
Binary Models for Arboviruses Classification Using Machine Learning: A
Benchmarking Evaluation

Sebastião Rogerio da Silva Neto1, Thomás Tabosa de Oliveira1, Leonides Medeiros Neto1, Igor Vitor Teixeira1,
Sara Sadok2, Vanderson Souza Sampaio3, Patricia Takako Endo1

1Universidade de Pernambuco (UPE), {srsn, tto, lmn, ivt}@ecomp.poli.br, patricia.endo@upe.br
2 Universidad Autónoma de Barcelona, sarasadokh@gmail.com
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Abstract

Arboviral diseases are common worldwide.
Infection with arboviruses can lead to serious health
problems, even death in severe cases. Such health
problems can be prevented by the early and correct
detection of these arboviruses, but this is challenging
due to the overlap of their symptoms. In this work, we
benchmark different Machine Learning (ML) models
to classify two types of arboviruses. We propose
two distinct binary models: (i) a model to classify
if the patient has arbovirus or another disease; and
(ii) a model to classify if the patient has Dengue or
Chikungunya. We configure and evaluate several
ML models using hyperparameter optimization and
feature selection techniques. The Random Forest and
XGboost tree-based models present the best results with
over 80% recall in the Chikungunya and Inconclusive
classes.

Keywords: Arbovirus, Dengue, Chikungunya, binary
model, machine learning, classification.

1. Introduction

Arboviral (or arthropod-born viral) diseases are a
group of diseases caused by arboviruses. These diseases
are replicated in both arthropods and vertebrates, and
transmitted mostly by arthropods through the bite
of mosquitoes, ticks, sandflies, and midges (Shope
and Meegan, 1997), as well as contaminated blood
transfusion in some cases. Dengue, Chikungunya and
Zika are among the diseases caused by arboviruses.
According to the World Health Organization (WHO),
arboviral diseases are part of a wider category, known as
Neglected Tropical Diseases (NTD), which are typically
prevalent in tropical locations and thrive in the poorest,

hardest-to-reach communities (Organization, 2022).
Two of the most common mosquitoes that transmit

Dengue, Chikungunya and Zika are the Aedes Aegypti
and Aedes Albopictus (Delatte et al., 2010; Morin
et al., 2013; Musso and Gubler, 2016). These
mosquitoes lay eggs in water and are adapted to
human living environments. For instance, it is
not unusual the inappropriate management of water
containers, trash bins, garden pots, drainage ditches,
pools ditches, among others in endemic areas. As a
consequence, mosquito population increases since these
factors contribute to their reproduction. (LaDeau et al.,
2015).

Social economic factors can be a key contributor to
arbovirus diseases spread (Whiteman et al., 2020) as
some habitats are ideal for mosquito growth, such as
standing water containers are more likely to be found
in lower income neighbourhoods (LaDeau et al., 2015;
LaDeau et al., 2013). Urban slums, marked by poor
sanitation and unplanned occupation, with houses built
without respecting a minimum distance, also help to
increase mosquito reproduction (Liu et al., 2017). Thus,
the population of these communities are more prone to
arbovirus infection.

Arboviral diseases, specially Dengue and
Chikungunya, are a global sanitary concern present in
every continent (Vairo et al., 2019; Wahid et al., 2017).
One of the most affected countries by arboviral diseases
is Brazil, having had many outbreaks in recent years
(Barroso et al., 2020; Musso et al., 2018).

The early detection of arboviral diseases can
mitigate the health damage and, in some cases, even
prevent death of the infected individual (Liu et al.,
2017). However, there are some challenges to be faced:
arboviral diseases tend to have an overlapping clinical
presentation and, as a result, establishing a prompt
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diagnosis can be difficult (Liu et al., 2017; Vicente
et al., 2021). Another challenge for the control of
arboviral diseases is the incomplete understanding of
their pathogenesis, which decreases the capability of
prediction and thus prevention of outbreaks (LaDeau
et al., 2015).

Machine Learning (ML) techniques have been
widely used for pattern recognition in different fields
of health, including, for instance, the classification of
patients with different types of Dengue fever using
Decision Tree (DT) (Farooqui et al., 2014); Association
Rule Mining (ARM) to find patterns of symptoms
in patients infected with Dengue Hemorrhagic Fever
(DHF) and Typhoid Fever (TF) (Siswanto et al., 2016);
and the classifications of patients infected with the
Swine Flu disease based on clinical data integrated in
a Medical Diagnosis Software (Raval et al., 2016).

