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Abstract

This paper investigates both from an empirical and
a systems-based perspective, how surrounding textual
information can be leveraged towards the mitigation of
Autonomous Vehicle (AV) and self-driving cars Global
Positioning System (GPS) signal spoofing attacks.
The paper presents and proposes methods of how
AVs and self-driving cars can extract, as they travel
along a trajectory, surrounding textual information
through machine-learning based Scene Text Recognition
(STR). The paper researches and proposes geospatial
models which can be applied to the extracted textual
information in order to build a text-based geolocation
system for the purposes of validating the received GPS
signal. The ultimate contribution of the paper is to lay
the groundwork towards enhancing the Cybersecurity
of the current and future Autonomous Vehicle and
self-driving car ecosystem by addressing its Achilles
heel, namely insecure and inaccurate geolocation due
to GPS spoofing attacks.

Keywords: GPS spoofing attacks, Scene Text
Recognition, Geolocation, geospatial query

1. Introduction

Global Positioning Signal (GPS) geolocation is
the cornerstone of a myriad of location-based
services and applications. GPS geolocation is
used as the first step towards providing location
based services such as navigating through a city
or issuing location-dependent queries to a location
based service (LBS) database i.e., issuing a k nearest
neighbor (kNN) query which is expected to return the
k points of interest with respect to a given coordinate
[Jiang et al., 2021, Ignacio, 2021, Hort et al., 2021].
Furthermore, the ubiquity of self-driving cars and
Autonomous Vehicles (AV) [Perrine et al., 2020,
Bansal and Kockelman, 2018, Simoni et al., 2019] is

growing as their applications varying from last-mile
delivery [Feng et al., 2021b], to accurate concrete
wall cracking detection [Bohari et al., 2021], and
water quality monitoring/water surface cleaning
[Chang et al., 2021] is ever expanding. Hence, the
growing need for secure and accurate geolocation is of
an utmost societal importance.

1.1. Motivation

Unfortunately, currently deployed civilian mode GPS
technology is identical to the way it was deployed
in 1970’s and it is not secure. Civilian mode GPS
infrastructure assumes a honest threat model without the
presence of any malicious threat actors. Hence, GPS
signal can be falsified to introduce various malicious
payloads and the infrastructure does not have any
built-in countermeasures. For example, GPS signal
can be pre-recorded at one location and can be
replayed by malicious threat agents at another location
to mislead any receiving devices into believing that
they are located at the coordinates where the GPS
signal was pre-recorded [Seco-Granados et al., 2021].
Alternatively, it has been shown that adversaries can
build a portable spoofer with low costs (about $225),
which can be utilized to generate spoofed GPS signals
to mislead any receiving devices into believing that they
are located at alternate coordinates [Zeng et al., 2018].
Therefore, research which proposes mitigation solutions
towards secure and accurate GPS geolocation is of high
importance and timely relevance.

1.2. Contribution

In this paper we address GPS signal spoofing by
researching and investigating the problem, both from
an empirical and systems-based perspective, of how
surrounding textual information can be meaningfully
leveraged towards secure and accurate geolocation. Our
proposed mitigation solution aims to overcome the
above challenges and since it requires no modifications
of the current GPS infrastructure, it has the potential
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for a higher societal and industrial adoption rate. The
contributions of this paper can be summarized as
follows. First, the authors define the GPS spoofing
adversarial threat model with respect to Autonomous
Vehicles and self-driving cars. Second, the authors
research and investigate methods of how Autonomous
Vehicles can extract, through machine-learning based
Scene Text Recognition (STR), textual information from
surrounding scenes as they travel along a trajectory
T . Third, similar to how a human driver/operator
leverages surrounding textual information in order
to validate the coordinates/location shown in GPS
navigation system, the authors research and propose
geospatial and machine-learning models which leverage
the extracted textual information in order to build a
text-based geolocation system to validate the received
GPS signal. Fourth, the authors evaluate the proposed
methods empirically in a laboratory setting. Fifth, the
authors propose a pathway towards a systems-based
real-world setting deployment.
The ultimate contribution of this paper is to lay the
groundwork on how one can leverage surrounding
scene textual information in order to verify the GPS
location of self-driving/Autonomous Vehicles. Section.
2.1 provides the system model and Section. 2.2
describes the assumed adversarial threat model. Section.
3 provides details of the state-of-the art approaches
in STR and provides details of our GPS signal
spoof mitigation techniques through STR including
preliminary results. Lastly, Section 4 provides
the pathway towards investigating, comparing and
contrasting, from a systems-based deployment, in a
real-world setting, the degree of accuracy and efficiency
of the proposed text-based geolocation models towards
the mitigation of the GPS spoofing attacks.

