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Abstract

Reliance on computer-mediated teaming has
exploded in recent years, making research on how
teammates calibrate their behavior critical. Here,
we offer a simplistic, viable method to model human
behavior for use in subsequent research investigating
coordination among partners. We collected human
performance data in a multiple object tracking task and
a communications task to serve as the basis of our agent
performance in multiple tasks. We demonstrate our
model in real-time by drawing from existing research
involving probabilistic models of detecting critical
events and sample from a parametric log normal model
of human response times to mimic human behavior.
We endow our agent with team-based etiquette
through a hesitancy to intervene, a parameter sampled
from a uniform distribution, and manipulated agent
performance through parametric shifts to detection
and the log normal distribution that represents agent
response times. The present work does not offer
hypotheses as we did not conduct an experiment.
Rather, we derive and provide a validation of an
agent modeled from human performance parameters
in two tasks for future team-level research with ad hoc
partners.

Keywords: ostensible teammate, agent, human
performance, parametric models

1. Introduction

Advancements in technology have restructured
the way individuals understand and perform tasks. In
the 21st century, most work domains heavily rely on
computer-mediated tasks – i.e., workers accomplishing
goals through a computer or technological system,
rather than physically interacting with the environment.
This presents new possibilities for workers and teams
utilizing such methods. For example, it enables
one’s interaction with remote environments and
geographically separated teammates to accomplish
tasks. However, for industry, government, and academia

to fully leverage these opportunities, research must be
done on realistic coordination in distributed contexts.
Controlled team-based research is difficult; it requires
different (but consistent within a range) behavior
and performance. That is, experiments manipulating
features of human behavior and performance are
difficult to produce. However, one workaround is
to create ad hoc agents that can replicate human
behavior. This allows researchers to conduct team-level
experiments without recruiting and coordinating
multiple participants at once.

The present work prioritizes this with a first
step—developing a realistic agent with performance
parameters for use in research on computer-mediated
coordination amongst ad hoc partners. In the following
pages, we provide a brief summary of the need for
effective distributed teaming and provide an example on
the effects of this kind of research on human psychology
and performance. Then, we outline the development of
an agent for use in future research on distributed teaming
and leverage human performance data instantiating
task-relevant parameters, their variability, and their
effects on ad hoc coordination. Finally, we discuss
future research ideas.

1.1. Realistic Research on Distributed Teams

Researchers, managers, and business owners must
consider the benefits and costs of integrating existing
and emerging technologies to facilitate effective
distributed work. Compared to traditional organizations
comprising face-to-face interactions between co-located
parties, organizations have evolved to comprise
multiple dispersed teams (Benishek and Lazzara, 2019).
Geographically separated, or distributed, teams are
advantageous to occupy multiple operation locations
and domains, e.g., Joint-All-Domain Command and
Control (JADC2) operations within the United States
Department of Defense (DoD; Congressional Research
Service, 2020) prevent operations from containing a
single point of failure (Priebe et al., 2020). With the
emergence of geographically distributed collaborations
utilizing technology as means of communication
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(Morrison-Smith and Ruiz, 2020), the advantages of
distributed teams are prominent in that the location of
specialists is no longer a limitation.

Many of the underlying dynamics of human-human
teams can carry over from co-located to distributed
teams (Corbitt et al., 2004), but, importantly, the
nature of the team context shifts in distributed contexts;
for example, distributed and/or ad hoc partners often
do not have a history of working together, yet still
must work together in order to achieve their common
goal(s). In such instances, people may seek out
anecdotal information (e.g., ”Your partner has a good
(bad) reputation”) to form judgments about one another
prior to working together. These judgments may provide
partners the means to calibrate subsequent behavior, and
ultimately influence team performance (Capiola et al.,
2020). Carefully choosing what and how to provide
information in distributed team contexts is important: it
can impact psychological constructs such as trust (e.g.,
Capiola et al., 2020; Kanawattanachai and Yoo, 2002) or
collective efficacy (Capiola et al., 2019), factors which
facilitate performance in distributed teams.

More research and development is necessary to
understand the implications of distributed teaming on
performance, how to train for effective collaboration
in human-human partnerships in distributed domains,
and how information is most appropriately relayed
between parties to maximize efficiency in distributed
contexts. The present work prioritizes building a
simplistic, but plausible, agent to stand-in as a teammate
such that researchers can investigate factors (e.g.,
pieces of information about a partner) which influence
psychological constructs, behavior, and performance in
distributed, ad hoc teams.