In this work, we propose two binary models
for arboviral disease classification. We perform
experiments with 6 ML models in order to evaluate
their performance, all underwent hyperparameter
optimization, as well as selection of attributes. The
remainder of this work is organized as follows: Section
2 describes some related works; Section 3 brings some
concepts relevant to this work; Section 4 presents the
data set used and the models’ design. We present the
results of both models, as well as a discussion in Section
5, and we conclude our work and delineate next steps in
Section 6.

2. Related Works

Lee et al. (2012) proposed binary models to
classify between two types of arboviruses. The
experiments performed were divided into two
scenarios: (i) resource-limited (clinical data only);
(ii) resource-abundant (clinical and laboratory data).
For each scenario, two binary models were proposed to
classify between Dengue Fever (DF) and Chikungunya;
and DHF and Chikungunya. A DT was utilized for
each binary classification. In scenario (i), the DT
model presented 95% and 36% recall for the DF
and Chukungunya classes, respectively. Whereas the
scenario (ii), DT achieved 93% and 100% recall for the
DHF and Chikungunya classes, respectively.

Fahmi et al. (2020) proposed and evaluated
eight models (Neural Networks (NN), Suport Vector
Machines (SVM), k-Nearest Neighbours (KNN), DT,
Random Forest (RF), Naive Bayes (NB), Adaptative
Boosting (Adaboost) and Logistic Regression (LR)) to
classify Dengue considering three categories: DF, DHF
and Dengue Shock Syndrome (DSS). Experiments
were performed considering two different scenarios: (i)

without feature selection and (ii) with feature selection.
In both scenarios, the best result was obtained by the NN
model with 71.5% accuracy, 71% precision, and 71.5%
recall in scenario (i) and 72.4% accuracy, 72% precision,
and 72.4% recall in scenario (ii). Results showed that
feature selection did provide some improvements.

Tabosa de Oliveira et al. (2022) presented a
comparative study of seven models (RF, Adaboost,
Gradient Boosting Machines (GBM), eXtreme Gradient
Boosting (XGboost), KNN, Multilayer Perceptron
(MLP), and NB) for multi-class classification of
Dengue, Chikungunya and Inconclusive cases, using
only clinical data from patients. Feature selection
techniques were used, as well as hyperparameter
optimization for each model. The GBM model
presented the best results with a recall of 76.58%.

Although Lee et al. (2012) demonstrated that models
trained with clinical and laboratory data outperformed
the ones using only clinical data, it is noted that clinical
data is more suitable for resource-limited scenarios as
laboratory data may not be readily available (Lee et al.,
2012; Tabosa de Oliveira et al., 2022). Therefore,
similar to Tabosa de Oliveira et al. (2022), our work
utilizes clinical data and considers the same three
classes: Dengue, Chikungunya, and Inconclusive case.
However, unlike Tabosa de Oliveira et al. (2022),
which presented a multi-class classification, we propose
two binary models for the classification of arboviral
diseases. The first model classifies whether a patient
has arboviruses or another disease, and the second
model classifies between two arboviruses (Dengue and
Chikungunya). For further discussion on related works,
please refer to da Silva Neto et al. (2022).

3. Background

3.1. Machine learning models

In this work, we evaluate the following ML models
for the classification of arboviruses: RF, AdaBoost,
GBM, XGboost, KNN, and NB.

3.1.1. Random Forest RF is a decision tree-based
algorithm that can either work with categorical values
(also known as random forest classifier) or continuous
values (Cutler et al., 2012). Each decision tree split
is chosen based on a criterion that generates the most
accurate forecast for the target class. The procedure
continues until a leaf node is reached, at which point the
classification ends (Breiman, 2001). The RF combines
several different decision trees based on random samples
of the training data.
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3.1.2. Adaptive Boosting The Adaboost is a
tree-based algorithm that implements the technique of
boosting, which combines many weak learners (or weak
classifiers), into a more accurate one (Freund et al.,
1999). The weak learners are a type of small decision
trees with one split, called stumps. The premise of
Adaboost is that many weak learners combined decrease
the error of the final combined algorithm. Adaboost
associates a weight for each sample which is the same
initially. The first stump is created based on a metric that
can be the Gini Index (Tangirala, 2020), for instance,
then a measurement called “amount of say” is attributed
to the stump based on how much it influences in the final
classification. Then, the incorrectly classified samples
are given more weight while correctly classified ones
are given less weight. This way, the next stump adapts
to the previous stump’s mistakes putting more effort in
correctly classifying the samples that were previously
incorrectly classified (Freund and Schapire, 1997).
Consequently, the combination of all the stumps may
produce a high accuracy mode.

