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Abstract 
Many self-adaptive, autonomous systems rely on 

component technologies to report anomalies to 
planning processes that can choose adaptations. What 
if the analysis technologies themselves need to be 
adapted? We consider an intrusion detection system 
(IDS) supported by two component technologies that 
assist its decision making: a neural network that finds 
security anomalies and an attack graph that informs the 
IDS about system states of interest. The IDS purpose is 
to send alerts regarding security anomalies. Planning 
processes respond to alerts by selecting mitigation 
strategies. Mitigations are imposed system-wide and 
can result in adaptations to the analysis technology, 
such as the IDS. Without adaptation the IDS can become 
stagnate in its detection quality. In this paper, we 
describe an architectural design for an adaptive layer 
that works directly with an IDS. We examine two use 
cases involving different mitigation strategies and their 
impacts on the IDS’s supporting components. 

 
Keywords: Self-adaptive systems, intrusion detection 
systems, neural networks, attack graphs 

1. Introduction  

Self-adaptive, autonomous systems are deployed to 
environments where systems require mechanisms that 
can alter system organization, configuration, or 
behavior to respond to changes in the environment 
(Cheng et al., 2009). Failure to respond to such changes 
results in poor performance, faults, and security 
vulnerabilities, which warrant the implementation and 
deployment of a system that is adaptable. Self-adaptive 
systems (SASs) are implemented using a Monitor-

Analyze-Plan-Execute (MAPE) control loop (Kephart 
& Chess, 2003) which may include a Knowledge 
component in the case of a MAPE-K loop. These steps 
can be implemented by individual component 
technologies or satisfied through the interaction of 
system components. It is important to inquire into what 
would happen if some of these components, such as the 
anomaly detection components, needed to be adapted. 

To further this inquiry, we consider an intrusion 
detection system (IDS) (Liao et al., 2013) that is 
supported by two component technologies that assist its 
decision-making processes. These component 
technologies include a neural network component that 
finds security anomalies and an attack graph component 
that informs the IDS about the system states of interest. 
Collectively, these three components represent analysis 
components of the SAS that may also need to be adapted 
to improve their ability to identify security anomalies. 
Failure to do so could lead to a state of stagnation in 
which current “blind-spots” in the anomaly detection 
process are persistent. 

In the system presented in this paper, the IDS 
generates alerts in response to identified security 
anomalies. Those alerts are forwarded to planning 
processes that select corresponding mitigation 
strategies, such as the NIST SP 800-160 candidate 
mitigations (National Institute of Standards and 
Technology, 2021). The selected mitigation(s) are 
imposed system-wide, potentially resulting in 
adaptations to the anomaly detection components. 
Further planning qualifies the adaptations that will be 
applied to those components, while the components 
themselves are responsible for executing the adaptation. 

We describe an architectural design for an adaptive 
layer that integrates directly with the IDS to facilitate 
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adaptation of the IDS as well as the neural network and 
attack graph components. We illustrate each of its 
layers, their components, and the interactions between 
components as well as elucidate design challenges at 
each step. We then examine two use cases involving 
different mitigation strategies and their impact on the 
IDS and its supporting components. 

To provide a brief roadmap, Section 2 provides 
background research related to SASs, the IDS, the NN 
and AG components, and NIST CMs. Section 3 
describes the architectural design. Section 4 examines 
the two use cases. Section 5 outlines design challenges 
across the various components of the architecture as 
well as the limitations of the design. Section 6 is the 
conclusion and description of future efforts. 

2. Background 

2.1. Self-Adaptive Systems 

An SAS can be thought of as a system that adapts 
its functionality as its environment evolves to ensure 
that its operational goals are consistently met (Cheng et 
al., 2009) (Elhabbash et al., 2019). As such, it must be 
able to reason over the conditions that necessitate 
adaptation (Langford & Cheng, 2019) to enact the 
strategy that best improves its performance or maintains 
its compliance with respect to system controls. The 
typical MAPE-K loop (Kephart & Chess, 2003) 
implementation is used so that the system continuously 
monitors relevant data, analyzes the data, and plans 
appropriate adaptations. 

