
An Architectural Design to Address the Impact
of Adaptations on Intrusion Detection Systems

Ian Riley

Tandy School of Computer Science,
University of Tulsa,

Tulsa, Oklahoma, USA 74104
ian-riley@utulsa.edu

Allen Marshall
Tandy School of Computer Science,

University of Tulsa,
Tulsa, Oklahoma, USA 74104

allen-marshall@utulsa.edu

Logan Quirk

Tandy School of Computer Science,
University of Tulsa,

Tulsa, Oklahoma, USA 74104
ldq1403@utulsa.edu

Rose Gamble
Tandy School of Computer Science,

University of Tulsa,
Tulsa, Oklahoma, USA 74104

gamble@utulsa.edu

Abstract
Many self-adaptive, autonomous systems rely on

component technologies to report anomalies to
planning processes that can choose adaptations. What
if the analysis technologies themselves need to be
adapted? We consider an intrusion detection system
(IDS) supported by two component technologies that
assist its decision making: a neural network that finds
security anomalies and an attack graph that informs the
IDS about system states of interest. The IDS purpose is
to send alerts regarding security anomalies. Planning
processes respond to alerts by selecting mitigation
strategies. Mitigations are imposed system-wide and
can result in adaptations to the analysis technology,
such as the IDS. Without adaptation the IDS can become
stagnate in its detection quality. In this paper, we
describe an architectural design for an adaptive layer
that works directly with an IDS. We examine two use
cases involving different mitigation strategies and their
impacts on the IDS’s supporting components.

Keywords: Self-adaptive systems, intrusion detection
systems, neural networks, attack graphs

1. Introduction

Self-adaptive, autonomous systems are deployed to
environments where systems require mechanisms that
can alter system organization, configuration, or
behavior to respond to changes in the environment
(Cheng et al., 2009). Failure to respond to such changes
results in poor performance, faults, and security
vulnerabilities, which warrant the implementation and
deployment of a system that is adaptable. Self-adaptive
systems (SASs) are implemented using a Monitor-

Analyze-Plan-Execute (MAPE) control loop (Kephart
& Chess, 2003) which may include a Knowledge
component in the case of a MAPE-K loop. These steps
can be implemented by individual component
technologies or satisfied through the interaction of
system components. It is important to inquire into what
would happen if some of these components, such as the
anomaly detection components, needed to be adapted.

To further this inquiry, we consider an intrusion
detection system (IDS) (Liao et al., 2013) that is
supported by two component technologies that assist its
decision-making processes. These component
technologies include a neural network component that
finds security anomalies and an attack graph component
that informs the IDS about the system states of interest.
Collectively, these three components represent analysis
components of the SAS that may also need to be adapted
to improve their ability to identify security anomalies.
Failure to do so could lead to a state of stagnation in
which current “blind-spots” in the anomaly detection
process are persistent.

In the system presented in this paper, the IDS
generates alerts in response to identified security
anomalies. Those alerts are forwarded to planning
processes that select corresponding mitigation
strategies, such as the NIST SP 800-160 candidate
mitigations (National Institute of Standards and
Technology, 2021). The selected mitigation(s) are
imposed system-wide, potentially resulting in
adaptations to the anomaly detection components.
Further planning qualifies the adaptations that will be
applied to those components, while the components
themselves are responsible for executing the adaptation.

We describe an architectural design for an adaptive
layer that integrates directly with the IDS to facilitate

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6873
URI: https://hdl.handle.net/10125/103466
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

adaptation of the IDS as well as the neural network and
attack graph components. We illustrate each of its
layers, their components, and the interactions between
components as well as elucidate design challenges at
each step. We then examine two use cases involving
different mitigation strategies and their impact on the
IDS and its supporting components.

To provide a brief roadmap, Section 2 provides
background research related to SASs, the IDS, the NN
and AG components, and NIST CMs. Section 3
describes the architectural design. Section 4 examines
the two use cases. Section 5 outlines design challenges
across the various components of the architecture as
well as the limitations of the design. Section 6 is the
conclusion and description of future efforts.

2. Background

2.1. Self-Adaptive Systems

An SAS can be thought of as a system that adapts
its functionality as its environment evolves to ensure
that its operational goals are consistently met (Cheng et
al., 2009) (Elhabbash et al., 2019). As such, it must be
able to reason over the conditions that necessitate
adaptation (Langford & Cheng, 2019) to enact the
strategy that best improves its performance or maintains
its compliance with respect to system controls. The
typical MAPE-K loop (Kephart & Chess, 2003)
implementation is used so that the system continuously
monitors relevant data, analyzes the data, and plans
appropriate adaptations.