3.1.3. Gradient Boosting As the name suggests,
similar to the previous Adaboost, GBM also utilizes the
boosting technique and can also be used with tree-based
algorithms, combining many small slightly inaccurate
decision trees to create a more robust one (Natekin
and Knoll, 2013). GBM produces a model by adding
new trees taking into account the difference between
the observed and the predicted value, which is called
pseudo residuals, in the first iteration, and after that, the
difference between the observed and predicted residuals
is taken into account.

3.1.4. eXtreme Gradient Boosting XGboost is a
scalable solution that is capable of dealing with sparse
data and can be used for both classification and
regression (Chen and Guestrin, 2016). Similar to the
previously mentioned GBM, the XGboost algorithm
also implements the tree boosting technique in which
a set of stumps is combined sequentially, each stump
corrects the errors of the previous one and the
combination of many stumps create a more accurate
model. XGboost also offers regularization which is
a technique used to prevent overfitting and improve
model generalization. In addition to that, the algorithm
supports parallel and distributed computing, which may
decrease training time.

3.1.5. K-Nearest Neighbors KNN is a supervised
classification technique that consists on classifying the
samples according to nearby samples with respect to a
distance metric, such as the Euclidian distance. The

parameter k is defined by the user and determines
the k-nearest samples that the algorithm will take into
account when classifying a new sample. The class that
most appears inside the limit of k is the one attributed to
the unclassified sample (Dudani, 1976).

3.1.6. Naive Bayes Based on the Bayes theorem, the
NB classifier takes into account the class and conditional
probabilities, which are calculated in the training phase,
and these probabilities are used to classify new samples
(Taheri and Mammadov, 2013). This classifier makes
the assumption that all features are independent from
each other, that is, the presence or change of a given
feature doesn’t interfere with any other. In summary,
the NB classifier is based on, given the training data,
how probable a record is of belonging a given class.

3.2. Optimisation of hyperparameters and
feature selection engineering

Most ML models have different parameters to
be configured, which are commonly named as
hyperparameters. To avoid manual combination of these
hyperparameters, automatic search algorithms have
been applied to facilitate the task, such as grid search.
According to Wu et al. (2019), the grid search technique
is a method for hyperparameter optimization that trains
and evaluates a model with all the combinations of
parameters in a given search space. The technique
returns the best hyperparameters based on a predefined
metric. We chose this technique to ensure we find the
best possible configuration of hyperparameters given a
limited search space.

In addition to hyperparameter optimization, feature
selection techniques have been widely used to deal with
the high-dimensionality of the problems, helping to
understand the data and reducing the resources needed
for computation (Chandrashekar and Sahin, 2014).
Feature selection aims to select a subset of features from
the data set that can efficiently describe the data in order
to provide good classification results (Chandrashekar
and Sahin, 2014). According to Li et al. (2017), the
three categories of the feature selection are: wrapper,
filter, and embedded. The wrapper approach runs in two
steps: looking for a subset of attributes and evaluating
the attributes that have been chosen. It keeps running
until a stop condition is satisfied. We chose the wrapper
approach for this study because it trains a model for each
subset of attributes, evaluating its performance based
on a metric, usually accuracy. We did not set any
stop condition, therefore, the algorithm checked every
possible subset of attributes and returned the one with
the highest accuracy.
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In this work, we compare the performance of
four different feature selection techniques: Sequential
Foward Selection (SFS), Sequential Foward Floating
Selection (SFFS), Sequential Backward Selection
(SBS), Sequential Backward Floating Selection (SBFS)
(Wah et al., 2018; Zongker and Jain, 1996). The
Sequential Feature Algorithm (SFA) is a search
algorithm that selects the feature set following a
bottom-up search procedure. The algorithm starts from
an empty set and fills this set iteratively. SFFS is
an extension of the SFS algorithm that adds a new
feature using the SFS procedure followed by successive
conditional deletion of the least significant feature in
the feature set. SBS starts with the full feature set and
iteratively removes the least significant features until
some closure criteria are met. SBFS is an extension of
the SBS technique and removes irrelevant features by
selecting a subset of features from the main attribute set.

