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Abstract

Automated debiasing, referring to automatic
statistical correction of human estimations, can improve
accuracy, whereby benefits are limited by cases
where experts derive accurate judgments but are then
falsely ”corrected”. We present ongoing work on a
feedback-based decision support system that learns a
statistical model for correcting identified error patterns
observed on judgments of an expert. The model is
then mirrored to the expert as feedback to stimulate
self-reflection and selective adjustment of further
judgments instead of using it for auto-debiasing. Our
assumption is that experts are capable to incorporate
the feedback wisely when making another judgment
to reduce overall error levels and mitigate this
false-correction problem. To test the assumption, we
present the design and results of a pilot-experiment
conducted. Results indicate that subjects indeed use
the feedback wisely and selectively to improve their
judgments and overall accuracy.

Keywords: decision support system, debiasing,
automated debiasing, feedback, self-reflection

1. Introduction

A key question in current information systems
research is how to achieve collaborative intelligence,
i.e., how to combine the complementary strengths of
machines, which are stronger in extracting regular
patterns from data, and humans, which are more adept
at considering novel or transferable situations, effects or
unseen developments based on domain knowledge and
intuition (Blattberg and Hoch, 1990; Nagar and Malone,
2011; Zellner et al., 2021).

We introduce a novel decision support system (DSS)

aimed at improving estimation accuracy by fostering
collaborative intelligence. The mechanism implemented
by the DSS is to feed-back machine-learned
personalized error patterns (biases) of an expert to
that same expert who then decides how to incorporate
that feedback into her or his further judgments.

Accuracy of estimations is vital for enterprises
since planning and decision making usually depend
on accurate estimations of (future) business figures.
As of today, many respective tasks are dominated
by judgmental approaches, i.e., by humans with
individual backgrounds, attitudes, and estimation
heuristics (Klassen and Flores, 2001; McCarthy et al.,
2006; Sanders and Manrodt, 2003). A typical
DSS supports such tasks by gathering, filtering, and
presenting relevant information to derive informed and
unbiased judgments.

However, providing additional information does not
have an unambiguously positive effect on accuracy
and while a huge body of work on DSSs has been
published on how to integrate, aggregate, and visualize
data to derive accurate estimations and beneficial
decision alternatives, empirical evidence shows that
the judgments derived by seemingly well-configured
DSSs still come out flawed, including biases like
overconfidence, mean or regression bias, optimism,
over-steering or anchoring (see, for instance, the
findings in Blanc and Setzer, 2016; Lawrence et al.,
2006; Lawrence and O’Connor, 1993; Lawrence et al.,
2000; Leitner and Leopold-Wildburger, 2011; Lim and
O’Connor, 1996).

As a recent example derived from a large corporate
dataset, Blanc and Setzer (2015a) analyze a set
of empirical cash flow forecasts of a multinational
corporation, generated by more than one hundred
experts from different subsidiaries using forecast DSSs.
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The authors find that, nevertheless, mean as well
as regression biases exist for all business divisions
of the company. Furthermore, they find that the
statistically identified error patterns allow for an
automated statistical correction of the patterns that
increases overall accuracy. The authors also show that
the estimated model parameters relate to characteristics
of the business environments and argue that these
provide valuable insights to better understand, quantify,
and feed-back presumed biases to the experts to help
them to improve the accuracy of future forecasts.

The same authors also show that, since automated
correction is applied to estimates regardless of
presumably different confidence in the original estimate,
appropriate expert expectations are also corrected in
the wrong direction. This leads to higher errors than
necessary (Blanc and Setzer, 2015b).

To address this problem, for future research the
authors suggest a feedback-based DSS that shows
the expert, after she or he submitted a forecast, the
forecast of a statistical (correction) model together
with a description of the bias that might have driven
the discrepancy to the expert’s expectation. The
authors propose to derive such a benchmark forecast
by correcting time persistent biases in past expert
forecasts. The expert might then be prompted to accept
or overwrite the model forecast, ideally overwriting
primarily the model predictions that would lead to heavy
false-corrections.