Key challenges to the implementation of an SAS 
include 1) understanding the minimal amount of 
information that is required to plan an adaptation, 2) 
efficiently analyzing the information to produce 
actionable adaptations, and 3) enabling appropriate 
adaptation mechanisms that can adapt system 
functionality (Bellman et al., 2017) (Zambonelli et al., 
2011). Designing adaptive components requires 
sufficient expertise and an understanding of sources of 
uncertainty that affect the SAS operation (Colman et al., 
2014) (Scholze et al., 2013). Justifying the selection of 
an adaptation can involve making trade-offs between 
various criteria or making decisions based on limited 
information about the future state of the environment, 
both of which can be computationally expensive to 
perform. In such cases, the system may be required to 
employ heuristics that can be used to assess adaptations 
amidst various sources of uncertainty. Multiple 
interacting MAPE loops to support intra-loop and inter-
loop coordination (Vromant et al., 2011) are often 
needed to address different priorities (Weyns et al., 
2013). Adaptation mechanisms are most often deployed 
as external adaptive frameworks or middleware that can 

interact with components within the system that can 
execute adaptations at the system level. When 
addressing security threats, these systems must be able 
to adapt security functionality (Yuan et al., 2014) while 
maintaining other quality concerns (Le, 2015). 

Researchers have investigated various approaches 
to verifying and selecting appropriate adaptations. 
ActivFORMS (Iftikhar et al., 2014) uses formal models 
to verify the correctness properties of adaptations. 
Filieri et al. (2017) use Markov chains to verify 
adaptations prior to system deployment. In prior work, 
we have investigated the use of assurance cases to assess 
adaptations based on their impact on security controls 
and functional requirements (Jahan et al., 2020). 
Assessments were conducted through interacting 
MAPE-K loops following a similar MAPE-K design 
pattern as those proposed by Weyns et al. (2013). We 
have also investigated the use of theorem provers to 
construct formal proofs that demonstrate compliance 
with system requirements (Marshall et al., 2018) (Riley 
et al., 2021). Adaptations were assessed using a set of 
heuristics to measure the risk that the adaptation would 
fail to maintain compliance with system requirements 
based on current environment and operating conditions. 
Other researchers have investigated approaches to 
constructing and enabling adaptive components. Garlan 
et al. (2004) have developed Rainbow, a framework that 
uses an architecture-based model to verify the properties 
of pre-defined adaptations. In prior work, we have 
defined a plug-in architecture that acts as a middleware 
to provide a target system with self-adaptation 
capabilities (Jahan et al., 2021). 

2.2. Intrusion Detection Systems 

An IDS is a system that is capable of, at a minimum, 
detecting an intrusion into a system that violates a core 
security policy. IDSs can take many forms, relying on a 
variety of detection methodologies (Liao et al., 2013). 
Using these techniques, they detect if an intrusion is 
occurring or has occurred and generate an alert provided 
to another component that manages the alert. IDSs are 
typically used for network security, due to the wide 
variety of existing and emerging network attacks. 

Two of the main detection methods used by IDSs 
are signature-based detection and anomaly-based 
detection (García-Teodoro et al., 2009) (Liao et al., 
2013). For a signature-based approach, the IDS is pre-
loaded with knowledge of certain attacks and how they 
operate on the system. At runtime, the signature-based 
IDS checks the events that it observes against its known 
attack patterns to detect threats (Liao et al., 2013). 

Anomaly-based detection works slightly 
differently. Rather than being pre-loaded with attack 
signatures, the IDS is pre-loaded with typical usage 
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data. The IDS then monitors the runtime behavior of the 
system to detect deviations from known patterns of 
typical use (Liao et al., 2013). Current research is 
investigating the inclusion of neural networks to identify 
patterns in typical usage data (Beqiri, 2009). 

