predictions of drug combination based on clinical side-
effects (Huang, et al., 2014) and ML in drug 
discoveries (Talevi et al., 2020), predictions of 
synergistic drug combinations (Gayvert et al., 2017), 
and selective combinations of druggable targets (Tang 
et al., 2013) are examples of “predictions”.  They are 
popular and powerful in drug discoveries, but they are 
just complementary computations to the first order 
logic computational reasoning (with SWRL enabled 
OWL ontologies). They may enhance each other’s 
efficacy in computational polypharmacology.  
Ontologies do not calculate and do not predict. They 
systemize, classify, manage the semantic of data for 
computing and enable logic reasoning upon them, 
which is impossible to do with ML predictions. 

3. Conceptual Ontological Model for 
Computational Polypharmacology 

 

 
Figure 1. One-drug-one-target OWL model 
 
Figure 1 is a  model of ontological concepts which 

describe our current approach to drug discoveries, 
development, and approval: one drug for one 
intended target (InTTG).  However, each approved 
drug, for a particular disease, may have numerous 
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unintended targets: {UnIntTG1, UnIntTG2, …, 
UnIntTGk}.  Concepts like Drug, Disease, InTTGI and 
{UnIntTG1, UnIntTG2, …, UnIntTGk} are related 
through ontological properties (red lines in Figure 1), 
named according to their role or the meaning they may 
have in relationships between the concepts. They are 
self-explanatory in Figure 1. 

 

 
Figure 2. Multiple drugs - multiple targets OWL 

model. 
 

Figure 2 is a conceptual OWL model for 
computational polypharmacology, where each drug: 
a) may have any number of intended {InTTG1, 

InTTG2, InTTGl}, and international targets 
{UnIntTG1, UnIntTG2, …, UnIntTGk }, 

b)  has been approved for a number of diseases 
{Dis1, Dis2, …. Disl} and 

c)  a particular disease Dis1 may have a set of drugs 
{Drug1, Drug2, … Drugn} approved for treating 
Dis1 

The model from Figure 2 allows for our visionary 
world of computational polypharmacology: multiple 
drugs for multiple targets (and diseases).  Ontological 
properties in this figure (red lines) have the same role 
as object properties in Figure 1. 

The philosophy of polypharmacology, from 
Figure 2, shows how complex it could become.  From 
the computer science point of view, it would be 
extremely difficult to create a computational model 
which would create structures to do exactly what the 
figure shows.  It is feasible to implement the model 
from Figure 2, but its software application might 
exhibit performance and efficiency issues (Juric, 
2017).  However, if we consider only excepts from the 
semantic shown in Figure 2, we can run reasoning 
according to a particular situation/circumstance where 
only a fraction of the semantic from Fig. 2 is relevant. 

Figures 3 and 4 are such examples. We use the 
generic model from Figure 2 and explore two different 

situations. One shows the problem of one intended 
target IntTG being found for two drugs and the other 
shows a potential chain of relating drugs through 
intended IntTG and unintended UnIntTG targets.  
 

 
Figure 3. Potential drug-to-drug interaction OWL 

model. 
 

 
Figure 4. Potential drug repurposing. 

 
Therefore, drug-to-drug interaction in Figure 3 

exists because the intended target IntTG for Drugi 
(approved for Dis1) is involved in another drug 
Drugi+1, as an international target UnIntTG, probably 
as having indications for treating a different disease 
Dis2.  Thus Drugi and Drugi+1 may not be administered 
together because of their possible interaction.  

Figure 4 shows something else, closer to drug 
repurposing.  If disease Disp is treated by Drugp and 
Drugp has intended IntTGp and unintended targets 
UnIntTGp and if we can find a disease Disq which can 
be treated by a drug with intended target IntTG equal 
to the same one as in UnIntTGp then it is likely that 
Disq could be treated by Drugp . 

These two examples are two of many derived 
from Figure 2.  We should be able to derive 
ontological models from Figure 2 according to the task 

Page 3078



we have: repurposing the drug, discovering a new 
drug, finding a disease for a drug’s unintended target 
UnIntTG, harmonizing disease potential multiple 
drug-to-drug interactions and many more.  

There is another outcome from Figures 3 and 4.  
In the both cases we can use semantic predication 
(Juric et al., 2021) (Zhang et al., 2014) which has been 
prevalent in translational semantics and use its 
“subject-predicate-object” structures when creating 
our ontological models.  Figure 5 shows predication 
elements converted from Figure 3.  Therefore, all our 
ontological models from Figures 1,2,3 and 4 can be 
expressed using biomedical semantic predication 

 
Figure 5. Semantic predications for Figure 3 

 
 

 
Figure 6. Working ontology 

4. The Proposal: OWL Model and the 
Reasoning process 

Figure 6 shows a set of basic ontological OWL: 
classes which can be a starting point of creating 

computational models for polypharmacology. The 
choice of classes is self-explanatory and follow what 
was shown in Figures 1 and 2, but some of the OWL 
classes are explained below. 