The intuition of providing error pattern based
feedback and the key assumption of such an approach
that experts are capable to consider the error-feedback
wisely and selectively seems compelling. However, this
key assumption has, to our knowledge, not been tested
so far. For instance, when an estimation task falls in a
domain the expert is very familiar with and is sure that
the error-feedback is likely not to apply to his or her
current judgment, it should be neglected. In cases where
an expert is less confident that no structural bias is at
play, the feedback might be accepted and the estimation
adjusted. Overall, an expert must be capable to make
informed decisions if the structural error pattern he or
she received is likely to be valid (i.e., whether a bias
might indeed be at play).

We present the architecture of a novel DSS together
with the design and the results of a first experiment to
test this assumption. The DSS addresses the problem
that auto-debiasing of experts’ judgments leads to
decreasing accuracy if the expert made the judgment
knowledgeably and accurately, but the model falsely
corrects it. The DSS design further aims at providing
guidance on how to systematically improve further
judgments, i.e., to learn based on errors made in the past.

Such a type of DSS may be important for several fields
in business, where decision-makers are dependent on the
accuracy of estimations and predictions.

The experiment is the first in a series of experiments
currently conducted to find evidence for such wise
and systematic adjustments after receiving personalized
error patterns as feedback, and whether this leads to
error reduction. In the experiment, subjects are asked
to estimate quantities from different general knowledge
categories, while categories are not communicated, and
error-feedback in terms of their mean bias (measured
as mean percentage error, MPE) is displayed after a
sequence of estimations made.

The experiment is designed to make the key
assumption described above testable by few
sub-assumptions (hypotheses) related to changes
of the MPE in the right direction after feedback,
whether change is emphasized in categories with
higher before-feedback MPE, and whether accuracy
improvement is achieved compared to subjects not
receiving the feedback, with and without auto-correction
of their estimates. Results indicate that subjects indeed
seem to use the feedback wisely and selectively to
improve judgments.

The rest of this article is organized as follows.
In Section 2, we review previous research on
auto-debiasing and feedback-based DSS with regard
to whether they hint at specific feedback mechanisms
promising to enable wise and selective consideration of
error-correction feedback. In Section 3, we describe
the DSS used as the experimental infrastructure. In
Section 4, we present the design and the results of a first
experiment that serves as a general proof of concept for
the DSS. In Section 6, we discuss the results of our work
so far, conclude, and outline future research on error
feedback-based DSS.

2. Prior Work on Bias-Related Feedback
vs. Auto-Correction

We start reviewing findings with auto-correction,
and then review approaches to foster debiasing using
feedback. Finally, we discuss their suitability to foster
learning, improve judgment accuracy and mitigate the
false-correction problem inherent with auto-correction.

As aforementioned, Blanc and Setzer (2015b)
discuss accuracy gains through auto-debiasing, referring
to the automatic correction of experts’ forecasts by a
statistical model learned on previous experts’ errors.
Figure 1 shows the distributions of absolute percentage
error (APE) improvements of forecasts when using
the corrected forecasts instead of the original expert
forecasts per decile of the confidence interval around the
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correction model’s forecast. The larger the correction,

Figure 1. APE distribution by decile in the

confidence interval of the auto-corrected forecast

Blanc and Setzer, 2015b

the higher the variance of error differences. The most
deviating decile bins contain the heaviest accuracy gains
and losses.

The authors argue that, as auto-correction is
applied to estimates regardless of confidence in the
original estimate, originally sound expectations are also
corrected in the wrong direction, leading to high errors
specifically in outer decile bins. Hence, they suggest to
prompt experts to accept or overwrite a model forecast
if the expert forecast exceeds certain confidence bounds,
as in cases of extreme deviations either a strong bias
might be at play or the expert forecast might be based
on specific knowledge and indeed be appropriate.

This perspective has merit as experts can be assumed
to have higher confidence and knowledge in certain
estimation tasks and biases are likely to depend on
the type of estimation task. However, whether experts
are capable of making wise feedback accept/neglect
decisions depends on several factors, where one of
particular importance is surely the type of feedback
provided. Therefore, we now review feedback-based
DSSs and whether they appear promising for the task
of making wise error-feedback consideration decisions.