1.2. AI as a Human Stand-in

Practically, the coordination of human-human team
research is laborious in both co-located and distributed
contexts (Mathieu et al., 2008). Artificial teammates,
or agents, are presumed to be useful for assisting
individuals and teams, once their functionality is
optimized and their integration is accepted by humans
(Chen and Barnes, 2014). In laboratory experiments,
researchers have simulated intelligently designed agents
by pre-programming actions participants view as being
attributed to an agent (Alarcon et al., 2022) or
employing wizard of Oz techniques (McNeese et al.,
2019) to serve as stand-ins for a human teammate to
investigate individual (e.g., risk-taking behaviors) and
team-level constructs (e.g., coordination), respectively.
The reverse has seen some study, evaluating the
capability of agents to pass as human and the results

of betrayed expectations in performance (Grimes et al.,
2021). Human-like responses and interaction encourage
people to engage with the agent as they would a
human. This is important as it may provide the
realism and fidelity necessary for researchers to capture
human-human team dynamics through a model-based
agent.

Research with the development and use of cognitive
models shows agents can successfully reproduce
human behavior and effectively mimic human-human
interactions in complex and real-world tasks (Rickel
and Johnson, 1999). While real-world distributed
team contexts may include live interactions that could
prove difficult to artificially reproduce (e.g., face-to-face
video, verbal communication), many tasks do not –
or cannot – explicitly require those features. Hence,
intelligently designed agents are a plausible and
worthwhile endeavor for research and development
of team coordination and performance in distributed
teams. Further, specific types of human performers
may be difficult to both recruit and coordinate their
participation in human-subjects experiments. This
makes it extremely difficult to investigate important
research questions and quantify effects of exogenous
variables onto endogenous variables.

Human-human and human-machine interactions
differ; therefore, it is important to create models in
which human behavior serves as the basis for building
intelligent synthetic agents. Cognitive modeling
frameworks such as SOAR (Laird et al., 1987) and
ACT-R (Anderson et al., 1997) can be used to develop
tools such as tutoring software (Ritter et al., 2007)
and performance support systems (Lovett et al., 2000).
However, in the present work, we use a joint model of
speed and accuracy to mimic human performance and
make a few assumptions about how teammates interact
with one another to reduce the overall development time
and computational demands of creating and applying the
intelligent agent in real-time. Our model needs to mimic
human behavior, performance, and team interaction to
effectively stand-in as a teammate in future research on
human-human teams.

Next, we define agent-based performance that can
generalize to many tasks, with various attributes such
as assertiveness or accuracy derived from parametric
models of human performance. Then, we describe
two tasks, a Multiple Object Tracking (MOT) and
a Communications (Commms) task, to demonstrate
our agent through real-time simulation and parameter
recovery, which may be used in future research.
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1.3. Agent Model

Agent performance can be based on a parametric
model of human performance. For a high performing
agent, we can assume response times (RT) follow a
log normal distribution, lognorm(µ, σ2), of human
response times, xh, such that the probability density
function (PDF) of agent RTs, f(xa), is defined as:

f(xa) =
1

σxh
xh

√
2π

exp−
(ln(xh)− µxh

)2

2σ2
xh

,

where xh are observed human RTs and µxh
and σxh

are the expected mean and standard deviation of the
natural logarithm of the human data, xh, respectively.
In this paper, we referred to each parameter as log(µ)
and log(σ).

We use the maximum likelihood estimate (MLE) to
select parameters at the group-level, log(µ, σ) for each
task type and high or low performance, respectively.
Monte Carlo simulation and a MLE fit on shifted
response times served as the model of detection time
for a low performing teammate, f(ya), where low
performance shifted data, ys, is characterized as the
human data (representing a high performing agent), xh,
plus two standard deviations of the human data,

ys = xh + 2 ∗

√∑n
i=1 (xhi − x̄h)

2

n− 1

where n is the number of samples of response times
and x̄h is the average of the human response times.
Similarly, the PDF of low performance agent RTs,
f(ya), is defined as:

f(ya) =
1

σys
ys
√
2π

exp−
(ln(ys)− µys

)2

2σ2
ys

,

where µys
and σys

are the expected mean and standard
deviation of the natural logarithm of the shifted, or
’low’, human performance data, ys, respectively.

Existing literature informed the detection rate (i.e.,
accuracy: hit/miss) of agents that represented either
high or low performing teammates (e.g., Dixon et al.,
2006, 2007; Parasuraman and Manzey, 2010; Rice and
McCarley, 2011). We refer to these detection rates as dx
and dy for high and low performing agents, respectively.
In this model, if the agent can assist, i.e., detects human
should respond, and an adequate amount of time passes,
then the agent will respond for the participant. In
this simple model, the agent never makes an incorrect
response; that is, mistakes are only expressed as missed

events. Therefore, the PDF for RTs of, for example, a
high performing agent conditioned on its probability of
detection, f(xa|dx), is characterized as:

f(xa|dx) =

{
f(xh) for d ≤ dx,

NA for d > dx

where NA indicates a failure to detect a response is
warranted, recorded as a miss; d is a random integer
between 0-100, sampled at the start of each trial; dx
is the detection rate for the high performing agent.
Similarly, the PDF for RTs of a low performing agent
conditioned on its probability of detecting an event,
f(ya|dy) is characterized in the same way, where f(ya)
and dy represent the RT distribution and detection rate of
the low performing agent, respectively. Additionally, we
implement a lag time, l, to intervene using a continuous
uniform distribution, U(m,n), with two parameters, m
and n, which represent the minimum and maximum
bounds on the lag time value, respectively. As such, the
PDF of lag time is defined as:

f(l) =

{
1

n−m for m ≤ l ≤ n,

0 for l < m or l > n.