Posterior Observation class may store any data on 
any drug, created after the drug has been approved and 
in use.  This is an opportunity to monitor the behavior 
of approved drugs and discover unintended targets 
which were not know before. 

Indication class expands the semantic stored in 
Drug and Disease classes, by containing individuals 
which would list the indications for taking drugs, as 
approved for a disease (or many diseases, as desired in 
polypharmacology).  This means that we are able to 
use Indication class, if we wish, if there will be a need 
to elaborate on drug indications, because they are 
related to intended targets IntTG. 

There are a few more classes in Figure 6 which 
are needed for preparing OWL concepts for the 
process or reasoning.  Considering that we might need 
to keep (temporarily) the results of reasoning, because 
of ontological matching between individuals of OWL 
classes, which in turn will infer individuals of OWL 
classes (Kataria et al., 2015), (Saaidi et al., 2009)  we 
would like to store inferred individuals in 
DRUG_UnIntTG_INDICATION, DRUG_DISEASE, 
DRUG_IntTG_INDICATION, DRUG_UnIntTG, 
classes which will be used as placeholders for storing 
inference if necessary. 

It is important to note that the power of SWRL 
enabled OWL ontologies is not in the number of OWL 
classes and individuals they have (Juric et al., 2018), 
(Koay et al., 2010), (Shojanoori and Juric, 2013).  It is 
a set of object properties and a selection of OWL 
classes which define the power of OWL models and 
NOT the complexity and size of OWL classes.  
Therefore, we need to create OWL model first which 
would secure definitions of SWRL rules for reasoning.  
OWL ontologies, which are not prepared for reasoning 
in a particular situation cannot be used for creating 
inference, even with a pedantic, elaborative and long 
selection of OWL classes and their individuals.  

Figure 7 selects OWL classes of interest from 
Figure 6 and adds potential object (i.e. ontological) 
properties.  This is still not a reasoning process, but it 
shows how object properties could be defined in the 
ontology from Figure 5, and thus make provisions for 
reasoning.  Figure 7 is one of many possibilities of 
creating conceptual OWL model, based on Figure 2, 
having base classes from Figure 6 in mind.   

There is one interesting object property 
“repurposed_for” in Figure 7. It is denoted with thick 
red line.  This property has not been defined.  The red 
line denotes that we would like to create a reasoning 
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process which would infer “repurposed_for” between 
ontological individuals. 
 

 
Figure 7. OWL model description. 

Figure 7 is a deliberately simple OWL model 
which could be sufficient for a particular drug 
repurposing, because it uses an unintended target to 
learn that this target could be intended for another 
drug/disease.  The model does not impose that we will 
always repurpose a drug.  We could do this only if we 
have enough information in the model (individuals and 
object properties).  For example: 
A) If the drug has no unintended target, we can not 

repurpose it (according to this model) 
B) If the unintended target UnIntTGg is NOT an 

intended target for any disease, we can not 
repurpose the drug in question. 

4. 1. The reasoning Process 

The reasoning process given in Figure 8 is the 
most important part of this computation.  It is tailored 
for information given in Figure 7, but by no means is 
the only reasoning process we may have.  However, its 
simplicity would allow for creating a very short 
SWRL rule which would infer exactly what we wanted 
in Figure 7: object property repurposed_for. 

The reasoning process in Figure 8 shows 
ontological matching between the classes which 
secure inference and thus the colored shapes placed 
within the symbol of OWL classes.  These small 
colored symbols indicate which types of individuals 
are being stored and then possibly inferred (i.e. moved 
after the ontological matching) and when the 
individuals of DISEASE class are ready to be 
connected through repurposed_for object property (as 
the final inference which gives the result of the 
reasoning). 

5. The implementation 

Table 1. Object Properties with Individuals 

 
 
 

 
Figure 8. The reasoning process. 

We have implemented a prototype to prove the 
proposed concept and illustrate our ideas.  The first 
step was to define object properties which connect 
individuals of the main ontological classes.  Table 1 
gives an illustrative explanation of drugs, their 
intended and unintended targets, and object properties 
defined between the individuals of domain and range 
classes.  The data has been taken from the published 
literature (this is where published formal biomedical 
ontologies can become handy).  Therefore, individuals 
and object properties are not there arbitrary placed: 
they are results of the dissemination of results of 
experiments in biomedical science. 