A common distinction of feedback types is outcome
feedback (OFB) and cognitive feedback (CFB). OFB
refers to “information that describes the accuracy or
correctness of the response” (Jacoby et al., 1984, p.
531), and is often solely the correct answer. CFB is
“information regarding the how and why that underlies
this accuracy” (Jacoby et al., 1984, p. 531).

Regarding outcome feedback, Remus, O’Connor,
and Griggs (1996), Balzer, Doherty, and O’Connor
(1989) and Lawrence, Goodwin, O’Connor, and Önkal
(2006), amongst others, show that OFB in form of
providing correct answers is rather ineffective, and many
studies question the usefulness of OFB of that type in
general (Balzer et al., 1989). It is argued that such
information is insufficient to improve judgment. It has

even been shown that better performing experts avoid
using OFB of that type (Lawrence et al., 2006; Remus
et al., 1996).

In contrast, OFB in the form of personalized
performance feedback seems more suitable. As an
example, Benson and Önkal (1992) studied performance
feedback in probability estimation. In their experiment,
subjects made four weekly predictions of football games
for the following weekend regarding the probability for
a team to win. Subjects of the treatment group received
performance feedback while control group subjects did
not. The authors find that performance feedback helped
to increase forecasting accuracy.

Fischer and Harvey (1999) observed that feedback
originating from performance on one trial increases
motivation of the subject in the next trial. Here, subjects
were asked to combine sales forecasts of others, where
the treatment group received feedback on their first trial
before the their second trial. The feedback showed the
own forecast, the actual outcome, and the respective
error. The results indicate that such feedback does help
to learn and also induces motivation through goal-setting
as the feedback functions as a goal to outperform.

Although we do not find studies focusing on
selective incorporation of feedback and adjustment
of estimations, based on prior research, actionable
error-feedback seems to be a promising candidate for
our setting.

Concerning cognitive feedback, Sengupta
and Abdel-Hamid (1993) published an article in
Management Science that presents an experiment
integrating CFB in DSSs. 47 subjects performed tasks
as project managers in terms of staffing decisions for
a software project, which involved trade-offs between
cost and time plan. After making decisions, every
subject received outcome feedback in terms of a
report on the current stage of the project. In the CFB
group, CFB was available in form of task information
through plots of variables over the project’s life span
(such as information on the perceived cost and size
of the project) and a summary of the past interval.
Experimental results show that subjects with access to
CFB (in addition to OFB) performed best compared to
the group receiving only OFB.

Sengupta (1995) conducted further experiments,
where subjects had to conduct personnel screening.
The treatment group received OFB as well as CFB
whereas the control group received OFB only. OFB
was shown as the rating decisions made by the expert
commitee and CFB as the committee’s decision strategy
regarding similar jobs as well as consistency scores
and information on a subject’s own decision strategy.
The findings show that subjects receiving OFB together
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with CFB tend to outperform those receiving OFB
only. Combining performance with cognitive feedback
therefore seems like an approach worthwhile to be
pursuit for our purpose.

However, a severe challenge is the acceptance of
feedback by an expert in general, as it has been found
that experts are usually overconfident in their own
expectations even if their ability is shown to be inferior
to the estimate provided by software (Leitner and
Leopold-Wildburger, 2011). Therefore, a challenge is
fostering a self-reflective process, i.e., the interpretation
and assessment of own thoughts, emotions, and actions,
required for directed change and key to wise decision
making (Grant et al., 2002; Sasse-Werhahn et al., 2020).

For instance, in an experiment by Goodwin (2000),
prompting forecasters to revise judgmental forecasts
after statistical information has been provided did not
improve accuracy, whereas asking forecasters to adjust a
forecast while requiring reflection by providing a reason
for the adjustment performed best. It has also been
found that specifically feedback like error-feedback
drives reflective processes, which in turn affects if and
how the feedback is accepted and used. For example,
Sargeant, Mann, van der Vleuten, and Metsemakers
(2009) conducted interviews with physicians who
evaluated assessment feedback they received. This
reflection was useful in terms of how to apply the
feedback.