3.3. Evaluation Metrics

Evaluation metrics come with different purposes
and make different measurements. This work utilizes
the accuracy, precision, recall, and F1-score metrics,
explained below. True Positive (TP) are the elements
that are positive in reality and were correctly identified
as such by the model. False Positive (FP) are the
elements that are false in reality and were incorrectly
labeled as positive by the model. Similarly, True
Negative (TN) are negative elements correctly identified
as negatives by the model, and False Negative
(FN) are positive elements incorrectly labeled as
negative by the model. These variables compose
the confusion matrix, which is a matrix composed of
predicted positive/negative and actual positive/negative
in different axis, the main diagonal consists of the TP
and FN.

Accuracy measures the correctly classified samples
divided by both the correctly and incorrectly classified
samples. The accuracy is calculated by the following
equation:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is a metric used to calculate the proportion
of cases classified as positive and that are positive in
reality. It gives a measure of how well the model
performs with respect to the positive cases. It is
calculated by the following equation:

precision =
TP

TP + FP
(2)

Recall, also known as sensitivity, represents the
proportion of the positive cases in reality that were
classified as positive by the model. Its equation is as
follows:

recall =
TP

TP + FN
(3)

To better analyze the performance of a model one
can utilize other metrics in addition to accuracy, such as
F1-Score. This metric is the harmonic mean between
recall and precision, as presented in equation:

F1− score = 2× precision× recall

precision+ recall
(4)

4. Materials and Methods

4.1. Data set

In this work, we use the same data set used by Tabosa
de Oliveira et al. (2022), which is publicly available1.
This data set contains notifications of Dengue and
Chikungunya from the State of Amazonas and the
City of Recife, Pernambuco, Brazil, retrieved from
the Notification Information System (from Portuguese
Sistema de Informação de Agravo de Notificação
(SINAN)), named SINAN-db, and the Open Data Portal
of Recife, named Recife-db, respectively. We did not
include Zika in this work because there were no data
available on this disease.

The SINAN-db contains 57,445 records and 146
attributes and the Recife-db contains 83,073 records and
124 attributes. Figure 1 illustrates the pre-processing
made in order to integrate both data sets. Attributes
that are available in only one of the data sets were
disregarded for the integration.

Figure 1. Data set preprocessing steps, based on

Tabosa de Oliveira et al., 2022

1https://data.mendeley.com/datasets/bv26kznkjs/1
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Only records that were confirmed by clinical
diagnoses were selected and records that did not refer
to signs or symptoms were discarded. Attributes with
more than 50% missing data were removed. A new
attribute (DIAS) was created and describes the time (in
days) from the onset of these symptoms to the date of
reporting could be included in the models.

After coding attributes as numbers, duplicates were
removed and missing values for each attribute were
replaced with “not informed”. Records with missing
values for all attributes were also removed. Finally,
the cleaned and integrated data set consisted of 17,948
records in the Dengue class, 5,724 in the Chikungunya
class, and 16,704 in the Inconclusive class, with a total
of 40,376 records with 27 attributes.

To balance the data set, the random undersampling
technique was performed. After balancing, the data set
contained 17,172 records, 5,724 for each of the three
classes. The 27 attributes are described in the Table 1.