Key challenges to the implementation of an SAS
include 1) understanding the minimal amount of
information that is required to plan an adaptation, 2)
efficiently analyzing the information to produce
actionable adaptations, and 3) enabling appropriate
adaptation mechanisms that can adapt system
functionality (Bellman et al., 2017) (Zambonelli et al.,
2011). Designing adaptive components requires
sufficient expertise and an understanding of sources of
uncertainty that affect the SAS operation (Colman et al.,
2014) (Scholze et al., 2013). Justifying the selection of
an adaptation can involve making trade-offs between
various criteria or making decisions based on limited
information about the future state of the environment,
both of which can be computationally expensive to
perform. In such cases, the system may be required to
employ heuristics that can be used to assess adaptations
amidst various sources of uncertainty. Multiple
interacting MAPE loops to support intra-loop and inter-
loop coordination (Vromant et al., 2011) are often
needed to address different priorities (Weyns et al.,
2013). Adaptation mechanisms are most often deployed
as external adaptive frameworks or middleware that can

interact with components within the system that can
execute adaptations at the system level. When
addressing security threats, these systems must be able
to adapt security functionality (Yuan et al., 2014) while
maintaining other quality concerns (Le, 2015).

Researchers have investigated various approaches
to verifying and selecting appropriate adaptations.
ActivFORMS (Iftikhar et al., 2014) uses formal models
to verify the correctness properties of adaptations.
Filieri et al. (2017) use Markov chains to verify
adaptations prior to system deployment. In prior work,
we have investigated the use of assurance cases to assess
adaptations based on their impact on security controls
and functional requirements (Jahan et al., 2020).
Assessments were conducted through interacting
MAPE-K loops following a similar MAPE-K design
pattern as those proposed by Weyns et al. (2013). We
have also investigated the use of theorem provers to
construct formal proofs that demonstrate compliance
with system requirements (Marshall et al., 2018) (Riley
et al., 2021). Adaptations were assessed using a set of
heuristics to measure the risk that the adaptation would
fail to maintain compliance with system requirements
based on current environment and operating conditions.
Other researchers have investigated approaches to
constructing and enabling adaptive components. Garlan
et al. (2004) have developed Rainbow, a framework that
uses an architecture-based model to verify the properties
of pre-defined adaptations. In prior work, we have
defined a plug-in architecture that acts as a middleware
to provide a target system with self-adaptation
capabilities (Jahan et al., 2021).

2.2. Intrusion Detection Systems

An IDS is a system that is capable of, at a minimum,
detecting an intrusion into a system that violates a core
security policy. IDSs can take many forms, relying on a
variety of detection methodologies (Liao et al., 2013).
Using these techniques, they detect if an intrusion is
occurring or has occurred and generate an alert provided
to another component that manages the alert. IDSs are
typically used for network security, due to the wide
variety of existing and emerging network attacks.

Two of the main detection methods used by IDSs
are signature-based detection and anomaly-based
detection (García-Teodoro et al., 2009) (Liao et al.,
2013). For a signature-based approach, the IDS is pre-
loaded with knowledge of certain attacks and how they
operate on the system. At runtime, the signature-based
IDS checks the events that it observes against its known
attack patterns to detect threats (Liao et al., 2013).

Anomaly-based detection works slightly
differently. Rather than being pre-loaded with attack
signatures, the IDS is pre-loaded with typical usage

Page 6874

data. The IDS then monitors the runtime behavior of the
system to detect deviations from known patterns of
typical use (Liao et al., 2013). Current research is
investigating the inclusion of neural networks to identify
patterns in typical usage data (Beqiri, 2009).

Ideally, an IDS should be capable of detecting any
intrusion into a system or network, even if the attack is
trying to disguise itself as benign activity. This
detection, however, remains as a significant challenge in
the design and deployment of IDS technology (Beqiri,
2009) (Capobianco et al., 2019) (García-Teodoro et al.,
2009). For example, a neural network would need
access to as much data as possible to understand typical
system activity, but it still might be possible for an IDS
supported by a neural network to misidentify well-
disguised intrusions at the beginning of an attack.

2.3. Neural Networks

Artificial neural networks (NNs) have been
proposed for intrusion detection in numerous contexts
(Liao et al., 2013). NNs can encode complex functions
using a network of neurons (nodes) that propagate their
real-valued activation levels through weighted synapses
(edges). Recurrent neural networks (RNNs) are a
subcategory in which edge loops are allowed, and
neuron activation levels may be maintained as mutable
state while the network processes its input (Keller et al.,
2016). The stateful nature of RNNs enables it to process
a sequence of inputs over time, producing output at each
step, while holding memory derived from past inputs for
arbitrary lengths of time. We believe that this stateful
sequence processing capability makes RNNs more
promising than stateless feedforward neural networks
(FNNs) for our purposes. This is because events in a
network system, such as IP packets, are expected to have
strong statistical and causal dependencies that will not
be captured by analyzing each event in isolation.

NNs generally have many parameters that must be
tailored to solve a specific problem. A popular machine
learning method for training NNs is gradient descent,
which historically proved difficult to perform on RNNs
(Hochreiter & Schmidhuber, 1997). A type of restricted
RNN architecture called long short-term memory
(LSTM) was developed to mitigate these problems
(Hochreiter & Schmidhuber, 1997). Multiple variants of
LSTM have been developed since then, and they remain
popular as a method for creating RNNs that support
gradient-based training.