Ideally, an IDS should be capable of detecting any 
intrusion into a system or network, even if the attack is 
trying to disguise itself as benign activity. This 
detection, however, remains as a significant challenge in 
the design and deployment of IDS technology (Beqiri, 
2009) (Capobianco et al., 2019) (García-Teodoro et al., 
2009). For example, a neural network would need 
access to as much data as possible to understand typical 
system activity, but it still might be possible for an IDS 
supported by a neural network to misidentify well-
disguised intrusions at the beginning of an attack. 

2.3. Neural Networks 

Artificial neural networks (NNs) have been 
proposed for intrusion detection in numerous contexts 
(Liao et al., 2013). NNs can encode complex functions 
using a network of neurons (nodes) that propagate their 
real-valued activation levels through weighted synapses 
(edges). Recurrent neural networks (RNNs) are a 
subcategory in which edge loops are allowed, and 
neuron activation levels may be maintained as mutable 
state while the network processes its input (Keller et al., 
2016). The stateful nature of RNNs enables it to process 
a sequence of inputs over time, producing output at each 
step, while holding memory derived from past inputs for 
arbitrary lengths of time. We believe that this stateful 
sequence processing capability makes RNNs more 
promising than stateless feedforward neural networks 
(FNNs) for our purposes. This is because events in a 
network system, such as IP packets, are expected to have 
strong statistical and causal dependencies that will not 
be captured by analyzing each event in isolation. 

NNs generally have many parameters that must be 
tailored to solve a specific problem. A popular machine 
learning method for training NNs is gradient descent, 
which historically proved difficult to perform on RNNs 
(Hochreiter & Schmidhuber, 1997). A type of restricted 
RNN architecture called long short-term memory 
(LSTM) was developed to mitigate these problems 
(Hochreiter & Schmidhuber, 1997). Multiple variants of 
LSTM have been developed since then, and they remain 
popular as a method for creating RNNs that support 
gradient-based training. 

NNs can be trained using various machine learning 
paradigms. A common paradigm is supervised learning, 
in which the training samples provided to the learning 
algorithm are annotated with their expected outputs. 
Another option is unsupervised learning, in which the 
training samples do not have labels for the expected 

output or any other special annotations. Since 
unsupervised learning is not given a target behavior for 
each sample, often the best it can do is to learn statistical 
patterns in the data. While this is a significant limitation, 
the learned patterns can notably be used for anomaly 
detection, which is probably more valuable in the IDS 
domain than in many other domains.  

A third learning paradigm is LUPI (Vapnik & 
Vashist, 2009), in which the training samples contain 
strictly more information than in supervised learning. 
The goal of LUPI is to aid the training process by 
providing more information than what will be available 
at runtime, which means that the learning algorithm 
should be designed to take advantage of statistical 
patterns in the extra variables but must ultimately 
produce an NN (or other predictive model) that does not 
require those extra variables as inputs. All three of the 
above paradigms have been used with LSTM networks 
(Greff et al., 2017) (Mahasseni et al., 2017) (Xu et al., 
2017), although supervised learning is the most popular. 

There are other novel approaches to address 
outstanding research challenges associated with 
employing NNs for network intrusion detection. LuNet 
(Wu and Guo, 2019) is a hierarchical deep neural 
network that combines convolution and recurrent sub-
nets to reduce false-positive rates using supervised 
learning. High false-positive rates can condition users to 
ignore flagged anomalies and increase overhead in a 
system that autonomously responds to alerts. ADA 
(Yuan et al., 2020) employs an LSTM network to 
perform unsupervised learning over system logs in 
networks with large volumes of incoming data. ADA 
uses dynamic thresholds that can be adjusted to improve 
the NN model during anomaly detection rather than 
retraining the model which is time intensive. The 
contribution of this paper is an architectural design that 
can incorporate these novel efforts, as well as future 
efforts, into an adaptive architecture that utilizes 
anomaly detection alongside mitigation and adaptation 
selection, where adaptations can target the NN to the 
extent of what configurations it can support. 