Table 1. Data set attributes after preprocessing

Attribute Description
NU IDADE N Patient age

CS SEXO Pacient sex
CS GESTANT Gestational Age of the

Patient (Quarter),
in case CS SEXO = F

CS RACA Patient Race
CS ZONA Residence area

FEBRE Symptom - Fever
MIALGIA Symptom - Myalgia

CEFALEIA Symptom - Headache
EXANTEMA Symptom - Rash

VOMITO Symptom - Vomiting
NAUSEA Symptom - Nausea

DOR COSTAS Symptom - Back Pain
CONJUNTVIT Symptom - Conjunctivitis

ARTRITE Symptom - Arthritis
ARTRALGIA Symptom - Arthralgia
PETEQUIA N Symptom - Petechiae

LACO Symptom - Tourniquet test
DOR RETRO Symptom - Eye pain

DIABETES Pre-existing disease - Diabetes
HEMATOLOG Pre-existing disease -

Hematological diseases
HEPATOPAT Pre-existing disease - Liver diseases

RENAL Pre-existing disease - Kidney disease
HIPERTENSA Pre-existing disease - Hypertension
ACIDO PEPT Pre-existing disease -

Peptic acid disease
AUTO IMUNE Pre-existing disease -

autoimmune disease
DIAS Days that the pacient is

feeling the symptoms
CLASSI FIN Final patient classification

4.2. Models’ design

In this work, we proposed two different
binary models. The first model classifies cases

between Arbovirosis (Dengue or Chikungunya) and
Inconclusive, and the second one classifies cases
between Dengue and Chikungunya.

The binary models were optimized using the grid
search technique with cross validation (k = 10). The
data set was divided into a train set (70% of the data
set) and used in the model optimization phase. The test
set (remaining 30%) was used to evaluate the models.
Table 2 presents the hyperparameters used in the grid
search. Along with the grid search, SFA techniques
(features selection) were also performed, so that for
each combination of the model in the grid search, the
four SFA techniques (SFS, SFFS, SBS, and SBFS) were
executed. The optimization metric used was accuracy,
because it presents an overview of the performance of
the model. As the data set used in the experiments
is balanced, accuracy is a good and fair metric for
evaluation.

Table 2. Parameters used in grid search

Model Parameters Values

learning rate [0.36, 1, 1.5]Adaboost n estimators [25, 50, 100]
criterion [gini, entropy]RF n estimators [50, 100, 200]
max depth [1, 3, 5]GBM n estimators [50, 100, 200]
eta [0.3, 0.5]XGboost max depth [2, 6]
metric [euclidean, manhattan]
n neighbors [2, 5, 10]KNN
weights [uniform, distance]

At the end, the best combination of hyperparameters
was obtained along with the smallest subset of attributes
for each ML model. Figure 2 presents the methodology
used.

As the models had different inputs and outputs, at
the time of training, the following change was made
to the data set: for the model that classifies between
Arbovirosis and Inconclusive, only half of the data from
Dengue and Chikungunya classes were selected (2,862
records of each class), and all data of the Inconclusive
class were selected (5,724 records), maintaining the
balance of the data set. For the model that classifies
between Dengue and Chikungunya, only data from
Dengue and Chikungunya classes were selected (5,724
records of each class).
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Figure 2. Design flowchart of binary models with grid search with SFA. Source: The authors

5. Results

5.1. Binary model: Arbovirosis and
Inconclusive

Table 3 shows the grid search results for this binary
model considering the accuracy metric. The GBM
presented the best results with 74.22% accuracy, but it is
possible to notice a small deviation in the other models.
As for the subset of attributes, RF and GBM used the
smallest number of attributes, 6 and 8, respectively.
XGboost and Adaboost used the largest number of
attributes, 17 each. Although the accuracy values vary
little, we consider the number of attributes to be an
important factor in the selection of the model.

Table 3. Results of the grid search for the binary

models that classify between Arbovirosis and

Inconclusive
Model Hyper parameters Qtd. Att SFA Accuracy

learning rate: 0.36Adaboost n estimators: 25 17 SBFS 0.7286

criterion: entropyRF n estimators: 100 6 SBS 0.7298

max depth: 1GBM n estimators: 50 8 SBS 0.7422

eta: 0.3XGboost max depth: 2 17 SBS 0.7353

metric: euclidean
n neighbors: 2KNN
weights: uniform

1 SBS 0.7022

NB - 8 SBFS 0.7293

Table 4 presents the attributes selected through the
feature selection for each model. It is interesting to
observe that the ARTRALGIA (arthralgia, joint pain) is
the only attribute selected by all models. In addition,
the attributes CS RACA and ARTRITE are also very
common, being selected by all models, except the KNN.