Therefore, the intervention time, IT , the time in which
the agent may intervene, is the sum of the detection time
and lag time, f(l). For example, the PDF of intervention
times for a high performing agent is defined as:

f(IT )xa
= f(xa) + f(l)

where f(xa) represents the lognorm(µ, σ2) of the high
performing agent. Similarly, intervention time of the
low performing agent, f(IT )ya , is captured by the sum
of the low performance PDF, f(ya), and function of lag
time, f(l).

Importantly, the agent only intervenes should it
detect a response is desirable, where detection rates
differ depending on whether the agent is a high or low
performer, AND (denoted as ∧) the human did not yet
respond at the time of trial onset plus the intervention
time, IT . Logically, it follows that the agent does not
intervene should it not detect a response is warranted OR
(denoted as ∨) the human responded before the sampled
intervention time. Therefore, the intervention time on
any given trial, ITi of, for example, a high performing
agent is:

ITxa i =

{
ITxai if di ≤ dx ∧ ITxai < hi,

NA if di > dx ∨ ITxai
≥ hi
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where NA indicates no response from the agent; di is
the random integer between 0-100 generated on trial i;
and hi is the response time of the human partner (if a
response was made) on trial i. Similarly, observations
of IT for a low performing agent conditioned on its
detection rate is characterized in the same manner,
where yai and dy represent a response time and the
detection rate of the agent, respectively.

To the authors’ knowledge, existing literature does
not provide direct suggestion regarding the extent to
which humans wait before intervening in their partner’s
task, though tangential work does exist. For instance,
team delay with respect to toleration of connectivity
lag between human teammates in a video game setting
provides minimal discussion regarding levels of peer
interlude (Saint John and Levine, 2005). Here, team
play is examined by leveraging a radius, dubbed team
radius (t = l + b), with a sphere of influence (SOI)
being l = 1 and a boot radius (b = 2), resulting
in a delay tolerance of about 25ms. Further, research
investigated the malleability of human collaboration
with a robot when asked to move a table through a
doorway and presented with a strategy that came from
the robot (Nikolaidis et al., 2017). Here, adaptability
was defined as the probability the human would move
from their solution to the provided one, accounting
for individual differences amongst each person. When
jointly performing the task with a human partner, the
robot offered an option to achieve the task in increments
of one second, starting immediately. More willing
human partners formed an agreement to use the robotic
solution at one second while a majority of human
partners accepted the robotic solution at three or more
seconds, regardless of identified adaptability levels.

Despite the lack of guidance from extant literature,
we choose m and n parameters that provide adequate
delay in order to effectively capture human hesitancy
and nature of maximum payout (i.e., it is better for each
teammate to perform their own tasks, but intervening is
better than a miss/incorrect response). In the current
design, samples of lag time were generated from the
same distribution for both high and low performing
agents.

2. Methods

In order to create human-like responses we chose
two tasks to demonstrate our agent: a Multiple Object
Tracking (MOT) and a Communications (Comms) tasks.
We manipulated the probability the agent will detect an
event occurred (i.e., hit rate) and, if detected, the speed
at which the agent responded. The speed and correctness
of the agent varied, depending on whether it emulated

a high or low performing person. In the next section,
we outline and sketch a generalizable MOT and Comms
task. Then, we report both our method to estimate
parameters that represented agent performance and the
procedure we used to collect human performance data
in these tasks.

2.1. Summary of Tasks and Application

In the present instantiation of our agent, we endow
it with unique responsibilities in two subtasks, the same
two tasks its human partner simultaneously completes.
Should it both detect assistance is desirable in either
task (i.e., detect an action is necessary), and that its
human teammate has not completed said task(s) within
a comfortable amount of time, it occasionally assists its
human teammate. The first task is a MOT task where
the agent is responsible for turning on/off an alarm in
one high-risk area of interest (AoI). This AoI is one
of four quadrants of a display (the diagonal quadrant is
the human partner’s AoI and the other two are low-risk
cells). The correct state of the alarm depends on the
ratio of hostile (red) versus security (green) actors in the
designated AoI (blue dots represent benign bystanders).
On the same shared display, the human partner will
complete the same MOT task, but will do so for a
different AoI (see Figure 1). The other task is a Comms

Figure 1: A static image of a MOT task. Color and size
of tracks are changed and enlarged, respectively.