Readers should note by looking at Table 1, that 
we show only excerpts of individuals from our 
working ontology, with drugs we know that can be 
repurposed.  This helps to illustrate the reasoning. If 
the drug cannot be repurposed, according to the 
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individuals and object properties from the reasoning 
process, then it will not appear in result of reasoning. 

 

 
Figure 9. SWRL rule (in Protégé). 

Figure 9 shows SWRL rule for reasoning as 
indicated in Figure 8.  It is not difficult to follow the 
semantic of the rule. Its result is the inference of 
repurposed_for object property between the 
individuals of D (drug) and DI (disease) classes. 

This is not the only inference in the rule. We infer 
individuals of DRUG class into DRUG_UnIntTG class 
and individuals of DRUG_UnIntTG class in the 
DRUG_UnIntTG_INDICATION class.  This is 
essential if we wish to find out if there is any chance 
of repurposing a particular individual(s) from class 
DRUG.  The rule above runs all these inferences in one 
go, which is extremely important when creating a 
software engineering solution and software 
application which hosts this rule. Computations 
behind the rule are efficient and fast and it is unlikely 
that the same result could be achieved more efficiently 
with any other software technology.  SWRL enabled 
OWL ontologies can perform computational reasoning 
in any component based integrated development 
environment, including Java technologies, and its 
efficiency is based on simplicity of definition of object 
properties and number of classes in our OWL model 
(Saaidi et al., 2011), (Tarrabi and Juric, 2018) 
(Almami et al., 2016).  Number of individuals (the size 
of data sets) does not significantly affect the 
performance of the rule.  Therefore, our OWL model 
may have millions of individuals in classes from 
Figure 8, but SWRL rule efficiency will not be 
affected.  The efficiency of any software application 
which hosts the proposed SWRL reasoning will 
always depend on the semantic from Table 1 (object 
properties) and the way we wish to reason, which is 
given in Figure 8 (Kataria and Juric, 2011), (Koay et 
al., 2011). 

Figure 10 gives a screenshot of the result of 
reasoning with SWRL rule from Figure 9: 
Valproic_Acid, initially approved for mental 
disorders could be repurposed as a cancer treatment.   

The reasoning process from Figure 8 has multiple 
purpose and gives more options for reasoning about 
drugs and their intended and unintended targets. 

It could be a very simple listing of drugs approved 
for a particular disease, as shown in SWRL Rule 2a in 
Figure 11 and its results in Figure 12. 
 

 
Figure 10. Results of SWRL Rule in Protégé. 

 
Figure 11. SWRL rule 2a (in Protégé). 

 
Figure 12. Results of SWRL Rule 2a in Protégé. 

If we want to find out if the approved drug D has 
unintended target(s), known as indication I for treating 
a known disease, there is a possibility of repurposing 
the approved drug D for that disease (Fig. 13 and 14).  

 
Figure 13. SWRL rule 2b (in Protégé). 
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These SWRL rules have been implemented in 
Java applications using OWL-API and Java 
technologies, with similar software architectural 
models as in (Almami et al., 2016), (Tarabi and Juric, 
2019), (Juric at al., 2021).  

  

 
Figure 14. Results of SWRL rule 2b in Protégé. 

6. Related Work  

It is difficult to find related work because we do 
NOT create knowledge-based ontologies and we do 
not use ontologies as controlled vocabulary. Our 
ontologies are software engineering artefacts solely 
created for computing.  Therefore, this paper cannot 
be compared with (Kanza and Frey, 2019), (Machado 
et al., 2015), (Bokrum and Frey, 2014).  However, if 
readers have interests in using ontologies to add to 
knowledge classification in biomedicine and 
translational informatics, then these publications 
above give a good overview of the impact of SWT and 
tools on drug discoveries, based on knowledge 
discoveries.  Also, in these papers there are interesting 
examples of OWL modelling and SPRQL query 
retrievals for OWL ontologies.  Readers may read 
about the availability of platforms for drug discovery 
ontology (Clark et al., 2016), developing a consensus 
knowledge base for drug-target interactions (Tang et 
al., 2018) and ontologies for drug discoveries in 
neurology (Vazquez-Naya et al., 2010). 

The papers which motivated us to push forward 
reasoning with SWRL enabled OWL ontologies to 
represent complex semantics of drugs intended and 
unintended targets in polypharmacology, are (Zhang 
et al., 2014) and (Parisi et al., 2020). Readers might 
not find a connection of the structural perspective of 
polypharmacology, debated in these papers, and our 
OWL proposed model, but their deployment of 
unintended drug targets is very similar to this work.  
Both publications collected interesting examples of 
repurposed drugs from biomedical publications. 