NNs can be trained using various machine learning
paradigms. A common paradigm is supervised learning,
in which the training samples provided to the learning
algorithm are annotated with their expected outputs.
Another option is unsupervised learning, in which the
training samples do not have labels for the expected

output or any other special annotations. Since
unsupervised learning is not given a target behavior for
each sample, often the best it can do is to learn statistical
patterns in the data. While this is a significant limitation,
the learned patterns can notably be used for anomaly
detection, which is probably more valuable in the IDS
domain than in many other domains.

A third learning paradigm is LUPI (Vapnik &
Vashist, 2009), in which the training samples contain
strictly more information than in supervised learning.
The goal of LUPI is to aid the training process by
providing more information than what will be available
at runtime, which means that the learning algorithm
should be designed to take advantage of statistical
patterns in the extra variables but must ultimately
produce an NN (or other predictive model) that does not
require those extra variables as inputs. All three of the
above paradigms have been used with LSTM networks
(Greff et al., 2017) (Mahasseni et al., 2017) (Xu et al.,
2017), although supervised learning is the most popular.

There are other novel approaches to address
outstanding research challenges associated with
employing NNs for network intrusion detection. LuNet
(Wu and Guo, 2019) is a hierarchical deep neural
network that combines convolution and recurrent sub-
nets to reduce false-positive rates using supervised
learning. High false-positive rates can condition users to
ignore flagged anomalies and increase overhead in a
system that autonomously responds to alerts. ADA
(Yuan et al., 2020) employs an LSTM network to
perform unsupervised learning over system logs in
networks with large volumes of incoming data. ADA
uses dynamic thresholds that can be adjusted to improve
the NN model during anomaly detection rather than
retraining the model which is time intensive. The
contribution of this paper is an architectural design that
can incorporate these novel efforts, as well as future
efforts, into an adaptive architecture that utilizes
anomaly detection alongside mitigation and adaptation
selection, where adaptations can target the NN to the
extent of what configurations it can support.

2.4. Attack Graphs

The term attack graph refers to a number of related
techniques for security analysis, revolving around the
use of a formal state space model in which state
transitions represent the actions of an attacker or other
force (Li et al., 2021) (Louthan et al., 2014) (Phillips &
Swiler, 1998). Terminology related to attack graphs
varies significantly across authors. To avoid confusion,
we will maintain consistent terminology here even when
citing other works that use different terms.

Attack graph analysis requires a state-transition
model defining a state space and possible transitions

Page 6875

between states. One approach used by researchers is to
model each state as a collection of assets and facts,
where facts may describe properties of individual assets
or relationships among assets (Li et al., 2021) (Louthan
et al., 2014). Transitions can be defined indirectly using
exploit patterns with specified preconditions and
postconditions, which may contain free variables that
must be bound to assets to create a concrete transition.

A state-transition model theoretically defines a
complete, static graph describing all states and
transitions. Since that graph is likely infinite or
intractable to compute, practical analysis often involves
computing a subgraph from a specific starting state,
possibly using a pruning criterion such as a finite search
depth (Louthan et al., 2014). We use the term attack
graph to refer to the computed subgraph. Attack graphs
can be used to analyze system-wide security properties.
Examples of analysis tasks include finding the shortest
path to a compromised state and estimating the potential
consequences of a specific vulnerability (Li et al., 2021).

Even with pruning criteria, attack graph generation
can be computationally intensive. Research has been
performed on accelerating the computation through
algorithmic and hardware improvements (Li et al.,
2020) (Li et al., 2021). However, performance can also
be improved by restricting the state-transition model.
Notably, algorithmic complexity can be significantly
reduced by assuming a form of monotonicity, i.e., that
preconditions for an exploit never become false after
becoming true (Ammann et al., 2002). While one can
certainly imagine scenarios where this assumption does
not hold, it is somewhat justified by the idea that an
attacker is unlikely to give up privileges after obtaining
them (Capobianco et al., 2019). This monotonicity idea
has led to a variation on attack graphs called attack

dependency graphs (Louthan et al., 2011). Attack
dependency graphs use different types of nodes
compared to a basic attack graph, but the encoded
information is approximately equivalent if the state-
transition model satisfies the monotonicity assumption.

2.5. NIST Candidate Mitigations

In its Special Publication 800-160, Volume 2
Revision 1, the National Institute of Standards and
Technology has provided several standardized tables of
concepts and terms related to cybersecurity (National
Institute of Standards and Technology, 2021). Of
particular interest to us is the list of candidate
mitigations (CMs), which represent standard, high-level
steps that can be taken to mitigate security threats. Each
CM has an identifier consisting of the letters CM
followed by four digits, as well as a human-readable
name. For example, CM1140 Use Alternate
Communications describes the mitigation of changing
communication methods to avoid a security threat. Our
architectural design will make use of NIST CM
identifiers to specify high-level intended behaviors for
adaptations.