task where the agent ”listens” for their assigned call-sign
(e.g., agent = ”Alpha”) and responds to the message
that follows their call-sign. A message is a string of 4
spoken letters, for which the agent must respond with
the letter that follows the 3rd letter in the string in the
English alphabet. For instance, in a scenario where
the agent is responding to the message ”B, D, R, M”,
the correct response is the letter ”S”, as it is the next
letter of the alphabet following the third letter in the
spoken string (see Figure 2). The human partner will
complete the same Comms task, but will respond to a
different call-sign (e.g., human = ”Bravo”). Distractor
call-signs (e.g., ”Delta”) were also present. The basis
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Figure 2: A representation of the Comms task.

of our agent model is formed using the combination
of performance of several human participants that are
well-practiced in the task, assumptions about what
constitutes ’high’ (fast and accurate) or ’low’ (slow
and inaccurate) performance, and social etiquette norms
of teammate intervention and assisting behaviors in
distributed and multi-task team contexts. Next, we
unpack the instantiation of these parameters for our use
case.

2.2. Performance

We manipulated both detection rate and speed
for our high and low performing agents. Our
detection rate parameters were determined by research
examining the effects of high/low performing agents in
human-machine teaming literature (e.g., Dixon et al.,
2006, 2007; Parasuraman and Manzey, 2010; Rice and
McCarley, 2011). Specifically, the probability that our
agent detected an event (hit rate) was low (65%) or
high (95%). When an event was triggered, a random
sample from 0-1 was chosen – if the random number was
lower than the probability of hit (i.e., x < 0.65 for low,
x < 0.95 for high) then the agent attempted to respond
to that event; if the random number was higher than the
probability of the hit (i.e., x > 0.65 for low, x > 0.95
for high) then the agent would fail to detect that an event
occurred. If the agent did respond, they were always
correct (i.e., no false alarms). If the agent attempted
to respond to an event, a detection time was randomly
sampled from our model based on human performance
in each isolated (MOT and Comms) task. We explain
the human data and response time (RT) model in the
following sections.

Our current instantiation of the model does not
include false alarms; therefore, incorrect responses were
only observed through the absence of a response, or
miss. However, this is a modeling choice for our specific
example described in this paper. Modelers interested in

creating an agent that produces false alarms can easily
include a parameter to represent the probability in which
the agent may detect an event at any given time, or in
response to events that may occur but do not require a
response (i.e., distracting events).

If the agent detected an event, we on-the-fly took
samples from a model that was fit to data we collected
from human subjects (N = 5; note that, in our case,
this is a sufficient sample size for obtaining parameter
estimates due to low variability among subjects and
large number of observations per individual), three and
two of whom were coauthors of this paper and members
of the lab, respectively. The model fit from human data
represented the distribution of potential RTs for the high
performing agents. We added two standard deviations to
the human data and fit a different model to these data to
represent the distribution of RTs for the low performing
agents.

2.3. Human Subjects Data

Human subjects data collection consisted of people
completing three blocks of only the Comms task and
two blocks of completing only the MOT task. The
tasks were completed at the lowest level of difficulty
such that each human subject was only responsible
for one call-sign or one quadrant. Hence, our agent
performance was modeled as a reflection of ideal
human circumstances, an isolated task context in a
distraction-free environment. Experiment blocks were
kept short as to not introduce effects from fatigue
or sustained attention. All human subjects were
well-versed in the task and sufficiently trained prior
to completing the experimental blocks. Each human
subject was assigned each call-sign once and each
quadrant once, alternating between Comms and MOT
blocks. For example, a human subject may complete
blocks in a pattern of Comms (Alpha), MOT (top left),
Comms (Bravo), MOT (bottom right), and Comms
(Delta). Each Comms block consisted of 50 trials
(roughly 6-7 minutes) and visual blocks were 6 minutes.
This provided 50 trials per subject of ’hit’ trials for the
Comms task and around 160 events per subject in the
MOT task.

2.4. Model Fit

2.4.1. Multiple object tracking (MOT) task We
were conservative in extracting MOT task data to use for
modeling our simulated agent performance. Therefore,
we excluded any instances in which a human subject
turned ON and OFF an alarm within a single UNSAFE
period and any instances in which the total duration of
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an UNSAFE state was less than one second. We only
considered RTs that were correct and collapsed across
all human participants to fit a single model to the group
data.

High performance. We fit a log normal model
to the RT data for the MOT task. Figure 3a shows
the individuals’ data for the MOT task (colored lines):
the black line is the group data, and the dashed line
shows the model fit using a Monte Carlo sampling
method. The legend shows how many data points were
used to estimate each human participant’s probability
distribution.

The log normal parameters for our high
performing agents in the MOT task were
log(µ) = −0.727, log(σ) = 0.370. There is some
chance that a negative RT is sampled. In this case, the
model immediately resamples from this distribution
until a positive RT is obtained.