2. Model

In this section we introduce the system model and the
assumed adversarial threat model. We then proceed
to elaborate on the research steps towards the ultimate
goal of enhancing the Cybersecurity of the current and
future Autonomous Vehicle ecosystem by mitigating
GPS signal spoofing attacks through surrounding textual
information.

2.1. System Model

Our assumed system model is based on the economy
of mechanism principle [CISA, 2013] which takes
into account the cost, deployment overhead,
effectiveness, and robustness of the proposed
system. A critical aspect of our contribution
is that unlike other mitigation countermeasures

which require severe alterations of either the GPS
satellites, GPS receivers, and ground infrastructure
[Kuhn, 2004, Yan et al., 2008, Wesson et al., 2012,
Jansen et al., 2018, Moser et al., 2016,
Nielsen et al., 2011, Wesson et al., 2011], our assumed
system model does not require modifications of the
currently deployed GPS system, hence it is more
likely to be adopted by the Autonomous Vehicle
(AV) and self-driving car industry. Other navigation
systems such as inertial navigation [Woodman, 2007]
are orthogonal to our research since they are mainly
used for aircraft and ships navigation, along with
tactical and space missions. Hence, while other GPS
spoofing countermeasures might be feasible as stated in
[Zeng et al., 2018], the methods provided in this paper
are focused on providing countermeasures based on
analysis of the surrounding scene textual information.

Figure 1. Overview of our proposed system model.

Our proposed methods, based on our proposed system
model (Fig. 1), are contingent to the following
assumptions (i) we assume that in the future all
autonomous vehicles would be equipped with an
overhead-mounted 360°panoramic camera similar to
how Google StreetView cars and (ii) a mobile internet
connection is available in order to issue geotextual
queries and receive replies (Section 3.2.3), and a
modern end-user computing system consisting ample
CPU and RAM would be available as on-boarding
computing facility in the autonomous vehicle. Our
optimistic assumptions are based in the fact that the
cost of 360°panoramic cameras is projected to fall
while their accuracy is expected to increase in the near
future [Barazzetti et al., 2018, Sun and Zhang, 2019].
Self-cleaning camera technology has been explored in
[Lee et al., 2017] which can lead to excellent image
capturing capabilities. Furthermore, ample on-board
computing capabilities already exist in self-driving cars
[Chakaravarthy et al., 2021].
Lastly, our proposed system model assumes the
existence of an honest-and-trusted party (industry
partner) which has the ability to accurately represent
virtually the physical surroundings of the real world.
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Specifically we assume that the honest-and-trusted party
has the ability to collect, align, and collate imagery
taken from the physical world and represent it into
a database of geo-tagged images [Inc., 2021b] which
can be publicly queried. In our model we assume
that the honest-and-trusted party is Google and the
virtual representation of the physical surroundings is
represented through Google StreetView [Inc., 2021c].
The StreetView geo-tagged images database is utilized
both in our empirical evaluations as well as in our
real-world evaluations. Specifically, AVs will utilize the
real-time 3-D 360°images to extract textual information
and use it to geolocate themselves in the region by
matching their real-time location’s surroundings textual
information to the textual information of the StreetView
database.
The proposed model is meant at detecting GPS spoofing
on autonomous vehicles operating in environments with
ample scene signage such as Manhattan, NYC. As
hinted on in Section 2.1, the accuracy of the proposed
model increases in environments with more surrounding
scene signage. It is one of our future research goals
to analyze the accuracy of the system based on the
amount of surrounding scene signage in order to derive
a baseline of the system’s accuracy.

2.2. Adversarial Threat Model

We now provide a brief overview of the current GPS
technology, then define the capabilities, goals and
limitations of the adversary.

2.2.1. Global Positioning System (GPS)
GPS is a space-based radio navigation system
composed of (i) space segment consisting
of 31 atomic clock synchronized satellites
broadcasting the GPS signal while orbiting in
medium Earth [Petropoulos and Srivastava, 2021,
Hofmann-Wellenhof et al., 2012] (ii) control segment
consisting of worldwide monitoring and control stations
that operate and maintain the proper orbit of the
satellites in medium Earth (iii) user segment which
receives the broadcast GPS signal and calculates
its position through a triangulation of 3 orbiting
satellites. GPS signal is provided to civilian and
military concurrently through the same satellites, yet
only the military signal is encrypted in order to provide
authenticity of the signal and avoid GPS spoofing
[Maps., 2021].