3. Architecture

The proposed architecture, shown in Figure 1, is made
up of several components organized into four layers.
These four layers are the System Layer (green; bottom),
the Intrusion Detection and Analysis Layer (red; lower-
middle), the Mitigation Selection Layer (gold; upper-
middle), and the Adaptive Layer (blue; top).

Figure 1: Architectural Diagram (Overview)

Page 6876

These layers work in tandem to support adaptation
selection and execution across devices responsible for
detecting anomalies and threats to a target system.

The System Layer represents the target system. It is
an abstraction over an opaque stream of data, which can
only be required to satisfy a limited set of assumptions.
Namely, that the data – the system activity – can be
monitored and analyzed by an IDS. It would also be
beneficial if the target system could digest system
mitigations, such as NIST CMs, but it is not necessary.
Systems that cannot accept new mitigations, such as
legacy systems, may still be adaptable with human
intervention. The system mitigation would still be
expected to propagate to other system components, such
as the IDS, and can result in adaptations to those
components. The adaptive layer would reflect an
adaptation to other components (e.g., the IDS) in
response to the mitigation selection. However, there
may be a limited degree to which such adaptations could
do more than improve the detection of anomalies.
System activity in the target system is streamed to
components within the Intrusion Detection and Analysis
Layer (ID&A), shown in Figure 2. This layer is
responsible for monitoring the target system and
detecting anomalies. The ID&A Layer consists of three
major components: the IDS (red; middle), the Attack
Graph Component (rust; right), and the Neural Network
Component (purple; left). The IDS is further subdivided
into three sub-components, which are the Sensors, the
Management Server, and the Database Server. The IDS
sensors are responsible for parsing the input stream of
system activity. Parsed sensor data is streamed to the

management server, which processes the sensor data
and outputs that data to the neural network to be scored.
The management server is responsible for using sensor
data, scores, and relevant threat knowledge to determine
if an alert should be generated.

Once generated, an alert is logged within the
database server and output to the Mitigation Selection
Layer. Current system state information, which is
derived from the sensor data, is pushed to the attack
graph. Relevant threat knowledge is provided by the
database server, which maintains a history of anomalous
activity, alerts, and adaptations.

The Neural Network component contains a stateful
LSTM-based NN that takes individual events from the
system activity as input. For each event received, the
network’s output layer produces a single real value
representing the level of suspicion. The NN output is
clamped to the range from 0 to 1.

The NN is trained using a history of system activity
events, each labeled as either normal or malicious.
Potential adaptations for the Neural Network
component include retraining with different training
data, retraining with different training algorithm
parameters, and adjusting the threshold of suspicion that
is considered to warrant an alert. We will focus on
retraining with different training data as our primary
example of NN adaptation. Note that this adaptation
may involve changing not only the set of events used for
training but also the set of features included in the event
data points. However, adding new event features to the

Figure 2: Intrusion Detection & Analysis Layer

Page 6877

Figure 3: Mitigation & Adaptive Layers

training set means that those new features must also be
provided to the NN for all subsequent incoming events.

The AG is a representation of the entire network
and system state from the lens of a possible attacker. It
is composed of “attack states” and “attack vectors”,
represented by nodes and edges respectively. Each
attack state represents a permission layer that is possible
for an attacker to achieve. Attack vectors are
representations of attacks that permit transitions from
one attack state to another. Given an attack graph and an
attack state, it is possible for an analyst to determine not
only any future attack states (possible escalation of
permissions), but also any prior attack states (how the
attacker might have been able to obtain the current
state). This process provides tremendous insight for
both pre-threat and post-threat analysis.AGs can be used
to support a risk assessment of the current system state.

This assessment can be accomplished by
establishing metadata associated with the attack states
and attack vectors that include information like “Level
of Impact” and “Degree of Risk”. Combined with the
alerts generated by the IDS, this added information
would allow each alert to be assigned a “risk value” that
can inform the Mitigation Selector and the Adaptive
Layer. It can enable those components to make their
own decisions regarding which alerts and mitigations to
prioritize, or even decide if an alert warrants a
mitigation. Additionally, an AG can also provide
contextual information, such as open network
connections, derived features of interest like packets per
second, and the targets of various connected sensors.
The inclusion of an AG in our architecture is a novel

idea that allows the system to decide its own approach
towards detecting possible vulnerabilities.