Low performance. We added two standard
deviations of the group data to each raw data point in
order to create our low performing model. This shifted
the response time distribution to generally be slower
than the raw data. We fit a log normal to these data;
the log normal parameters for our low performing agent
in the MOT task were log(µ) = 0.853, log(σ) = 0.255.
Figure 3b shows samples from the high (green line) and
low (red line) performing model.

In future experiments, the response period that a
participant or agent will have to respond to turn ON/OFF
an alarm may be random and depend on the position of
the dots. Therefore, using the human data, we calculated
the duration that the AOI in the MOT task was in a
particular state and compared it to the simulated agent
performance. This was to check that the agent would
indeed turn ON/OFF the alarm within a reasonable time
in both the high and low performance conditions. The
black line in Figure 3b shows the response periods
relative to high (green) and low (red) performing agent
responses.

2.4.2. Auditory communications (Comms) task
Our approach to the Comms task data was more
straightforward. We did not exclude any correct
response times and collapsed across assigned call-signs
for each human participant.

High performance. Similar to the MOT task, we
fit a single model to the group data and obtained
two parameters for the log normal distribution (log(µ),
log(σ)). We used Monte Carlo sampling (N = 1000)
to illustrate the model fit, shown in Figure 3c. Again,
each individual’s data are indicated by colored lines, the
group data is the solid black line, and the simulated
agent data is the dashed black line. The legend

shows how many data points were collected for each
participant, collapsed across each assigned call-sign
(Alpha, Bravo, Delta).

The log normal parameters for our high
performing agent in the Comms task were
log(µ) = 0.303, log(σ) = 0.361. Similar to the
MOT task, if the RT sampled from the distribution is
negative then the model immediately resamples from
this distribution until a positive RT is obtained.

Low performance. We added two standard
deviations of the group data to each raw data point in
order to create our low performing model. This shifted
the RT distribution to generally be slower than the high
performance data. We fit a log normal distribution
to these data; the log normal parameters for our high
performing agent in the Comms task were log(µ) =
0.972, log(σ) = 0.202. Figure 3d shows samples from
the high (green line) and low (red line) performing
model. The cutoff period for responses was fixed (as
opposed to variable in the MOT task) to 3 seconds,
shown as a gray vertical bar.

2.5. Intervention

We created an agent that will detect state changes (in
the MOT task) and pertinent call-signs (in the Comms
task) in the participant’s tasks with the same probability
that it detects events occurring in its own tasks. For
example, the participant may be assigned to monitor the
top left AOI (MOT task) and ”Bravo” (Comms task),
and the agent may be assigned the bottom right AOI
and ”Alpha.” A low performing agent detects 65% of the
MOT task state changes (i.e., turn ON/OFF an alarm) or
Comms task responses (i.e., participant’s call-sign was
spoken) in either AOI (top left, bottom right) or call-sign
(”Alpha”, ”Bravo”). A high performing agent detects
95% of the pertinent AOIs or call-signs in their own
and the participant’s assigned MOT tasks and Comms
tasks. Similar to an agent’s response to events in which
it was responsible for monitoring (bottom right AOI and
”Alpha”), if an event was detected in the participant’s
tasks (top left AOI and ”Bravo”), then a response time is
generated by sampling from the appropriate log normal
distribution given the agent’s set performance level (low,
high) and the task (MOT, Comms).

Next, we incorporated an intervention delay
parameter for the agent, ID. In practice, if the
intervention delay time passes and the human teammate
still does not make a response, then the agent will
respond for them. The ID is task dependent: the total
response period for the MOT task will vary depending
on how long the dots remain in the AOI, as evidenced by
the black distribution in Figure 3c; the response period
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for the Comms task is consistently 3 seconds after the
onset of the 3rd letter, as shown by the gray vertical line
in Figure 3d. Given these constraints, the lag time for
the MOT task was sampled from a uniform distribution
ranging from 1− 2 seconds; the lag time for the Comms
task was sampled from a uniform distribution ranging
from 0.5− 1 second. The response time for the agent to
respond to events in the participant’s task depends on the
overall agent’s performance level and the task; simulated
intervention RTs are shown in Figure 3e and 3f.

(a) (b)

(c) (d)

(e) (f)
Figure 3: Individuals’ data for the MOT (a) and Comms
(c) task, group data, and model fit. The legend indicates
the number of data points per distribution. Trial duration
relative to high and low performing agent in the MOT
(b) and Comms task (d). Simulated intervention RTs for
a high and low performing agent in the MOT (e) and
Comms (f) task, relative to the response period.

3. Model Validation

We validated the performance of our agent by
recording its responses in a modified version of the
program which ran continuously (generating new trials)
until 1000 responses in each category (visual + agent,
visual + human, auditory + agent, and auditory +
human) were complete. One data object stored all
attempts (any time a valid call sign or quadrant occurred,
and thus was checked against the agent to see if it would
respond). Another stored the ”delay” times generated
for the agent when it actually did respond.