Table 5 presents the models performance,
considering accuracy, recall, precision and F1-score.
The XGboost model outperformed all other models.

Table 4. Attributes select by the SFA techniques for

the binary models that classify between Arbovirosis

and Inconclusive
Model Attributes

AdaBoost

NU IDADE N, CS RACA, FEBRE, EXANTEMA, VOMITO,
CONJUNTVIT, ARTRITE, ARTRALGIA,
LACO, DOR RETRO, DIABETES, HEMATOLOG,
HEPATOPAT, RENAL, HIPERTENSA, ACIDO PEPT,
AUTO IMUNE

RF CS RACA, FEBRE, MIALGIA, EXANTEMA, ARTRITE,
ARTRALGIA

GBM NU IDADE N, CS RACA, FEBRE, MIALGIA, EXANTEMA,
DOR COSTAS, ARTRITE, ARTRALGIA

XGboost

NU IDADE N, CS SEXO, CS GESTANT, CS RACA, CS ZONA,
FEBRE, MIALGIA, EXANTEMA, VOMITO,
NAUSEA, DOR COSTAS, ARTRITE, ARTRALGIA,
LACO, DOR RETRO, DIABETES, DIAS

KNN ARTRALGIA’

NB CS SEXO, CS GESTANT, CS RACA, FEBRE, EXANTEMA,
DOR COSTAS, ARTRITE, ARTRALGIA

However, it is interesting to note that the RF model
presented similar results to the XGboost. The model
with the worst performance was the KNN, which may
indicate that due to the high similarity in the data, this
model may not be suitable for arbovirus classification.

Table 5. Comparative result of classification

between Arbovirosis and Inconclusive

Model Accuracy Recall Precision F1 score

Adaboost 0,7226 0,7228 0,7229 0,7226
RF 0,7316 0,7330 0,7399 0,7300

GBM 0,7106 0,7108 0,7108 0,7106
XGBoost 0,7415 0,7423 0,7442 0,7411

KNN 0,6876 0,6884 0,6899 0,6872
NB 0,7191 0,7199 0,7221 0,7186

The results of the Arbovirosis class are presented in
Table 6. In this case, the Adaboost model obtained the
best recall, 70.26%, however in other metrics, precision
and F1-score, RF and XGboost obtained better results.
We highlight that once again the KNN obtained the
worst results.

The results of the Inconclusive class are present in
Table 7. The RF model obtained the best recall with
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Table 6. Results of Arbovirosis class

Model Recall Precision F1 score

Adaboost 0,7072 0,7363 0,7214
RF 0,6436 0,7888 0,7090

GBM 0,6991 0,7223 0,7105
XGBoost 0,6928 0,7745 0,7314

KNN 0,6407 0,7148 0,6757
NB 0,6665 0,7523 0,7068

82.19%, but in the other metrics, it obtained similar
results to the XGboost, as well as there was little
variation with the other models. We emphasize that the
subset of attributes used by RF is the smallest according
to Table 3, while XGboost and Adaboost have the largest
number of attributes.

Table 7. Results of Inconclusive class

Model Recall Precision F1 score

Adaboost 0,7385 0,7095 0,7237
RF 0,8219 0,6909 0,7508

GBM 0,7225 0,6993 0,7107
XGBoost 0,7917 0,7140 0,7508

KNN 0,7361 0,6649 0,6987
NB 0,7734 0,6919 0,7304

5.2. Binary model: Dengue and Chikungunya

Table 8 presents the results of the grid search
for binary models that classify between Dengue and
Chikungunya. The GBM model presented the best
performance, with 77.4% accuracy, although none of the
other models presented large variation. Concerning the
subset of attributes, Adaboost and GBM used the largest
number of attributes, 23, followed by the XGboost, 22.
On the other hand, KNN and RF used the smallest subset
of attributes, with 4 and 11 attributes, respectively.

Table 9 presents the attributes selected by each
model. The attribute ARTRALGIA, similar to the
previous binary model, is the only attribute selected by
all models. The attributes CS RACA, HEADACHE,
ARTHRITIS, LACO and DOR RETRO are also very
common and are used in all models except KNN.