Alerts generated in the ID&A layer are received by
the Mitigation Selector in the Mitigation Selection
Layer (gold; bottom), shown in Figure 3. The mitigation
selector is responsible for selecting a set of NIST CMs
that correspond to each alert based on related metadata,
such as System and Mitigation Metadata. System and
mitigation metadata are needed to determine whether a
mitigation is appropriate and preferred. A mitigation is
appropriate if it is both related to the alert and executable
by the components within its scope. Mitigations are
related to an alert if they have been determined to
mitigate the risk and/or harm that was the cause of the
alert or if at least one of the mitigation’s specified
controls have been impacted by the alert’s underlying
cause. We define the effectiveness of a mitigation as its
capability to reduce further risk or harm due to
anomalous or malicious activity. Effectiveness is
determined by the proportion of risk or harm that can be
reduced by the mitigation and the likelihood of it doing
so. A mitigation with a non-zero effectiveness with
respect to an alert is appropriate for that alert.

Alternatively, each CM is assigned to a set of
security controls (NIST, 2021) that relate to the
requirements the affected system must satisfy. If the
cause of the alert impacts the system’s ability to meet its
security controls, then all CMs that have been assigned
to impacted controls are categorically applicable to the
alert. Determining the applicability of CMs based on
system controls is necessary for systems where the
effectiveness of a mitigation cannot be quantified.

Page 6878

Figure 4: Adapting the ID&A Layer

Every selected CM will have a qualified set of
parameters that define the affected component(s) and
the intended effect. Those component(s) are within the
scope of the mitigation and require some set of effectors
that can sufficiently bring about the intended effect.
These parameters and their possible values would need
to be tailored to each subject system based on domain
expertise. Parameters, their values, system architecture,
system controls, the selectable CMs, mitigation
effectiveness and categories, etc. can be captured within
the Mitigation Selection Layer as metadata.

One of the principal challenges to selecting
mitigation in response to alerts occurs when there is no
one-to-one relationship between alerts and CMs. Some
CMs might not be applicable to any alert and some alerts
may have multiple applicable CMs. If a CM is not
applicable to any alert, that mitigation can be ignored by
the mitigation selector. If an alert has multiple
applicable CMs, then the mitigation selector should
choose the most preferred mitigation of those available.
Every CM has some degree of effectiveness and
operational cost, which is the resource and performance
cost tied to executing the mitigation.

Operational costs can be measured according to the
short- and/or long-term impact of enforcing a mitigation
for some duration of time. The effectiveness and cost of
a CM is both inherent and environmental. For example,
CM1134 Refresh Selected Applications or Components
has the inherent cost of requiring that a system
application or component be restarted, or temporarily
disabled. Its inherent effectiveness could be determined
by whether temporarily disabling an application or
component inhibits malicious activity. Inherent

effectiveness and cost can be used to define a static
profile relating CMs to alerts.

Effectiveness and cost can also be environmental.
Restarting an application or component is more costly if
it is being heavily utilized and less costly otherwise. The
same mitigation might also be more effective when
deployed during an ongoing attack or less effective if
the attack has already concluded. If such system
metadata is available to the mitigation selector at
runtime, then the mitigation selector can dynamically
select a preferred CM based on the current system state.
If no such metadata is available at runtime, then a static
profile would be needed based on available system data
and domain expertise.

Selected CM(s) are pushed to the Adaptive Layer
(blue; top), show in Figure 3, by the mitigation selector.
The Adaptive Layer is composed of the Analyzer and
the Planner, which are supported by Adaptation
Metadata. The analyzer, which receives selected CM(s)
from the mitigation selector, uses adaptation metadata
to determine a set of adaptation strategies that are
applicable to the selected CM(s). Adaptation metadata
would include the set of possible adaptation strategies,
which must be defined by domain expertise, as well as
qualifiers that determine which adaptations can be
selected for which CM(s). In this context, adaptations
can be thought of as changes to the organization or
configuration of components within the ID&A Layer,
such as the IDS, attack graph component, or neural
network component, or variations of how each CM
might be executed by one of those components. For
example, CM1130 Validate Data Quality can be applied
to improve the quality of training data employed by a

Page 6879

NN. There are several approaches to validating the
quality, integrity, or consistency of a training set, such
as removing rows or features, relabeling rows in the case
of supervised learning, etc. Deciding which approach to
use can be handled within the Adaptive Layer rather
than the Mitigation Selection Layer.

After deciding on a set of possible adaptation
strategies, the adaptations are forwarded to the Planner,
which is responsible for deciding a single adaptation
strategy that covers the selected CM(s). To do so, the
planner would need to define a utility metric that can be
used to rank a set of adaptations based on selected
CM(s) and available knowledge of the affected
system(s) or component(s). The highest ranked
adaptation for each CM can then be combined into a
single adaptation strategy that is then output to the
affected components within the ID&A Layer.

The IDS and attack graph component receive an
adaptation strategy from the planner depending on the
scope of the selected CM(s) as shown in Figure 4. If the
IDS or the NN is affected by the adaptation strategy,
then the adaptation strategy will be received by the IDS
management server and logged within the database
server. If the AG is affected by the adaptation strategy,
then the attack graph component will receive the
adaptation strategy. The IDS receives adaptation
strategies on behalf of the neural network component as
it is responsible for maintaining and validating the
neural network’s inputs, which includes the NN training
data. If an adaptation strategy applies to the NN, then
the IDS must apply the adaptation to the training set,
forward the modified training set to the neural network
component, and then signal retraining, or formulate a
query to recalibrate the NN depending on its
implementation and whether it is housed within the IDS
or provided as-a-service via the cloud. Once an
adaptation has been logged in the database server, the
management server sends updated system state
information to the attack graph component, if the system
state would be affected by the adaptation strategy.