The total number of responses (for each category)
was divided by the total number of attempts to determine
the real probability, which was compared to the
aforementioned values. Additionally, the delay times
were evaluated by determining the µ and σ values (mean
and standard deviation of the natural logarithm of the
delay times). The results for this are in Table 1 and 2.

As can be seen, all observed values are very close to
the defined parameters. The categories which involve
the intervention delay (visual + human, auditory +
human) show average lag values, in each case, very
close to the middle of the uniform distribution. As
with any probabilistic system, more samples would
asymptotically improve the accuracy of the results, but
as can be seen here 1000 observations are sufficient to
show our agent teammate performs as anticipated.

4. Discussion

Our goal was to develop a cognitive-based, real-time
agent that is a viable distributed, ad hoc partner
for future work investigating team-level psychological
constructs and performance in laboratory settings.
We detailed how we created and demonstrated our
agent for two tasks, a MOT and a verbal Comms
task. We successfully validated our model by
simulating performance in each task and recovering
the response time and accuracy parameters generated
from human subjects. This simple, yet viable, human
performance-based agent can stand-in as a human
teammate for future laboratory studies investigating
computer-mediated collaborations. Our methodological
approach can be adopted by researchers wishing to
develop their own agent(s) for team-based work.

One strength of our modeling technique is its
simplicity. We collected data from five human
subjects, and in a subset of conditions, to fit a
straightforward model of response times, containing
only two parameters in each task, and two more
for when it assists with a human teammate’s task(s).
We used the lower bound of variation in our
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Table 1: ”Low” performance agent parameters
Expected/Defined MOT Comms

Response Probability (Self) 0.65 0.65
Response Probability (Intervention) 1.0 1.0

Response Delay (seconds) log(µ) = 0.853, log(σ) = 0.255 log(µ) = 0.972, log(σ) = 0.202
Intervention Delay (seconds) min.=1.0, max.=2.0 min.=0.5, max.=1.0

Observed MOT Comms
Response Probability (Self) 0.65 0.65

Response Probability (Intervention) 1.0 1.0
Response Delay (seconds) log(µ) = 0.856, log(σ) = 0.257 log(µ) = 0.970, log(σ) = 0.203

Intervention Delay (seconds) µ = 1.50 µ = 0.75

Table 2: ”High” performance agent parameters
Expected/Defined MOT Comms

Response Probability (Self) 0.95 0.95
Response Probability (Intervention) 1.0 1.0

Response Delay (seconds) log(µ) = −0.727, log(σ) = 1.123 log(µ) = 0.301, log(σ) = 0.361
Intervention Delay (seconds) min.=1.0, max.=2.0 min.=0.5, max.=1.0

Observed MOT Comms
Response Probability (Self) 0.95 0.95

Response Probability (Intervention) 1.0 1.0
Response Delay (seconds) log(µ) = −0.709, log(σ) = 1.125 log(µ) = 0.336, log(σ) = 0.365

Intervention Delay (seconds) µ = 1.50 µ = 0.75

human performance data to simulate slow, or ’bad’,
performance. We drew from existing literature where
possible to estimate detection rates of a high or low
performing agent and whether our agent would respond.
We sampled from our parametric model of agent
performance in real-time to determine the speed and
accuracy of the agent in response to events that either
the agent or human would be responsible for completing
in the MOT and Comms task.

4.1. Limitations and Future Research

We purposefully did not instantiate agent false
alarms when responding to their own or their partner’s
alarm or call-sign, i.e., the agent never responded
when they should not have. Obviously, humans may
offer such responses in a team-based task as described
here. However, we did not qualify the quality of
the performance manipulations (e.g., ”My partner is
not helpful because a) they miss a lot of suspicious
personnel in my quadrant and/or b) they respond there is
a suspicious person in my quadrant when there is not”).
Research on human-machine teaming has documented
the effects of misses and false alarms on human reliance
and compliance with automation (Dixon et al., 2006,
2007). Future work may wish to model agent false
alarm rate and qualify the kind of false alarm made
to investigate its effect on psychological constructs and

performance in human-(ostensible) human teams.

Additionally, our agent was modeled after specific
values for how parameters of speed and accuracy
increased or decreased depending on whether we wanted
the agent to exhibit high or low performance. Good team
performance depends on whether the human teammate
can detect and calibrate their performance appropriately.
Ideally, humans will utilize spare attentional resources
to monitor and assist their teammate when necessary
to achieve a level of performance that exceeds that of
each alone. Nonetheless, how one obtains knowledge
about their partner’s performance may influence their
interactions. For instance, forming a representation over
time, ’learned knowledge’, versus acquiring information
prior to an interaction, ’explicit knowledge’, may
change behavior (e.g., Zhang and Houpt, 2020). Similar
phenomena may generalize to human- (ostensible)
human interactions.