The predecessor of this research can be found at 
(Juric and Almami, 2019), (Juric et al., 2021) (Juric et 
al., 2018), (Almami et al., 2016).   In these publications 
readers can find further comparison of related work 
and computations with SWRL in terms of their 

computational efficiency. The discussion and 
evaluation of the implementation of the proposal, i.e., 
proving that the proposal is computable can be found 
in (Almami et al., 2016), (Juric et al., 2021), (Tarabi 
and Juric, 2018). 

7. Conclusions 

This research is a continuation of long-term 
interest in applying the SWT in biomedical science 
and developing new models for computational 
polypharmacology.  The problem has been examined 
from the computer science perspective. It has been 
assessed if we can carry on with the SWT and 
ontological models to define and manipulate complex 
semantics of the polypharmacological paradigm and 
look at their impact on the current practices of drug 
discoveries and their approval processes. The 
prototype from this work is deployable in Android 
environments and computing based on Java 
technologies. It creates efficient software applications 
as debated in (Almami et al., 2016), (Juric et al., 2021), 
(Shojanoori and Juric, 2013), (Juric, 2016). 

Considering that we propose first order logic and 
ontological models for reasoning, we could extend the 
work by adding other technologies for manipulating 
meanings of words, which may include natural 
language processing (NLP) and text mining. We do 
not see any urgent need for using them, but they should 
not be excluded in future.  In terms of data availability 
and quality, when populating ontology and defining 
object properties (Table 1) we would NOT 
recommend straight forward automation of moving 
data available in bioscience literature into the model 
from Figures 7 or 8.  Human intervention is essential 
in populating Table 1, to have a correct interpretation 
of the semantic within the model. Object properties, 
which secure a correct relationship between 
ontological individuals, should be inspected and 
changed by humans.  We do not exclude full-scale 
automation in future, but at this stage there is no silver 
bullet in computer science which guarantees automatic 
and semantically correct interpretation of the meaning 
of “words” in biomedical discoveries using any of the 
available NLP algorithms. The flexibility of the 
proposal is in choosing excerpts of the model from 
Figures 6,7, 8 and making changes by humans in Table 
1, dictated by the exact problem in polypharmacology. 
We may be in a position to use an extremely simple 
OWL model in some cases, or explore the semantic of 
a pathway disease-approved drug-intended target- 
unintended target–disease with the full OWL model 
and the most complex set of relationships between its 
ontological classes (Table 1).  The process of 
reasoning will then depend on what we need to define 
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and discover in polypharmacology.  Ultimately the 
goal is to move away from one-drug-one-target 
philosophy. 

In 2022 we are confident that there should be 
some changes in the way we envisage computational 
polypharmacology for two reasons.  Our current drug 
discoveries, development and approval strategies are 
based on one-drug-one-target philosophy.  However 
successful this approach has been in securing drugs 
safety and efficiency, it limits our progress because all 
drugs have unintended targets which are not 
consistently exploited in drug discoveries through any 
computational model. UnIntTG are only widely 
acknowledged as potential side effect and source of 
adverse drug reactions for patients, but the nature of 
UnIntTG, for each drug, has never actively led towards 
systematic understanding of the power the drug 
multiple targets (and their impact on disease 
pathways).  Research on UnIntTG and drug discovery 
is rather sporadic and scattered across various 
disciplines, and computer scientists are not necessarily 
leading team members in computational 
polypharmacology. 

Second, in the last decade, we used predictive and 
learning technologies in biomedicine, which moved 
our focus on drug discoveries towards an AI pathway.  
They offer new possibilities of managing complex 
data from a pool of chemical, biological, phenotypic 
and network data (and genomics/proteomics in 
particular) in drug discovery initiatives, using ML and 
neural networks.  This may deliver the promise of 
addressing production costs and the burden of 
complicated and expensive procedures of bringing 
new drugs to the market. It is premature to say that ML 
algorithms are sine qua non for a new era of drug 
discoveries and repurposing with computational 
polypharmacology (Juric and Ronchieri, 2022), (Juric 
et al., 2020), (Almami et al., 2016a). 

The remarks above have their own merits, but 
they did not help with creating computational models 
for polypharmacology.  Symbiosis of predictions with 
ML algorithms, upon an abundance of biomedical data 
in polypharmacology, and the support of logic and 
reasoning computed with SWT, as proposed in this 
paper, may be the answer when addressing this 
complex problem domain. Also, the time might have 
arrived for scientists, pharmaceuticals, medical 
profession and governments, with their drug approval 
agencies, to rethink the scientific process through 
which we test and approve drugs.  Having one-drug-
one-target approach is not sustainable and 
polypharmacology is a possible answer. Since 2011 
we have not seen serious improvement towards 
creating computational polypharmacology and it is 
rather difficult to predict what the future holds. 
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