4. Responding to Security Mitigation

We outline two possible use cases among many to
illustrate the application of our proposed architecture.

• The NN training set includes mislabeled data
that undermine the quality of its classifications

• Seemingly benign behavior hides an escalating
attack that results in an observable system
compromise

The first use case illustrates a situation where
mislabeled data was accidentally or maliciously
included within the training set that was used to train the
NN. The mislabeled training data results in anomalous

activity receiving lower scores, or scores that indicate
that the activity is seemingly more “normal” than it
should appear. The second use case illustrates a typical
scenario where an attacker has begun an escalation of
permissions that results in increasing harm to the
system. The attacker’s activity seems benign at first,
even as permissions are being acquired, until a major
system component is compromised.

Consider a scenario in which the NN has been
trained over data that has been accidentally or
maliciously mislabeled. At runtime, the IDS becomes
aware of data that should be classified as anomalous
either due to human involvement or recently detected
anomalous behavior. At which point, the IDS, which is
responsible for validating the NN training data,
determines that anomalous data exists within the
training set and is labeled as “normal” activity. The IDS
generates an alert for “Invalid Training Data”, which is
output to the Mitigation Selection Layer. The mitigation
selector receives the alert, assesses possible NIST CMs
against available system and mitigation metadata and
selects CM1130 Validate Data Quality, which is output
to the Adaptive Layer.

The analyzer assesses the selected mitigation
against available adaptation metadata. It considers
possible adaptation strategies that are then forwarded to
the planner. The planner selects and qualifies an
adaptation strategy to relabel all mislabeled data. The
adaptation strategy is then pushed to the ID&A Layer,
where the IDS applies the adaptation strategy to the
training data to relabel all mislabeled data. The new
training data is forwarded to the NN, which is then
signaled for retraining. The adaptation is logged to the
database server. No further actions are necessary.

For the second use case, consider a scenario in
which an attacker has been discreetly performing an
attack on the system, escalating their permissions over
time. In this example, the NN is unable to detect the
attacker’s actions as malicious because the training data
it possesses is insufficient. Eventually, the attacker
compromises a major system component to gain further
permissions. When this occurs, the IDS generates an
alert indicating “System Compromise”.

After logging the alert onto the IDS Database
Server, the IDS consults the AG for possible future and
past attack states and pushes the alert to the Mitigation
Selection Layer. The Mitigation Selection Layer then
pulls features of interest from the AG, including prior
attack states, and a presumably high-risk value. For this
example, the Mitigation Selector might select CM1134
Refresh Selected Applications or Components to refresh
and restart the compromised components and CM1155
Validate Data Output to revalidate and add data to the
NN training set. These two CMs are pushed to the
Adaptive Layer where the compromised system

Page 6880

component is defined as the target for CM1134, and it
defines a new subset of features to be added to the
training data for CM1155. These strategies are pushed
to the IDS management server, which then executes
them, restarting the compromised component as well as
retraining and adding data to the NN. These adaptations
are logged, and the new System State is pushed to the
AG for its adaptation through recompilation.

5. Limitations of the Design

The proposed architectural design includes several
challenges related to the implementation of its
components. One of its core components is the IDS,
which must be adaptable and must maintain a NN. This
in turn means that the IDS implementation must be able
to parse and execute adaptations, which might include
changes to sensors, the NN, access policies, threat
knowledge, etc. In addition, managing and adapting a
NN would require that the IDS be capable of storing,
curating, and validating the NN training data. The IDS
would need to employ mechanisms that ensure the
integrity of the NN data.

The NN as proposed would conduct supervised
learning, which is widely used. However, unsupervised
learning might be more suitable in cases where there is
little relevant threat knowledge and anomalous activity
is only known in contrast to normal activity. For many
systems, activity that is considered normal can change
over the lifecycle of that system. NNs cannot typically
be trained quickly but retraining may still be a necessary
adaptation for the NN so that it can continue to
acclimate to the target system over time. Lastly, it may
be necessary to dynamically adjust sensitivity
thresholds so that alerts are not generated too frequently.

In the proposed design, the AG has the unique
ability to identify states associated with an identified
intrusion. It may be necessary to include further
metadata in the description of the AG so that it can also
identify relevant features that could be used by the IDS
and NN to improve their ability to detect future
intrusions. In this way, the IDS might be able to not only
recognize typical data but also typical attacks. For an
SAS, it may also be necessary to reconfigure the AG to
model new sets of attack states and vectors, which can
be computationally expensive to do.