Until now, no literature suggests how to model
the hesitancy, or lag time, when intervening in a
partner’s task. We used a task assessment, e.g.,
average duration of response period, to determine an
upper and lower bound to represent intervention time
in each task. In order to calibrate our intervention
time parameters, we had to first create an agent for
people to work alongside and have the opportunity to
intervene. Hence, our intervention lag parameter could
be improved with additional research. Nonetheless,
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our agent anecdotally passed the test of acting ‘human’
during an active demonstration in a preliminary lab
study. Our live demonstration was done with willing and
naive individuals under the guise of completing a task
with separate human partners. In multiple independent
instances, these individuals made comments related to
the believably of our agent. This included declaring the
desire to ”not want to let down my partner” as well as
exasperation when paired with a low performing agent.
These individuals were informed after the demonstration
that they were partnered with an agent for the tasks,
after which the agent received praise for its convincing
nature.

Our agent development consisted of performing
a MOT and a Comms task. However, this does
not limit applying our modeling technique to develop
intelligent agent teammates in other types of distributed,
ad hoc contexts. Similarly, our agent was split broadly
into ”high” and ”low” performing variants, but more
granular distinctions could be made for individual
parameters. One might consider the parameters
indicative of attributes like alertness (the probability of
perceiving an event has occurred), accuracy (always
1 in our scenario, but still able to be manipulated),
and assertiveness (the agent’s likelihood of or lag time
before intervening in the human partner’s task). Such
distinctions would allow for agent variants targeting
different aspects of a team task. For instance, the
agent performance in each of our tasks was modeled
after the human subjects’ best performance, meaning
when they completed the task in a distraction-free
and single-task context. Future work could extend
our agent model to exhibit dual-task deficit that is
expected when time-sharing between two challenging,
or ’resource-limited’, tasks (Norman and Bobrow,
1975). The MOT and Comms tasks were designed
such that, according to principles of multiple resource
theory (C. Wickens, 1984), the tasks have little to
no overlapping resource demands, which minimizes
their degree of competition for attention and predicted
dual-task performance deficit (C. D. Wickens, 2002).
However, when teammates attempt to complete multiple
demanding tasks simultaneously (e.g., Fox et al.,
2021) or complete their own tasks while monitoring,
and sometimes intervening in, their partner’s task,
resource demands increase and performance deficits are
expected. Future work should assess this.

4.2. Conclusions

We developed the theory, mathematical instantiation,
and software of a parametric model to serve as the
basis of an agent teammate. We demonstrated our

model using data from well-practiced human subjects
and parameter estimates provided in existing literature
on automation detection rates. We imposed a hesitancy,
or lag, when the agent intervened in their partner’s task
to mimic social etiquette when working in team-based
contexts. We demonstrated our agent as a viable
stand-in for a human in distributed and ad hoc contexts
through model simulation and validation of parameter
recovery. The simplistic nature of our model provides
the opportunity for human participants to interact with
the agent in real-time, allowing human-human teaming
research to be conducted with only a single subject
and an easily controlled partner. We highlighted
gaps in current literature where our model could add
an invaluable contribution and posed a few model
improvements or ways that researchers could adapt our
framework to accommodate various physical demands
(e.g., different tasks), abilities (e.g., time-sharing
efficiency), and important psychological constructs
(e.g., trust) in future research.

4.3. Acknowledgements

The views expressed are those of the authors and
do not necessarily reflect the official policy or position
of the Department of the Air Force, the Department of
Defense, or the U.S. government. No potential conflict
of interest was reported by the authors. The research was
supported, in part, by the 711 Human Performance Wing
Chief Scientist Office (contract FA8650-20-D-6203).
The study was approved by the Air Force Research
Laboratory 711 Human Performance Wing Institutional
Review Board (protocol FWR20220029E, V1.01).
Distribution A. Approved for public release; distribution
unlimited. AFRL-2022-2275; Cleared 12 May 2022.

References

Alarcon, G., Capiola, A., Morgan, J., Hamdan,
I. A., & Lee, M. (2022). Trust violations in
human-human and human-robot interactions: The
influence of ability, benevolence and integrity
violations. Proceedings of the 55th Annual Hawaii
International Conference on System Sciences.

Anderson, J., Matessa, M., & Lebiere, C. (1997).
ACT-R: A theory of higher level cognition and
its relation to visual attention. Human-Computer
Interaction, 12, 439–462.

Benishek, L., & Lazzara, E. (2019). Teams in a new era:
Some considerations and implications. Frontiers in
Psychology, 10.

Capiola, A., Alarcon, G. M., Lyons, J. B., Ryan, T. J.,
& Schneider, T. R. (2019). Collective efficacy as
a mediator of the trustworthiness–performance

Page 245



relationship in computer-mediated team-based
contexts. The Journal of Psychology, 153, 732–757.