2.4. Attack Graphs 

The term attack graph refers to a number of related 
techniques for security analysis, revolving around the 
use of a formal state space model in which state 
transitions represent the actions of an attacker or other 
force (Li et al., 2021) (Louthan et al., 2014) (Phillips & 
Swiler, 1998). Terminology related to attack graphs 
varies significantly across authors. To avoid confusion, 
we will maintain consistent terminology here even when 
citing other works that use different terms. 

Attack graph analysis requires a state-transition 
model defining a state space and possible transitions 
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between states. One approach used by researchers is to 
model each state as a collection of assets and facts, 
where facts may describe properties of individual assets 
or relationships among assets (Li et al., 2021) (Louthan 
et al., 2014). Transitions can be defined indirectly using 
exploit patterns with specified preconditions and 
postconditions, which may contain free variables that 
must be bound to assets to create a concrete transition. 

A state-transition model theoretically defines a 
complete, static graph describing all states and 
transitions. Since that graph is likely infinite or 
intractable to compute, practical analysis often involves 
computing a subgraph from a specific starting state, 
possibly using a pruning criterion such as a finite search 
depth (Louthan et al., 2014). We use the term attack 
graph to refer to the computed subgraph. Attack graphs 
can be used to analyze system-wide security properties. 
Examples of analysis tasks include finding the shortest 
path to a compromised state and estimating the potential 
consequences of a specific vulnerability (Li et al., 2021). 

Even with pruning criteria, attack graph generation 
can be computationally intensive. Research has been 
performed on accelerating the computation through 
algorithmic and hardware improvements (Li et al., 
2020) (Li et al., 2021). However, performance can also 
be improved by restricting the state-transition model. 
Notably, algorithmic complexity can be significantly 
reduced by assuming a form of monotonicity, i.e., that 
preconditions for an exploit never become false after 
becoming true (Ammann et al., 2002). While one can 
certainly imagine scenarios where this assumption does 
not hold, it is somewhat justified by the idea that an 
attacker is unlikely to give up privileges after obtaining 
them (Capobianco et al., 2019). This monotonicity idea 
has led to a variation on attack graphs called attack 

dependency graphs (Louthan et al., 2011). Attack 
dependency graphs use different types of nodes 
compared to a basic attack graph, but the encoded 
information is approximately equivalent if the state-
transition model satisfies the monotonicity assumption. 

2.5. NIST Candidate Mitigations 

In its Special Publication 800-160, Volume 2 
Revision 1, the National Institute of Standards and 
Technology has provided several standardized tables of 
concepts and terms related to cybersecurity (National 
Institute of Standards and Technology, 2021). Of 
particular interest to us is the list of candidate 
mitigations (CMs), which represent standard, high-level 
steps that can be taken to mitigate security threats. Each 
CM has an identifier consisting of the letters CM 
followed by four digits, as well as a human-readable 
name. For example, CM1140 Use Alternate 
Communications describes the mitigation of changing 
communication methods to avoid a security threat. Our 
architectural design will make use of NIST CM 
identifiers to specify high-level intended behaviors for 
adaptations. 
 

3. Architecture 

The proposed architecture, shown in Figure 1, is made 
up of several components organized into four layers. 
These four layers are the System Layer (green; bottom), 
the Intrusion Detection and Analysis Layer (red; lower-
middle), the Mitigation Selection Layer (gold; upper-
middle), and the Adaptive Layer (blue; top).

 
Figure 1: Architectural Diagram (Overview) 
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These layers work in tandem to support adaptation 
selection and execution across devices responsible for 
detecting anomalies and threats to a target system. 