2.2.2. Adversarial Capabilities We assume that the
adversary has access to a portable GPS spoofer which

can be put together from many off-the-shelf components
such as a HackRF One-based front-end, a Raspberry
Pi, a portable power source and an antenna. The
financial cost to purchase all the required components
is approximately $225 [Zeng et al., 2018]. We assume
that the adversary can (i) either attach the GPS spoofer
to the Autonomous Vehicle (AV) or (ii) has the ability to
maintain close proximity to the victim AV by tailgating.

2.2.3. Adversarial Goal(s) and Limitations In this
paper we assume that the ultimate adversarial goal is to
purposely deviate the AV in order to launch the payload
of the attack i.e., ambush, rob, steal the AV and its
contents. However, the targeted deviation attack is not
limited to those types of payloads. For example, a
GPS spoofing attack can be feasibly launched onto a
busy section of a city in the hopes of luring end-users
as they travel in their self-driving car and who are
querying, via their self-driving car’s smart-dashboard,
a location-based system (LBS) via specific keywords
such as ”restaurants nearby” or ”gas stations nearby”.
The payload in this case would be to increase
customer foot traffic and financial revenue at the
geographical location/region specified by the spoofed
GPS signal since a k nearest (kNN) query would
be presented to the LBS based on the spoofed GPS
coordinates. Specifically, in the near future, self-driving
and Autonomous Vehicles (AVs) are envisioned to
be programmed to take tourists, who are oblivious
to their exact coordinates/location, on individualized
and customized tours of major tourist destinations
[Ribeiro et al., 2021, Webster and Ivanov, 2019]. The
attack in this case consists of spoofed GPS signals,
targeting such tourist-carrying AVs, who might be
searching, through their AVs smart-dashboard, for
things such as ”food near me”, ”bike rentals”, ”souvenir
shop”. The payload of such an attack is to deviate
the AVs in order to increase tourist foot traffic onto an
”attacking radius”.
A sample deviating attack is shown in Fig.2 and Fig.3.
Fig.2 shows the original intended route with the source
being ”Merrick Bl/115 Ave” and the destination being
”St. John’s University Queens Campus”.
In Fig. 3 the large red X identifies the location where
the GPS spoofed signal is introduced, and the attacking
radius represents the geographical region where the
malicious payload (ambush, robbery, theft, financial
gain) is executed. Upon receiving the spoofed GPS
signal, the victim is oblivious to the fact that it is
being re-routed inside the attacking radius. Throughout
this paper we assume that the threat agents do not
have the capability to either (i) jam the communication
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Figure 2. Original route.

systems of the AVs and (ii) destroy/vandalize neither the
overhead-mounted 360°panoramic camera nor the AV’s
computing capabilities (iii) significantly modify/destroy
the textual signs in the surrounding target area.
Destruction/modification of the overhead camera will
reduce the attack to a trivial one hence we do not address
such in the paper. Furthermore, one of the assumptions
we make is that the geotagged-images database shown
in Fig 1 is kept up to date frequently i.e., any changes
in the physical environment such as new street signs
or awnings etc, are reflected in the geotagged-images
database within days.

Figure 3. Attacked route.

3. Proposed Research

3.1. Textual Information Extraction through
STR

The ultimate goal of the paper is to leverage
surrounding textual information and utilize it as
a mitigative countermeasure towards GPS spoofing
attacks. Therefore, in a similar fashion to how a human

driver/operator utilizes surrounding textual information
in order to validate the coordinates/location shown in
a GPS navigation system, the goal here is to utilize
STR toolkits as a black box component in order to
accurately detect and extract textual information from
surrounding 360°panoramic imagery. The extracted
textual information would then be utilized as input to our
text-based geolocation models. For example, a human
operator who relies on his eyesight will sporadically
cross-reference and verify his GPS navigation system
location by simply looking around in his immediate
surrounding. However, prior to any coordinate/location
verification, the human operator must consciously
extract surrounding textual information. Hence, as
our first step, our goal is to (i)evaluate the black
box text-extraction models which will be utilized in
our mitigative research approach (ii) select the highest
accurate models.