Capiola, A., Baxler, H., Pfahler, M., Calhoun, C., &
Bobko, P. (2020). Swift trust in ad hoc teams:
A cognitive task analysis of intelligence operators
in multi-domain command and control contexts.
Journal of Cognitive Engineering and Decision
Making, 14, 218–241.

Chen, J. Y., & Barnes, M. J. (2014). Human-agent
teaming for multirobot control: A review of human
factors issues. Transactions on Human-machine
Systems, 44, 13–29.

Congressional Research Service. (2020). Joint
all-domain command and control (JADC2). In
Focus [IF], 11493.

Corbitt, G., Gardiner, L. R., & Wright, L. K. (2004).
A comparison of team developmental stages, trust
and performance for virtual versus face-to-face
teams. Proceedings of the 37th Annual Hawaii
International Conference on Systems Science.

Dixon, S. R., Wickens, C. D., & McCarley, J. S. (2006).
How do automation false alarms and misses affect
operator compliance and reliance? Proceedings of
the Human Factors and Ergonomics Society Annual
Meeting, 50, 25–29.

Dixon, S. R., Wickens, C. D., & McCarley, J. S. (2007).
On the independence of compliance and reliance:
Are automation false alarms worse than misses?
Human Factors, 49, 564–572.

Fox, E. L., Houpt, J. W., & Tsang, P. S. (2021).
Derivation and demonstration of a new metric for
multitasking performance. Human Factors, 63(5),
833–853.

Grimes, M. G., Schuetzler, R. M., & Giboney, J. S.
(2021). Mental models and expectation violations
on conversational ai interactions. Decision Support
Systems, 144.

Kanawattanachai, P., & Yoo, Y. (2002). Dynamic
nature of trust in virtual teams. Sprouts: Working
Papers on Information Environments, Systems and
Organizations, 2, 42–58.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence.
Artificial Intelligence, 33, 1–64.

Lovett, M. C., Daily, L. Z., & Reder, L. M. (2000).
A source activation theory of working memory:
Cross-task prediction of performance in act-r.
Cognitive Systems Research, 1, 99–118.

Mathieu, J., Maynard, M. T., Rapp, T., & Gilson, L.
(2008). Team effectiveness 1997-2007: A review of
recent advancements and a glimpse into the future.
Journal of Management, 34, 410–476.

McNeese, N., Demir, M., Chiou, E., Cooke, N., &
Yanikian, G. (2019). Understanding the role of trust
in human-autonomy teaming. Proceedings of the
52nd Annual Hawaii International Conference on
System Sciences.

Morrison-Smith, S., & Ruiz, J. (2020). Challenges and
barriers in virtual teams: A literature review. SN
Applied Science, 2, 1–33.

Nikolaidis, S., Hsu, D., & Srinivasa, S. (2017).
Human-robot mutual adaptation in collaborative
tasks: Models and experiments. The International
Journal of Robotics Research, 36, 618–634.

Norman, D. A., & Bobrow, D. G. (1975). On
data-limited and resource-limited processes.
Cognitive psychology, 7(1), 44–64.

Parasuraman, R., & Manzey, D. H. (2010).
Complacency and bias in human use of automation:
An attentional integration. Human Factors, 52,
381–410.

Priebe, M., Ligor, D. C., McClintock, B., Spirtas, M.,
Schwindt, K., Lee, C., Rhoades, A. L., Eaton, D.,
Hodgson, Q. E., & Rooney, B. (2020). Multiple
dilemmas: Challenges and options for all-domain
command and control. RAND Coorperation.

Rice, S., & McCarley, J. S. (2011). Effects of response
bias and judgment framing on operator use of an
automated aid in a target detection task. Journal of
Experimental Psychology: Applied, 17, 320–331.

Rickel, J., & Johnson, W. L. (1999). Virtual humans for
team training in virtual reality. Proceedings of the
Ninth World Conference on AI in Education.

Ritter, S., Anderson, J. R., Koedinger, K. R., &
Corbett, A. (2007). Cognitive tutor: Applied
research in mathematics education. Psychonomic
Bulletin Review, 14, 249–255.

Saint John, A., & Levine, B. (2005). Supporting p2p
gaming when players have heterogeneous resources.
Proceedings of the international workshop on
Network and operating systems support for digital
audio and video - NOSSDAV ’05.

Wickens, C. (1984). Processing resources and attention,
varieties of attention. R. Parasuraman and D. Davis,
Eds. Academic Press.

Wickens, C. D. (2002). Multiple resources and
performance prediction. Theoretical issues in
ergonomics science, 3(2), 159–177.

Zhang, H., & Houpt, J. W. (2020). Exaggerated
prevalence effect with the explicit prevalence
information: The description-experience gap
in visual search. Attention, Perception, &
Psychophysics, 82(7), 3340–3356.

Page 246