Overall, in search for a promising feedback-type,
previous work on feedback, debiasing, and
self-reflection encourages the usage of an expert’s
own error pattern – relating to a potential bias that can
be understood and corrected – as performance related
feedback type. In addition, it seems suitable to induce
self-reflection as it is different to external feedback
often adopted insufficiently. Thereby we provide both,
promising types of OFB and CFB.

3. Experimental Infrastructure and
Procedure

We now introduce the DSS infrastructure used for
our experiments from a procedural perspective together
with key considerations, while keeping technical details
short. We illustrate several components by providing
examples of their implementation in the first experiment.

Technically, the DSS is developed as a Web-App
using Dynamic HTML (PHP) as frontend, and a
Relational Database Management Server (MySQL)
as backend containing the parameterization of the
experiments, storing outcomes, and used for analyzing
the answers and reactions of the subjects. The error
pattern derivation, its presentation as feedback as well

as the calculation of loss functions are provided by tools
written in PHP and R.

An overview of the steps supported by the DSS
is depicted in Figure 2. First, an experiment is

Figure 2. Experimental Infrastructure and Processes

configured using a Web-based tool and the configuration
is stored in a database. Configuration items are pages
for briefing/debriefing, comprehensibility questions,
estimation questions to be answered by treatment and
control group subjects, the loss function that measures
performance, rules when feedback of what form is
provided, texts and visuals provided with a question,
rules when an experiment terminates, and a final
questionnaire form.

Then, the subjects are randomly assigned to the
treatment or control group, shown information on the
experiment, asked comprehensibility questions and the
experiment itself starts by prompting for judgments. An
example prompt is shown in Figure 3. Here, the task is

Figure 3. DSS Interface – User Prompt Example
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to estimate the length of the Mississippi in kilometers,
where guidance is provided by a map and a legend
indicating the scale. A subject is also asked to indicate
her or his 90% confidence interval – the interval to
which a subject is 90% sure that the correct answer lies
within. After the answer is submitted, the next prompt is
displayed, and after a defined number of questions either
feedback is provided for 30 seconds (treatment group) or
a blank page is shown inviting to take a 30 second break
(control group). In case feedback is given, the subject’s
error pattern (bias) is computed and displayed together
with her or his individual estimation errors.

In our first experiment, the subject’s mean bias
computed as her or his mean percentage error (MPE)
across all the previously given answers, is shown as
feedback. As this DSS is meant to demonstrate general
functionality as a proof of concept, the MPE is only a
simple example of a statistical model. Other models
can be used to calculate indications of other biases.
MPE is computed as follows: per estimate made, the
difference between the estimate and the actual (the
actually correct answer) is computed and that difference
is divided by the actual and multiplied by 100. MPE
is then the mean of these values and therefore also
calculated across all categories. MPE is chosen for
reasons of comprehensibility and ease of applicability
for debiasing. For example, a MPE of 0.5 means
that estimates exceed actuals by 50% on average, and
correction means to take only 2

3 of a further estimate.
Figure 4 shows an example feedback page with the
(potential) mean bias of the subject.

The intention of the feedback is to make a subject
aware of a potential mean bias, possibly derived by
previously given answers. A potential cognitive bias
might be mentally corrected by a subject when providing
further novel questions. This may be category-specific,
although categories are not mentioned or used by
the DSS. Thus, the aim of the feedback is to make
subjects reflect on previous error patterns to improve
future estimations. Hence, the subjects must make
novel estimations applying the generic feedback that is
computed across all their previous answers and needs to
be cognitively wisely applied.

After the feedback or the blank page, a subject is
faced with another sequence of novel judgments from
the same categories and the experiment terminates with
a final feedback and a user survey.

MAPE, the mean absolute percentage error, is
used as the performance and accuracy criterion
to determine improvement or deterioration between
question sequences and for the payouts that depend
on MAPE values. MAPE is calculated similarly
to MPE, but taking the absolute differences between

Figure 4. DSS Interface – Feedback Page Example

estimates and actuals. Information on how to interpret
and apply MPE for debiasing is given in the briefing
phase (without telling subjects that they will receive
feedback) together with information on MAPE used as
performance measure for payouts.