6. Discussion and Conclusion

In this paper, we discuss an architectural design that
can address the impact of adaptations on analysis
components that inform an SAS MAPE loop. We focus
on analysis components that include an adaptable IDS
that is supported by both a NN and an AG. In this design,

the IDS is responsible for generating alerts when
anomalies occur, the NN is responsible for identifying
anomalies, and the AG is responsible for analyzing
attacks associated with anomalies. Once an alert has
been generated, a CM is selected that is then enforced
system wide. Mitigations can result in adaptations that
are defined within an adaptive layer associated with the
analysis components. The resulting adaptation can
therefore affect the IDS and its supporting components.
We examine two use cases that illustrate the application
of the adaptive layer within the architecture. It is our
intent to employ this architecture to develop monitoring
technology that is better equipped to identify security
anomalies in a world of ever-increasing complexity.

For future work, we intend to investigate various
NN implementations to determine which may prove to
be most helpful in identifying anomalies depending on
what training data can be gathered. We also seek to
investigate what processes can be implemented to refine
the selection of mitigations and adaptations based on
effectiveness, cost, and a risk assessment of the current
anomaly. Lastly, we will investigate novels designs or
mechanisms to improve the latency considerations of
retraining a NN or reconfiguring an AG.

Acknowledgement: This material is based upon

work supported by the US Army ERDC under Contract
No. W912HZ21C0062.

7. References

Ammann, P., Wijesekera, D., & Kaushik, S. (2002). Scalable,
graph-based network vulnerability analysis. 9th ACM
Conf. on Computer and Communications Security.

Bellman, K., Landauer, C., Nelson, P., Bencomo, N., Gotz,
S, Lewis, P., & Esterle, L. (2017). Self-modeling and
self-awareness. In: Kounev S., Kephart J., Milenkoski
A., Zhu X. (eds) Self-Aware Computing Systems,
Springer, Cham.

Beqiri, E. (2009). Neural networks for intrusion detection
systems. In Jahankhani, H., Hessami, A. G., & Hsu, F.
(Eds.), Communications in computer and information
science: Global security, safety, and sustainability,
45:156-165. Springer.

Capobianco, F., George, R., Huang, K., Jaeger, T.,
Krishnamurthy, S., Qian, Z., Payer, M., & Yu, P.
(2019). Employing attack graphs for intrusion detection.
Proc. of the New Security Paradigms Workshop, 16-30.

Cheng, B.H.C., Lemos, R.., Giese, H., Inverardi, P., Magee,
J., Andersson, J., Becker, B., Bencomo, N., Brun, Y.,
Cukic, B., Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle,
H.M., Kramer, Whittle, J. (2009). Software engineering
for self-adaptive systems: A research roadmap. In
B.H.C. Cheng, R. Lemos, H. Giese, P. Inverardi, and J.
Magee, editors, Software Engineering for Self-Adaptive
Systems, LNCS 5525, 1–26. Springer.

Page 6881

Colman, A., Hussein, M., Han, J., & Kapuruge, M. (2014).
Context aware and adaptive systems. In: Brézillon, P.,
Gonzalez, A. J. (Eds.), Context in Computing, Springer,
63-82.

Elhabbash, A., Maria, S., Rami, B., & Peter, T. (2019). Self-
awareness in software engineering: A systematic
literature review. ACM Trans. on Autonomous and
Adaptive Systems, 14(2), 5.

Filieri, A., Maggio, M., Angelopoulos, K., D’ippolito, N.,
Gerostathopoulos, I., Hempel, A. B., Hoffmann, H.,
Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F.,
Misailovic, S., Papadopoulos, A. V., Ray, S., Sharifloo,
A. M., Shevtsov, S., Ujma, M., & Vogel, T. (2017).
Control strategies for self-adaptive software systems, In
ACM Trans. on Autonomous and Adaptive Systems.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G.,
& Vázquez, E. (2009). Anomaly-based network
intrusion detection: Techniques, systems and challenges.
Computers & Security, 28(1-2), 18-28.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., &
Steenkiste, P. (2004). Rainbow: Architecture-based self-
adaptation with reusable infrastructure. Computer.

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R.,
& Schmidhuber, J. (2017). LSTM: A search space
odyssey. IEEE Transactions on Neural Networks and
Learning Systems, 28(10), 2222-2232.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735-1780.

Iftikhar, M. U., & Weyns, D. (2014). ActivFORMS: Active
formal models for self-adaptation. In Software
Engineering for Adaptive and Self-Managing Systems.

Jahan, S., Riley, I., Walter, C., Gamble, R., Pasco, M.,
McKinley, P.K., & Cheng, B.H.C. (2020). MAPE-
K/MAPE-SAC: An interaction framework for adaptive
systems with security assurance cases. Future Generation
Computer Systems, 109, 197-209.