The System Layer represents the target system. It is 
an abstraction over an opaque stream of data, which can 
only be required to satisfy a limited set of assumptions. 
Namely, that the data – the system activity – can be 
monitored and analyzed by an IDS. It would also be 
beneficial if the target system could digest system 
mitigations, such as NIST CMs, but it is not necessary. 
Systems that cannot accept new mitigations, such as 
legacy systems, may still be adaptable with human 
intervention. The system mitigation would still be 
expected to propagate to other system components, such 
as the IDS, and can result in adaptations to those 
components. The adaptive layer would reflect an 
adaptation to other components (e.g., the IDS) in 
response to the mitigation selection. However, there 
may be a limited degree to which such adaptations could 
do more than improve the detection of anomalies. 
System activity in the target system is streamed to 
components within the Intrusion Detection and Analysis 
Layer (ID&A), shown in Figure 2. This layer is 
responsible for monitoring the target system and 
detecting anomalies. The ID&A Layer consists of three 
major components: the IDS (red; middle), the Attack 
Graph Component (rust; right), and the Neural Network 
Component (purple; left). The IDS is further subdivided 
into three sub-components, which are the Sensors, the 
Management Server, and the Database Server. The IDS 
sensors are responsible for parsing the input stream of 
system activity. Parsed sensor data is streamed to the 

management server, which processes the sensor data 
and outputs that data to the neural network to be scored. 
The management server is responsible for using sensor 
data, scores, and relevant threat knowledge to determine 
if an alert should be generated. 

Once generated, an alert is logged within the 
database server and output to the Mitigation Selection 
Layer. Current system state information, which is 
derived from the sensor data, is pushed to the attack 
graph. Relevant threat knowledge is provided by the 
database server, which maintains a history of anomalous 
activity, alerts, and adaptations. 

The Neural Network component contains a stateful 
LSTM-based NN that takes individual events from the 
system activity as input. For each event received, the 
network’s output layer produces a single real value 
representing the level of suspicion. The NN output is 
clamped to the range from 0 to 1. 

The NN is trained using a history of system activity 
events, each labeled as either normal or malicious. 
Potential adaptations for the Neural Network 
component include retraining with different training 
data, retraining with different training algorithm 
parameters, and adjusting the threshold of suspicion that 
is considered to warrant an alert. We will focus on 
retraining with different training data as our primary 
example of NN adaptation. Note that this adaptation 
may involve changing not only the set of events used for 
training but also the set of features included in the event 
data points. However, adding new event features to the 
 

 

 
Figure 2: Intrusion Detection & Analysis Layer 
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Figure 3: Mitigation & Adaptive Layers 

training set means that those new features must also be 
provided to the NN for all subsequent incoming events. 

The AG is a representation of the entire network 
and system state from the lens of a possible attacker. It 
is composed of “attack states” and “attack vectors”, 
represented by nodes and edges respectively. Each 
attack state represents a permission layer that is possible 
for an attacker to achieve. Attack vectors are 
representations of attacks that permit transitions from 
one attack state to another. Given an attack graph and an 
attack state, it is possible for an analyst to determine not 
only any future attack states (possible escalation of 
permissions), but also any prior attack states (how the 
attacker might have been able to obtain the current 
state). This process provides tremendous insight for 
both pre-threat and post-threat analysis.AGs can be used 
to support a risk assessment of the current system state.  

This assessment can be accomplished by 
establishing metadata associated with the attack states 
and attack vectors that include information like “Level 
of Impact” and “Degree of Risk”. Combined with the 
alerts generated by the IDS, this added information 
would allow each alert to be assigned a “risk value” that 
can inform the Mitigation Selector and the Adaptive 
Layer. It can enable those components to make their 
own decisions regarding which alerts and mitigations to 
prioritize, or even decide if an alert warrants a 
mitigation. Additionally, an AG can also provide 
contextual information, such as open network 
connections, derived features of interest like packets per 
second, and the targets of various connected sensors. 
The inclusion of an AG in our architecture is a novel 

idea that allows the system to decide its own approach 
towards detecting possible vulnerabilities. 