The infrastructure and the scenario characterized
above is the one used in our first experiment. The
experiment itself will be described in the subsequent
section. A broader picture of our research, including
other scenarios that will be considered in our research
and how the first scenario is embedded in our research
plan will be provided in Section 6.

4. Experiment

We first describe the research design in terms of the
experiment’s configuration (the general experimental
procedure including the feedback provided and the loss
function is described in Section 3). Second, we present
the assumptions explored in the experiment and the
measures used to analyze whether we find support for
the assumptions. Third, we provide the results.

4.1. Research Design

In the experiment we have 74 subjects (34 in the
treatment, 40 in the control group), of which 39 are
female and the rest male. 41 subjects are business
students and 33 subjects are (school) students.

Subjects are prompted for point estimates of
quantities together with a 90% confidence interval
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from general knowledge categories, namely number
of residents of a country, river length, and mountain
height. Example questions are: ”How many residents
does France have?”, ”How long is the Hudson River
(in km)?”, ”How high is the Mount Everest (in
meters)?”. The experiment contains two sequences of 15
questions, 30 questions in total. Categories are neither
communicated nor used by the correction model, but
easy to anticipate by humans.

Estimation tasks are supported by cues: maps of the
respective country including the ten largest cities with
an indication of a range of their size; maps of the rivers
with a scale in the legend; topographical maps of the
mountains with a reference mountain height. These
visual aids shall reduce error variance, but are also
useful for heuristics applied and might trigger specific
biases to be recognized as mean bias error patterns. For
example, a subject may underestimate the additional
river length stemming from the river loops and bends.
The subject might then apply the error-feedback to
debias her or his estimates only for questions of that type
in case other categories seem unbiased.

The scenario mimics experts’ environments where
experts have expertise and basic confidence in all
categories they are prompted for estimates, consider
different types of visual cues and information for
different types of estimation tasks, while expertise and
heuristics applied might vary amongst categories. A
human expert will typically be faced with categories or
types of questions where he or she is particularly prone
to biases. These types can be human-specific and a
machine or statistical method would likely not be able
to recognize the same types a particular human might
have in mind. For instance, in our experiment it may be
that a subject knows river lengths, mountain heights, and
population sizes of north and middle European countries
well but might be less familiar with other regions and
then apply a geographical categorization.

After the first sequence of questions, a subject in
the treatment (control) group receives feedback in terms
of her or his mean bias measured as MPE (a blank
page with the prompt to pause for 30 seconds). The
MPE is displayed as inverse performance feedback to
the subject, which can be easily applied for debiasing,
together with the individual answers given by the
respective subject and the actual correct answers per
estimation question. The errors per question provide
further hints by which categories the MPE might be
driven, or where over- or underestimation is identifiable
to foster reflection on how to further adapt judgments.
We note that feedback is strictly related to patterns in a
subject’s own error history.

Following the feedback or the blank page, a subject

answers the second sequence of questions, which are
completely new to the subject. These questions are from
the same categories as used in the first sequence.

After the experiment, a subject receives a debriefing
and her or his MAPE is computed. A subject receives
a payout for participation and has the chance to
additionally win one of two prizes per treatment group.
The lower the MAPE of a subject, the higher the chance
to receive a prize. This incentivization is meant to
increase the motivation and performance of subjects.

The overall experimental procedure is depicted in
Table 1. In the following, we will describe the
assumptions tested in the experiment.

Table 1. Experimental Design and Procedure
Treatment

Group
Control
Group

15 Questions x x
Feedback Yes No

15 Questions x x
Feedback and

Demographic Questions x x

4.2. Assumptions Studied

We split up the key assumption that one’s own error
patterns can foster wise and selective consideration of
the feedback, into the (sub) assumptions A1–A5.

A1: MPE-feedback impacts judgment behavior
resulting in MPE changing in the right direction.

The direction of change of a subject’s MPE is
analyzed to study if a reaction to the feedback can
be assumed that leads in the right direction. If a
subject receives a negative MPE, her/his subsequent
MPE should be less negative or slightly positive and vice
versa.