Table 10 presents the result of accuracy, recall,
precision, and F1score of the binary models that classify
between Dengue and Chikungunya. With the exception
of the KNN model, the results are very similar, around
75-76% for all metrics. The KNN model stood out for
having the worst results, around 65%. It is interesting
to remember that it was the model that used the
smallest subset of attributes, only four, probably causing

Table 8. Results of the grid search for the binary

models that classify between Dengue and

Chikungunya

Model Hyper parameters Qtd. Att SFA Accuracy

learning rate: 0.36Adaboost n estimators: 25 23 SFFS 0.7517

criterion: giniRF n estimators: 50 11 SBFS 0.7650

max depth: 1GBM n estimators: 200 23 SBS 0.7740

eta: 0.3XGboost max depth: 2 22 SFS 0.7725

metric: euclidean
n neighbors: 2KNN
weights: uniform

4 SBFS 0.7504

NB - 6 SBFS 0.7432

Table 9. Attributes select by the SFA techniques for

the binary models that classify between Dengue and

Chikungunya
Model Attributes

AdaBoost

NU IDADE N, CS SEXO, CS GESTANT, CS RACA, CS ZONA,
FEBRE, CEFALEIA, EXANTEMA, NAUSEA, DOR COSTAS,
CONJUNTVIT, ARTRITE, ARTRALGIA, LACO, DOR RETRO,
DIABETES, HEMATOLOG, HEPATOPAT, RENAL,
HIPERTENSA, ACIDO PEPT, AUTO IMUNE, DIAS

RF
CS RACA, MIALGIA, CEFALEIA, NAUSEA, DOR COSTAS,
ARTRITE, ARTRALGIA, PETEQUIA N, LACO, DOR RETRO,
HIPERTENSA

GBM

NU IDADE N, CS SEXO, CS GESTANT, CS RACA, CS ZONA,
FEBRE, MIALGIA, CEFALEIA, EXANTEMA, VOMITO,
NAUSEA, DOR COSTAS, CONJUNTVIT, ARTRITE, ARTRALGIA,
LACO, DOR RETRO, HEMATOLOG, HEPATOPAT, RENAL,
ACIDO PEPT, AUTO IMUNE, DIAS

XGboost

CS SEXO, CS RACA, CS ZONA, FEBRE, MIALGIA,
CEFALEIA, EXANTEMA, NAUSEA, DOR COSTAS, CONJUNTVIT,
ARTRITE, ARTRALGIA, PETEQUIA N, LACO, DOR RETRO,
DIABETES, HEMATOLOG, HEPATOPAT, HIPERTENSA, ACIDO PEPT,
AUTO IMUNE, DIAS

KNN MIALGIA, CONJUNTVIT, ARTRALGIA, HEMATOLOG
NB CS RACA, CEFALEIA, ARTRITE, ARTRALGIA, LACO, DOR RETRO

underfitting. This could be the reason for these bad
performance.

Table 11 presents the results of recall, precision and
F1-score for the Dengue class. The XGboost model
presented the best performance, achieving results above
70%, although all the models, with the exception to
the KNN, performed very similar. KNN model again
presented the worst results, achieving 38% in recall,
reinforcing the possibility of underfitting.

Table 10. Comparative result of classification

between Dengue and Chikungunya

Model Accuracy Recall Precision F1 score

Adaboost 0,7613 0,7605 0,7636 0,7603
RF 0,7671 0,7663 0,7695 0,7662

GBM 0,7560 0,7554 0,7575 0,7553
XGBoost 0,7799 0,7794 0,7806 0,7795

KNN 0,6405 0,6365 0,6830 0,6143
NB 0,7493 0,7490 0,7496 0,7491
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Table 11. Results of Dengue class

Model Recall Precision F1-score

Adaboost 0,7095 0,7847 0,7452
RF 0,7169 0,7902 0,7518

GBM 0,7136 0,7731 0,7422
XGBoost 0,7503 0,7915 0,7704

KNN 0,3864 0,7673 0,5140
NB 0,7284 0,7538 0,7409

Table 12 presents the results for recall, precision
and F1-score for the Chikungunya class. The XGboost
model was the best in precision 76% and F1-score 78%
metrics. KNN model performed the best result in recall,
with 88%, but it is also the model with the worst result in
precision 59%, and F1-score 71%. In general, all models
presented similar performance.