Alerts generated in the ID&A layer are received by 
the Mitigation Selector in the Mitigation Selection 
Layer (gold; bottom), shown in Figure 3. The mitigation 
selector is responsible for selecting a set of NIST CMs 
that correspond to each alert based on related metadata, 
such as System and Mitigation Metadata. System and 
mitigation metadata are needed to determine whether a 
mitigation is appropriate and preferred. A mitigation is 
appropriate if it is both related to the alert and executable 
by the components within its scope. Mitigations are 
related to an alert if they have been determined to 
mitigate the risk and/or harm that was the cause of the 
alert or if at least one of the mitigation’s specified 
controls have been impacted by the alert’s underlying 
cause. We define the effectiveness of a mitigation as its 
capability to reduce further risk or harm due to 
anomalous or malicious activity. Effectiveness is 
determined by the proportion of risk or harm that can be 
reduced by the mitigation and the likelihood of it doing 
so. A mitigation with a non-zero effectiveness with 
respect to an alert is appropriate for that alert. 

Alternatively, each CM is assigned to a set of 
security controls (NIST, 2021) that relate to the 
requirements the affected system must satisfy. If the 
cause of the alert impacts the system’s ability to meet its 
security controls, then all CMs that have been assigned 
to impacted controls are categorically applicable to the 
alert. Determining the applicability of CMs based on 
system controls is necessary for systems where the 
effectiveness of a mitigation cannot be quantified. 
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Figure 4: Adapting the ID&A Layer 

Every selected CM will have a qualified set of 
parameters that define the affected component(s) and 
the intended effect. Those component(s) are within the 
scope of the mitigation and require some set of effectors 
that can sufficiently bring about the intended effect. 
These parameters and their possible values would need 
to be tailored to each subject system based on domain 
expertise. Parameters, their values, system architecture, 
system controls, the selectable CMs, mitigation 
effectiveness and categories, etc. can be captured within 
the Mitigation Selection Layer as metadata. 

One of the principal challenges to selecting 
mitigation in response to alerts occurs when there is no 
one-to-one relationship between alerts and CMs. Some 
CMs might not be applicable to any alert and some alerts 
may have multiple applicable CMs. If a CM is not 
applicable to any alert, that mitigation can be ignored by 
the mitigation selector. If an alert has multiple 
applicable CMs, then the mitigation selector should 
choose the most preferred mitigation of those available. 
Every CM has some degree of effectiveness and 
operational cost, which is the resource and performance 
cost tied to executing the mitigation. 

Operational costs can be measured according to the 
short- and/or long-term impact of enforcing a mitigation 
for some duration of time. The effectiveness and cost of 
a CM is both inherent and environmental. For example, 
CM1134 Refresh Selected Applications or Components 
has the inherent cost of requiring that a system 
application or component be restarted, or temporarily 
disabled. Its inherent effectiveness could be determined 
by whether temporarily disabling an application or 
component inhibits malicious activity. Inherent 

effectiveness and cost can be used to define a static 
profile relating CMs to alerts. 

Effectiveness and cost can also be environmental. 
Restarting an application or component is more costly if 
it is being heavily utilized and less costly otherwise. The 
same mitigation might also be more effective when 
deployed during an ongoing attack or less effective if 
the attack has already concluded. If such system 
metadata is available to the mitigation selector at 
runtime, then the mitigation selector can dynamically 
select a preferred CM based on the current system state. 
If no such metadata is available at runtime, then a static 
profile would be needed based on available system data 
and domain expertise. 

Selected CM(s) are pushed to the Adaptive Layer 
(blue; top), show in Figure 3, by the mitigation selector. 
The Adaptive Layer is composed of the Analyzer and 
the Planner, which are supported by Adaptation 
Metadata. The analyzer, which receives selected CM(s) 
from the mitigation selector, uses adaptation metadata 
to determine a set of adaptation strategies that are 
applicable to the selected CM(s). Adaptation metadata 
would include the set of possible adaptation strategies, 
which must be defined by domain expertise, as well as 
qualifiers that determine which adaptations can be 
selected for which CM(s). In this context, adaptations 
can be thought of as changes to the organization or 
configuration of components within the ID&A Layer, 
such as the IDS, attack graph component, or neural 
network component, or variations of how each CM 
might be executed by one of those components. For 
example, CM1130 Validate Data Quality can be applied 
to improve the quality of training data employed by a 
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NN. There are several approaches to validating the 
quality, integrity, or consistency of a training set, such 
as removing rows or features, relabeling rows in the case 
of supervised learning, etc. Deciding which approach to 
use can be handled within the Adaptive Layer rather 
than the Mitigation Selection Layer. 