To test A1, per subject we determine the MPE over
the answers in the first sequence (before the feedback
or blank page) and the answers in the second sequence
(after the feedback or blank page). Per subject we then
determine whether her or his MPE changed in the right
direction, and compare the ratio of right-direction MPE
changes in the treatment versus the control group. The
assumption is that the ratio is higher in the treatment
than the control group and around 50 % in the control
group (where no feedback is provided that might cause
systematic MPE change).

For A1 we conduct a Fisher’s exact test of
independence between the results of the treatment and
the control group for the ratio of right-direction MPE
changes to detect a significant difference between the
proportions of the two categorical variables. The test
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is one-sided to test if the proportion of cases where
the MPE changed in the right direction is higher in
the treatment than in the control group. The treatment
and control group are independent, relatively small
samples, for which reason Fisher’s exact test is a suitable
non-parametric test.

A2: MPE-feedback induces emphasized adaptation
of judgment in the category with the highest MPE,
resulting in larger MPE change in this category.

The rational of A2 is that subjects know in
which categories they are biased the most and use
this knowledge wisely instead of blindly applying
the feedback across all categories, as auto-debiasing
unaware of categories would do.

To test A2, per subject and category MPE before
and after the feedback (or blank page) is calculated.
Then, the percentage of matches of the category with
the highest absolute MPE in the first sequence and
the category with the largest MPE change in the
right direction from the first to the second sequence
for the subjects in the treatment versus the control
group are computed. If the percentage value in the
treatment group exceeds the one in the control group,
and in the treatment group both categories match in
more than 1

3 of cases (the baseline ratio in case of
randomness), selective application of the feedback to
specific categories can be assumed.

As for A1, we also test the significance of the
difference in the results between treatment and control
group with the Fischer’s exact test for A2.

A3: MPE-feedback leads to higher MAPE reduction
compared to no feedback given.

This assumption differs from A1 as it is related to
accuracy improvements as a result of adapted judgment
compared to A1 that studies solely MPE changes in the
right direction. We note that MAPE might increase
although MPE changes in the right direction when
changes lead to absolute percentage errors exceeding the
MAPE in the first sequence (if the absolute percentage
errors increase).

After determining the difference of a subject’s
MAPE in the first and the second sequence, we calculate
the ratio of MAPE improvements of subjects in the
treatment versus the control group. We assume this ratio
to be higher for the treatment group and again expect a
ratio of around 50% in the control group due to random
MAPE increases or decreases.

As for previous assumptions, we conduct a Fisher’s
exact test, again to find a significant difference between
the results of treatment and control group.

A4: MPE-feedback induces emphasized adaptation
of judgment in the category with the highest MAPE
leading to larger MAPE decrease in that category.

The rational of A4 is that subjects selectively apply
the feedback to certain categories with high error levels
(high bias) such that, respectively, the MAPE declines
most strongly in these categories with high MAPE
before the feedback.

The MAPE reduction after the feedback or blank
page is computed per subject and category to determine
the correspondence between the category with the
highest MAPE in the first sequence and the category
with the largest MAPE reduction from the first to
the second sequence. If the ratio in the treatment
group exceeds the one in the control group, and in the
treatment group both categories match in more than
1
3 of cases (baseline in case of randomness), wise,
category-specific application of the feedback that leads
to MAPE reduction can be assumed.

Again, we examine the significance of the difference
in the results between treatment and control group by
performing a Fisher’s exact test.

A5: MPE-error-feedback leads to higher MAPE
reduction particularly in categories with high MAPE in
the first sequence compared to auto-correction.

Support for this assumption would indicate
that feedback-based adjustment can mitigate strong
false-corrections inherent when using auto-correction.