3.1.1. Technical Challenges and State of the Art
The main challenge is related to the accuracy of the
selected black box textual extraction tool since street
signs, awnings etc., come in various fluid shapes, size,
colors, complex backgrounds, various fonts, imperfect
imaging conditions, and viewing angles. For example,

(a) Street sign (b) St. John’s University text
reference

Figure 4. Sample imagery taken at coordinates

40.721406, -73.790383 yielding texts KILDARE RD,

UTOPIA PKWY, ST. JOHN’S UNIVERSITY

in Fig. 4, the adopted black box textual extraction
method is expected to output the same text as what
a human operator is able to extract and infer via his
eyesight under optimal weather conditions. Therefore,
the first challenge is to identify a black box textual
extraction tool which has a very high accuracy rate under
any weather and/or driving condition. While we assume
that the Google StreetView 360°panoramic imagery
is taken in optimal weather and lighting conditions,
in a real world setting, the overhead 360°panoramic
overhead-mounted camera would be operating under all
sorts of lighting and weather conditions.
Text recognition in natural scenes has drawn the
attention of researchers and practitioners, as indicated
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by the 2021 ICDAR Robust Reading Competitions
[Competition., 2021] which focus on scene text
recognition. An end-to-end STR system includes many
components such as text detection, text localization
and verification, text segmentation, text recognition and
post-processing steps [Li et al., 2017, Du et al., 2021,
Wang et al., 2021, Feng et al., 2021a]. The ultimate
goal of a STR is to transcribe all text regions from a
target image into a target string sequence. The two most
heavily used state-of-the-art end-to-end STR platforms
are Google Cloud Vision (GCV) [Inc., 2021a] and the
open-source Tesseract [Inc., 2021d]. In our case, from
an applied systems perspective, we are concerned with
the transcription accuracy and transcription speed of
each platform when utilized against randomly selected
images drawn from StreetView and/or real-world
settings. Ultimately, our goal is to mitigate, in
real-time, the GPS signal spoofing for self-driving and
Autonomous Vehicles (AVs) traveling at potentially
high speeds.

Figure 5. Sample Manhattan 1km×1km target area.

3.1.2. Approach: Evaluate Empirically and select
a black box STR model As the first step, we were
interested into evaluating empirically the transcription
accuracy and speed of Google Cloud Vision vs Tesseract
in order to choose the proper black box end-to-end STR.
The input to both Google Cloud Vision and Tesseract
will come from randomly selected images drawn from
StreetView database by querying for images along a
1km×1km area of Manhattan as shown in Fig. 5. The
transcribed textual output will allow us to compare the
transcription accuracy of both Google Cloud Vision and
Tesseract. We will also measure the transcription speed
of both candidate black box STRs as the images are
being processed and transcribed.

3.1.3. Preliminary Work We have identified our
target region towards the evaluation of the two candidate
end-to-end STRs. The shaded square in Fig. 5 shows

the target 1km×1km Manhattan region from where we
randomly sampled the StreetView database geotagged
images. The lat/lon of the bounding box are (top left)
40.751,-73.997 and (bottom right) 40.742,-73.985.

Figure 6. Sample image captured at lat:40.749092,

lon:-73.993929.

We have selected a few preliminary data points
consisting of geotagged images, and have started
experimenting with Google Cloud Vision (GCV).
On average, the transcription accuracy is 96.5%.
However, one of the issues we are running into is
to figure out how to extract textual information in
a human manner through GCV. For example Fig.
6 shows a portion of the panoramic image taken
at lat:40.749092, lon:-73.993929. This corresponds
to the yellow pin of Fig. 5. While a human
should be able to extract the textual information as
”Kaufman Furs”, ”HIMA & PRODI” in our preliminary
work, we are getting tokenized versions of the textual
information such as ”Kaufman”, ”Furs”, ”HIMA”,
”&”,”PRODI”. Hence, while the GCV confidence level
remains very high (96%) in this step, one research
venue would be to modify Tesseract by employing
methods of [Du et al., 2021], [Wang et al., 2021], and
[Feng et al., 2021a] through more meaningful NLP
approaches. One of the challenges presented in this
phase is the side effect of utilizing machine-learning
textual extraction toolkits related to their inability to
discern spurious/temporary text which is not part of
the permanent environment. For example, in Figure
4(a), a human is able to discern spurious/temporary
text ”CLEANERS” which is part of a temporary,
passing white vehicle (van). One possible solution is
to utilize time lapsed images of the same location in
order to identify spurious/temporary text. For example,
if a second or third panoramic image is used from
location lat:40.749092, lon:-73.993929 such that the
images differ in a few hours/weeks worth of time, it
might be possible to identify spurious/temporary textual
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references since the permanent textual references would
appear over and over despite the time lapse.

3.2. Text-based Geolocation

In this part of the paper we are interested into building
a text-based geolocation system where queries are
identified via multiple STR-extracted keywords and the
returned value is a location ID.

3.2.1. Technical Challenges and State of the Art
Assuming that the STR black box component yields
a high transcription accuracy and speed, the most
challenging part is the organization of the textual
information in such a way that it can be utilized to
effectively answer text-based geolocation queries. For
example, as shown in Fig. 7, assuming that the only
surrounding textual information extracted and provided
by the black box STR is ”7-eleven”, when querying a
geotagged image database via the extracted keywords,
the vast results might prohibit an accurate geolocation.