After deciding on a set of possible adaptation 
strategies, the adaptations are forwarded to the Planner, 
which is responsible for deciding a single adaptation 
strategy that covers the selected CM(s). To do so, the 
planner would need to define a utility metric that can be 
used to rank a set of adaptations based on selected 
CM(s) and available knowledge of the affected 
system(s) or component(s). The highest ranked 
adaptation for each CM can then be combined into a 
single adaptation strategy that is then output to the 
affected components within the ID&A Layer. 

The IDS and attack graph component receive an 
adaptation strategy from the planner depending on the 
scope of the selected CM(s) as shown in Figure 4. If the 
IDS or the NN is affected by the adaptation strategy, 
then the adaptation strategy will be received by the IDS 
management server and logged within the database 
server. If the AG is affected by the adaptation strategy, 
then the attack graph component will receive the 
adaptation strategy. The IDS receives adaptation 
strategies on behalf of the neural network component as 
it is responsible for maintaining and validating the 
neural network’s inputs, which includes the NN training 
data. If an adaptation strategy applies to the NN, then 
the IDS must apply the adaptation to the training set, 
forward the modified training set to the neural network 
component, and then signal retraining, or formulate a 
query to recalibrate the NN depending on its 
implementation and whether it is housed within the IDS 
or provided as-a-service via the cloud. Once an 
adaptation has been logged in the database server, the 
management server sends updated system state 
information to the attack graph component, if the system 
state would be affected by the adaptation strategy. 

4. Responding to Security Mitigation 

We outline two possible use cases among many to 
illustrate the application of our proposed architecture. 

• The NN training set includes mislabeled data 
that undermine the quality of its classifications 

• Seemingly benign behavior hides an escalating 
attack that results in an observable system 
compromise 

The first use case illustrates a situation where 
mislabeled data was accidentally or maliciously 
included within the training set that was used to train the 
NN. The mislabeled training data results in anomalous 

activity receiving lower scores, or scores that indicate 
that the activity is seemingly more “normal” than it 
should appear. The second use case illustrates a typical 
scenario where an attacker has begun an escalation of 
permissions that results in increasing harm to the 
system. The attacker’s activity seems benign at first, 
even as permissions are being acquired, until a major 
system component is compromised. 

Consider a scenario in which the NN has been 
trained over data that has been accidentally or 
maliciously mislabeled. At runtime, the IDS becomes 
aware of data that should be classified as anomalous 
either due to human involvement or recently detected 
anomalous behavior. At which point, the IDS, which is 
responsible for validating the NN training data, 
determines that anomalous data exists within the 
training set and is labeled as “normal” activity. The IDS 
generates an alert for “Invalid Training Data”, which is 
output to the Mitigation Selection Layer. The mitigation 
selector receives the alert, assesses possible NIST CMs 
against available system and mitigation metadata and 
selects CM1130 Validate Data Quality, which is output 
to the Adaptive Layer. 

The analyzer assesses the selected mitigation 
against available adaptation metadata. It considers 
possible adaptation strategies that are then forwarded to 
the planner. The planner selects and qualifies an 
adaptation strategy to relabel all mislabeled data. The 
adaptation strategy is then pushed to the ID&A Layer, 
where the IDS applies the adaptation strategy to the 
training data to relabel all mislabeled data. The new 
training data is forwarded to the NN, which is then 
signaled for retraining. The adaptation is logged to the 
database server. No further actions are necessary. 