To test A5, the percentage of MAPE improvements
in the treatment group between sequence one and two
is compared to the percentage of hypothetical MAPE
improvements through auto-correction in the control
group. The improvements by auto-correction in the
control group are computed by taking the answers of a
subject of the second question sequence and including
the MPE of the answers of the first questions sequence
in the calculation of all hypothetically corrected answers
for the second sequence. Then the MPE over these
auto-corrected answers is computed. The Fisher’s exact
test is again used to test the significance of the difference
between the results. Furthermore, per subject we
determine the category with the highest MAPE in the
first sequence and study whether feedback is beneficial
in reducing these high error levels (MAPE) compared to
auto-correction. For this specific category we compute
how high the improvement is by subtracting the MAPE
in the second sequence from the MAPE in the first
sequence and taking the average per group thereof. We
assume this value to be higher in the treatment group
versus the control group (with auto-correction).

To test the significance of the difference between
the results of treatment and control group for the level
of MAPE reduction in percentage points, we conduct
a non-parametric Wilcoxon-Test as we cannot assume
a normal distribution and we have two independent
groups. Here we cannot use the Fisher’s exact test as our
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target variable is numeric and not categorical as before.

5. Results

First, results are presented per assumption. Second,
we summarize and discuss the results in an aggregated
fashion and relate them to the key assumption.

A1 (MPE-feedback impacts judgment behavior
resulting in MPE changing in the right direction):

In the treatment group, the relative frequency of
MPE changing in the right direction after feedback is
91.2%. For the control group the corresponding value
(after the blank page) is 65%. This strongly hints toward
a consideration of the feedback leading to a systematic
adaptation of the judgments that resulted in respective
changes of the MPE observed afterwards: if a subject
received a negative MPE as feedback, she or he typically
gave higher responses to the following questions and
vice versa.

The p-value of the Fisher’s exact test is 0.0071, thus
the result is highly significant at a 1% significance level.

A2 (MPE-feedback induces emphasized adaptation
of judgment in the category with the highest MPE,
resulting in larger MPE change in this category):

The percentage of MPE changes in the right
direction in the category in which the MPE was the
highest in the first sequence is 76.5% for the treatment
group after the feedback and 50% in the control group
after the blank page. The results for A2 hence
provide underpinning that subjects selectively make
MPE changes and support the presumption that subjects
are aware of their category-specific estimation capability
and use the feedback in those categories in which they
assume their performance to be low, i.e. those with an
emphasized mean bias.

For the results of A2, the p-value of the Fisher’s
exact test is 0.017, which indicates significance of
the difference of results between treatment and control
group at a 5% significance level.

A3 (MPE-feedback leads to higher MAPE reduction
compared to no feedback given):

In the treatment group, 67.6% of the subjects
reduced their MAPE after the feedback, compared
to 50% of the control group after the blank page
(no feedback). This result indicates that subjects
seem to reflect on the feedback and use it to change
their judgmental behavior in a way that their MAPE
decreased after the feedback, in contrast to the control
group that did not receive feedback and did not reduce
their MAPE on average.

For these results the p-value of the Fisher’s exact
test is 0.097, thus the results are significant at a 10%
significance level.

A4 (MPE-feedback induces emphasized adaptation
of judgment in the category with the highest MAPE
leading to larger MAPE decrease in that category):

In the treatment group, 58.8% of subjects made
the highest MAPE improvement after the feedback in
the category in which the MAPE was the highest in
the first sequence, compared to 47.5% of the control
group subjects after the blank page (no feedback).
Furthermore, for 83.3% of those subjects in the
treatment group, where the categories of highest MAPE
in sequence one and highest MAPE improvement
matched, the total MAPE considering all categories was
improved after the feedback. This speaks for a wise
and selective usage of the feedback, leading to increased
accuracy of estimations.

The p-value of the Fisher’s exact test here is
0.23, therefore the difference in the results between
treatment and control group are not significant at a 10%
significance level. However, due to the small sample
sizes, the power of the test is obviously low, and larger
sample sizes are required to achieve significant results
here.

A5 (MPE-error-feedback leads to higher MAPE
reduction particularly in categories with high MAPE in
the first sequence compared to auto-correction):

In 67.6% of cases in the treatment group the
feedback lead to MAPE improvements, whereas in
57.5% the auto-correction lead to MAPE improvements
in the control group. For these results the p-value of the
Fisher’s exact test is 0.26, indicating that the results are
not significant at a 10% level.