Jahan, S., Riley, I., Sabino, A., & Gamble, R. (2021). Towards
a plug-in architecture to enable self-adaptation through
middleware. IEEE Int’l Conf. on Autonomic Computing
and Self-Organizing Systems Companion, 214-219

Keller, J. M., Liu, D., & Fogel, D. B. (2016). Fundamentals
of computational intelligence: Neural networks, fuzzy
systems, and evolutionary computation. IEEE Press.

Kephart, J.O., & Chess, D.M. (2003). The vision of
autonomic computing. Computer, 1, 41–50.

Langford, M.A., & Cheng, B.H.C. (2019). Enhancing
learning-enabled software systems to address
environmental uncertainty. IEEE Int’l Conf. on
Autonomic Computing, 115-124.

Le, D.T. (2015). Quality trade-offs in self-protecting system.
2015 IEEE International Conference on Self-Adaptive
and Self-Organizing Systems Workshops, 152-156.

Li, M., Hawrylak, P., & Hale, J. (2020). Implementing an
attack graph generator in CUDA. IEEE Int’l Parallel and
Distributed Processing Symp. Workshops, 730-738.

Li, M., Hawrylak, P., & Hale, J. (2021). Strategies for
practical hybrid attack graph generation and analysis.
Digital Threats: Research and Practice.

Liao, H.-J., Lin, C.-H. R., Lin, Y.-C., & Tung, K.-Y. (2013).
Intrusion detection system: A comprehensive review. J.
of Network and Computer Applications, 36(1), 16-24.

Louthan, G., Haney, M., Hardwicke, P., Hawrylak, P., &
Hale, J. (2014). Hybrid extensions for stateful attack
graphs. Proceedings of the 9th Annual Cyber and
Information Security Research Conference, 101-104.

Louthan, G., Hardwicke, P., Hawrylak, P., & Hale, J. (2011).
Toward hybrid attack dependency graphs. 7th Annual
Workshop on Cyber Security and Information
Intelligence Research.

Mahasseni, B., Lam, M., & Todorovic, S. (2017).
Unsupervised video summarization with adversarial
LSTM networks. IEEE Conference on Computer Vision
and Pattern Recognition, 2982-2991.

Marshall, A., Jahan, S., & Gamble, R. (2018). Assessing the
risk of an adaptation using prior compliance
Verification. 51st Hawaii Int’l Conf. on Sys. Sciences.

NIST. (2021). Developing cyber-resilient systems: A systems
security engineering approach (NIST SP 800-160, Vol.
2 Rev. 1). US Dept. of Commerce.

Phillips, C., & Swiler, L. P. (1998). A graph-based system
for network-vulnerability analysis. Proceedings of the
1998 Workshop on New Security Paradigms, 71-79.

Riley, I., Jahan, S., Marshall, A., Walter, C., & Gamble, R.
(2021). Evaluating verification awareness as a method
for assessing adaptation risk. Future Generation
Computer Systems, 119, 110-135.

Scholze, S., Barata, J., & Kotte, O. (2013). Context
awareness for self-adaptive and highly available
production systems. Technological Innovation for the
Internet of Things, Springer.

Vapnik, V., & Vashist, A. (2009). Neural Networks, 22(5-6),
544-557.

Vromant, P., Weyns, D., Malek, S., & Andersson, J. (2011).
On interacting control loops in self-adaptive systems.
Proceedings of Soft. Eng. for Adaptive and Self-
Managing Systems.

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R.,
Prehofer, C., Wuttke, J., Andersson, J., Giese, H., &
Göschka, K. M. (2013). On patterns for decentralized
control in self-adaptive systems. LNCS, 76–107.

Wu, P. & Guo, H. (2019). LuNet: A deep neural network for
network intrusion detection. IEEE Symposium Series on
Computational Intelligence, 617-624.

Xu, H., Gao, Y., Yu, F., & Darrell, T. (2017). End-to-end
learning of driving models from large-scale video
datasets. IEEE Conference on Computer Vision and
Pattern Recognition, 3530-3538.

Yuan, E., Esfahani, N., & Malek, S. (2014). A systematic
survey of self-protecting software systems. ACM Trans.
on Autonomous and Adaptive Systems, 8(4), 1-41.

Yuan, Y., Adhatarao, S.S., Lin, M., Yuan, Y., Liu, Z., & Fu,
X. (2020). ADA: Adaptive deep log anomaly detector.
IEEE Conf. on Computer Communication, 2449-2458.

Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., &
Puviani, M. (2011). On self-adaptation, self-expression,
and self-awareness in autonomic service component
ensembles. 5th IEEE Conference on Self-Adaptive and
Self-Organizing Systems Workshops, 108–113.

Page 6882

	1. Introduction
	2. Background
	2.1. Self-Adaptive Systems
	2.2. Intrusion Detection Systems
	2.3. Neural Networks
	2.4. Attack Graphs
	2.5. NIST Candidate Mitigations

	3. Architecture
	4. Responding to Security Mitigation
	5. Limitations of the Design
	6. Discussion and Conclusion
	7. References