For the second use case, consider a scenario in 
which an attacker has been discreetly performing an 
attack on the system, escalating their permissions over 
time. In this example, the NN is unable to detect the 
attacker’s actions as malicious because the training data 
it possesses is insufficient. Eventually, the attacker 
compromises a major system component to gain further 
permissions. When this occurs, the IDS generates an 
alert indicating “System Compromise”. 

After logging the alert onto the IDS Database 
Server, the IDS consults the AG for possible future and 
past attack states and pushes the alert to the Mitigation 
Selection Layer. The Mitigation Selection Layer then 
pulls features of interest from the AG, including prior 
attack states, and a presumably high-risk value. For this 
example, the Mitigation Selector might select CM1134 
Refresh Selected Applications or Components  to refresh 
and restart the compromised components and CM1155 
Validate Data Output to revalidate and add data to the 
NN training set. These two CMs are pushed to the 
Adaptive Layer where the compromised system 
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component is defined as the target for CM1134, and it 
defines a new subset of features to be added to the 
training data for CM1155. These strategies are pushed 
to the IDS management server, which then executes 
them, restarting the compromised component as well as 
retraining and adding data to the NN. These adaptations 
are logged, and the new System State is pushed to the 
AG for its adaptation through recompilation. 

5. Limitations of the Design  

The proposed architectural design includes several 
challenges related to the implementation of its 
components. One of its core components is the IDS, 
which must be adaptable and must maintain a NN. This 
in turn means that the IDS implementation must be able 
to parse and execute adaptations, which might include 
changes to sensors, the NN, access policies, threat 
knowledge, etc. In addition, managing and adapting a 
NN would require that the IDS be capable of storing, 
curating, and validating the NN training data. The IDS 
would need to employ mechanisms that ensure the 
integrity of the NN data. 

The NN as proposed would conduct supervised 
learning, which is widely used. However, unsupervised 
learning might be more suitable in cases where there is 
little relevant threat knowledge and anomalous activity 
is only known in contrast to normal activity. For many 
systems, activity that is considered normal can change 
over the lifecycle of that system. NNs cannot typically 
be trained quickly but retraining may still be a necessary 
adaptation for the NN so that it can continue to 
acclimate to the target system over time. Lastly, it may 
be necessary to dynamically adjust sensitivity 
thresholds so that alerts are not generated too frequently. 

In the proposed design, the AG has the unique 
ability to identify states associated with an identified 
intrusion. It may be necessary to include further 
metadata in the description of the AG so that it can also 
identify relevant features that could be used by the IDS 
and NN to improve their ability to detect future 
intrusions. In this way, the IDS might be able to not only 
recognize typical data but also typical attacks. For an 
SAS, it may also be necessary to reconfigure the AG to 
model new sets of attack states and vectors, which can 
be computationally expensive to do. 

6. Discussion and Conclusion 

In this paper, we discuss an architectural design that 
can address the impact of adaptations on analysis 
components that inform an SAS MAPE loop. We focus 
on analysis components that include an adaptable IDS 
that is supported by both a NN and an AG. In this design, 

the IDS is responsible for generating alerts when 
anomalies occur, the NN is responsible for identifying 
anomalies, and the AG is responsible for analyzing 
attacks associated with anomalies. Once an alert has 
been generated, a CM is selected that is then enforced 
system wide. Mitigations can result in adaptations that 
are defined within an adaptive layer associated with the 
analysis components. The resulting adaptation can 
therefore affect the IDS and its supporting components. 
We examine two use cases that illustrate the application 
of the adaptive layer within the architecture. It is our 
intent to employ this architecture to develop monitoring 
technology that is better equipped to identify security 
anomalies in a world of ever-increasing complexity. 

For future work, we intend to investigate various 
NN implementations to determine which may prove to 
be most helpful in identifying anomalies depending on 
what training data can be gathered. We also seek to 
investigate what processes can be implemented to refine 
the selection of mitigations and adaptations based on 
effectiveness, cost, and a risk assessment of the current 
anomaly. Lastly, we will investigate novels designs or 
mechanisms to improve the latency considerations of 
retraining a NN or reconfiguring an AG. 
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