Table 12. Results of Chikungunya class

Model Recall Precision F1-score

Adaboost 0,8115 0,7425 0,7755
RF 0,8155 0,7483 0,7808

GBM 0,7971 0,7419 0,7685
XGBoost 0,8086 0,7698 0,7887

KNN 0,8865 0,5987 0,7147
NB 0,7696 0,7453 0,7573

5.3. Discussion

It was observed that the number of attributes selected
for each model varied widely. In the binary model
that classifies between Arbovirosis and Inconclusive,
Adaboost and XGboost models presented the highest
number of attributes, 17. We highlight RF and GBM
models with 6 and 8 attributes, respectively. KNN and
NB models had one and 8 attributes, respectively. The
result of KNN shows possible underfitting due to the
minimum number of attributes for classification.

We have a slightly better result in the binary model
that classifies between Dengue and Chikungunya. Thus,
we highlight Adaboost, GBM, and XGboost models
as they presented the highest number of attributes,
varying between 22 and 23 attributes, but with minor
variations in accuracy. The RF model used 11 attributes
and presented a very similar result to Adaboost, GBM
and XGboost models, showing that a high number of
attributes is not a prerequisite for good accuracy.

In both binary models, XGboost was the model
that presented the best results, but using the most
number of attributes. This is a crucial aspect to
consider in the evaluation to determine the model for the

production environment, taking good results and good
interpretability into account.

The overall and individual results of the binary
model that classifies between Arbovirosis and
Inconclusive varied between 69% and 82%, illustrating
the difficulty of this classification. This may have been
caused by the high variability of Dengue, Chikungunya,
and Inconclusive cases, and the small amount of data
used to train the models. In this model, the Inconclusive
class achieved better recall results, indicating that the
model is better at predicting when a case is not an
arbovirus case.

In the binary model that classifies Dengue and
Chikungunya, the Chikungunya class scored a better
recall at 80% binary result, indicating that the
Chikungunya class can be predicted better than Dengue.

For the sake of a simple comparison with models
proposed by Tabosa de Oliveira et al. (2022), consider
their GBM model, that presented the best result for
the Dengue class, with 48% recall. In our work, our
GBM model outperformed the models proposed by
Tabosa de Oliveira et al. (2022), presenting 71.36%
recall, an improvement of 23%. Another important point
to be highlighted is the number of attributes used by
both models. In Tabosa de Oliveira et al. (2022), the
RF, GBM and XGboost models selected 16, 18 and 20
attributes, respectively. In our work, when classifying
Dengue and Chikungunya, the RF model used only
11 attributes with promising results. However, it is
worth mentioning that approaches are different, since
Tabosa de Oliveira et al. (2022) cover a multi-class
problem, which increases the level of complexity for
the models learning; and in our work, we solve a binary
problem with two independent models in order to reduce
this complexity present in Tabosa de Oliveira et al.
(2022).

Finally, we highlight that considering the number of
features used in each binary model and results of recall,
precision, and f1-score, the RF tree-based model can
be considered to be used in production due to its good
results and interpretability.

6. Conclusions and next steps

In this work, two binary models were proposed
to classify arboviruses: (i) a model that classifies
between Arbovirosis and Inconclusive and (ii) a model
that classifies between Dengue and Chikungunya. Six
models were evaluated: Adaboost, RF, GBM, XGboost,
KNN and NB. A cross-validated grid search was
performed for each model for the hyperparameter
optimization, and the feature selection with the SFA
technique was also applied. The XGboost and RF
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models showed the best results, taking into account the
number of attributes and performance.

The main contribution of this work is the exclusive
usage of clinical data and the proposal of a binary
approach as an alternative to decrease the complexity
of a multi-class classification, as done by Tabosa
de Oliveira et al. (2022). We highlight that our binary
model required less attributes to obtain similar results
of previous work. In addition to that, one of our
models achieved better performance for the Dengue
class compared to Tabosa de Oliveira et al. (2022).

The RF was the model that presented promising
results with the lowest numbers of attributes. According
to the results, the binary models may be an exciting
option to help classify these arboviral diseases. Our
results showed that it is possible to make a good
classification using only clinical data in addition to
the inherent challenges. Our models can be used
as a low-cost, fast-paced alternative and would be
helpful in a resource-limited setting where only patient
information obtained at the health facility is available.
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