We find an average MAPE reduction of 12.48
percentage points in the category with the highest
MAPE in the first sequence after the feedback in the
treatment group compared to 3.45 percentage points
after the blank page when applying auto-correction in
the control group. The p-value for the Wilcoxon test is
0.092, for which reason the difference of the results is
significant at a 10% significance level.

Although the results are not highly significant, they
indicate subjects’ capability of reducing the highest
errors better (or more) by applying the feedback
compared to a non-selective auto-correction.

Overall, we find indication that the group receiving
error-feedback considers it selectively to improve
judgments and judgmental accuracy. This is the case for
overall error reduction as well as for category specific
application of the feedback. In addition, the comparison
with auto-correction already supports the assumption
that large false-corrections with auto-debiasing can be
mitigated with an error-feedback approach as proposed.
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6. Discussion, Conclusion, and Outlook

The results provide strong support for our key
assumption of wise consideration of feedback related to
one’s own error-pattern.

In particular, the high degree of matches between
categories of highest MPE and correct MPE changes
as well as MAPE and MAPE improvement represents
the capability of humans to recognize error patterns or
structures and being able to selectively adapt judgmental
behavior accordingly. Reviewing the motivation of this
paper, the category matches contribute to the aim of
reducing strong false-corrections as errors are decreased
the most where necessity for error reduction is the
highest. This demonstrates that such a combination of
the machine’s and human’s strengths – the computation
and feedback of the MPE through the machine and
the usage of the feedback by the human – achieves
collaborative intelligence and is a promising direction
of future research.

Considering the comparison of feedback versus
auto-correction, we can hypothesize that humans
applying feedback based on their own error compared
to statistical models blindly applying learned error
patterns can reduce large false-corrections. This relates
to the research by Blanc and Setzer (2015a) who
recommend to feed-back the supposed bias to the
expert based on estimated model parameters to improve
accuracy. Furthermore, it concerns their future research
proposition to show experts bias-related feedback of
their past forecasts and the forecast of a statistical model
and give the expert the opportunity to act upon the
feedback to reduce strong false-corrections. In our
experiment, we obtained results indicating that this is
supported by providing respective feedback to experts.

Our research has the limitation that, due to the
COVID-19 pandemic, it has been challenging to conduct
experiments with larger numbers of subjects, to be done
in presence and not possible online as of the risk of
subjects using search engines.

Regarding our future research plan, additional
to running more experiments to further support our
assumptions with the scenario used in our first
experiment, Figure 5 shows further scenarios that will
be considered, and how the first scenario is embedded.

The first scenario (X1), the one considered in
this article’s experiment, considers situations with low
complexity for the human and high complexity for
the machine. Therefore, in our first experiment the
latent topics (here categories) can be considered to
be easily detectable by humans, while the machine is
unaware of the categories, can only provide aggregated
feedback and is also merely able to auto-correct future

estimations uniformly. The resulting assumption for X1
is that humans know when to integrate error feedback
into their subsequent estimates as they know in which
categories they are biased and might perform better
when considering the feedback.

The second scenario (X2) considers situations with
low complexity for both human and machine, i.e.,
here the latent topics are known by the machine and,
for example, category-specific auto-correction can be
applied. Due to human biases that might also be
category-specific, the auto-correction performance of
the machine might benefit from this information. An
option for X2 would be giving feedback for each
question with category awareness, in which case it might
be more appropriate for the human to generally follow
the machine feedback (X2a).

The third scenario (X3) covers situations with high
complexity for both human and machine. Experiments
with this scenario will contain questions that cannot
be clearly assigned to a category. Furthermore, the
categories will be latent in nature and the questions
will have a rather vague reference to each other so that
categories are not obvious. Here, it will be challenging
for a machine to provide specific feedback, while the
assumption is that the human might still be able to apply
the general feedback wisely and selectively based on her
or his domain knowledge and latent categories she or he
has in mind.

Overall, the intention of the scenarios and our
research is to better understand the situations in which
feedback of what type can be expected to be beneficial,
shedding light on the applicability of the approach in
real-world settings.

Figure 5. Experimental Scenarios Considered
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