Figure 7. Geolocation via ”7-eleven” keyword.

However, as more textual information is utilized as
part of the set of the querying keywords, the accuracy
of the text-based method increases. Fig. 8 shows
the text-based geolocation attempt when two textual
references are used in this case ”7-eleven” and ”cheeper
peepers”. The research challenge here is to find an
efficient way to index the images based on their textual
information such that the query, consisting of the set of
keywords, returns the image ID that contains the most
keywords.
Most studies [Bouros et al., 2012] [Fan et al., 2012]
[Hu et al., 2015] [Rao et al., 2014] focus on the
use of indexing in order to efficiently find object
pairs that are spatially close and textually similar.
For example, [Fan et al., 2012] designs a spatial
signature and a textual signature for each object
and utilize them to prune dissimilar object pairs.
[Rao et al., 2014] develops two spatial-first and
two text-first indexing schemes. [Hu et al., 2015]

Figure 8. Geolocation via ”7-eleven” and ”cheeper

peepers” keywords.

generates a spatio-textual signature set for each
object and leverage these sets to prune dissimilar
object pairs. [Bouros et al., 2012] propose different
spatial-index-based algorithms. [Pat and Kanza, 2017]
focuses towards the problem of geosocial search over
geotagged posts. [Pat and Kanza, 2017] introduces a
novel two-step search process of (i) quickly finding
relevant areas by using an arbitrarily indexed partition of
the space, and (ii) applying clustering to the geotagged
posts in the discovered areas, to present more accurate
results.

3.2.2. Approach: Develop a baseline text-based
geolocation proof-of-concept model prototype As
the first step towards a text-based geolocation method,
we will test the feasibility and accuracy of querying the
geotagged images database via the surrounding
STR keywords by building a proof-of-concept
prototype. Specifically in this phase we will
utilize the 56k 360°panoramic images drawn from
the StreetLearn dataset [DeepMind and Inc., 2021]
[Hermann et al., 2020] and built a relational model
such that the keys represent the STR keywords, and the
values represent the StreetLearn image IDs where the
text keyword has been observed and extracted.

Figure 9. Relational structure depicting the

proof-of-concept text keywords and Image ID

relationship.

The research goal of our approach is to know if we
can safely rely on textual surrounding information for
accurate geolocation purposes. Note that efficiency
evaluations are not the main focus here. For example,
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Fig. 7 shows that text-based geolocation is not feasible
when only one keyword is observed in the surrounding
scene. However, when two or more keywords are
observed, as shown in Fig. 8 accurate geolocation
can occur. Here we will model the surrounding
textual information geolocation by (i) selecting all the
image IDs via the observed and extracted surrounding
keywords, and (ii) performing an inner joint on the
matching image IDs. Since each image in the
StreetLearn database has been captured 5 to 10 meters
apart from each other, extracted keywords overlap in
several images. This gives us the textual geolocation
proof-of-concept that we seek. A partial relational
structure corresponding to the text-based geolocation
method of Figs. 7 and 8 is shown in Fig. 9. Figs
7 and 8 are respectively generated via the following 2
queries, assuming the existence of the relational table
Images with three columns titled keywords, imageID,
coordinates.

Q1: select coordinates from Images
where keywords="7-eleven";

Q2: select i1.coordinates from
( select * from Images
where keywords="7-eleven")
as i1 inner join
( select * from Images
where title="cheeper peepers")
as i2 on i1.keywords=i2.keywords;

3.2.3. Approach: Model text-based geolocation
through spatial keyword query processing In this
section we model the text-based geolocation as a
spatial keyword query processing problem. Specifically,
we define a geo-textual object to consist of the
geographical location where each 360°panoramic photo
has been captured along with the STR extracted
textual information. We can apply the text extraction
models selected previously and pre-process each of 56K
360°panoramic images from the StreetLearn database
to form a database D of geo-textual objects. Formally,
each spatial object o ∈ D is defined as the pair (o.c, o.k)
where o.c is the 2-dimensional GPS coordinates of
the 360°panoramic image, and o.k is the set of STR
extracted textual information associated with coordinate
o.c. We approach the text-based geolocation problem,
as a modified boolean range query (BRQ). Specifically,
given a query q = ⟨k, r⟩ where k is the set of keywords,
and r is a query spatial region, the results of a boolean
range query q(D), is the subset of D containing all of
the objects such that ∀o ∈ q(D)(o.c ∈ q.r∧ q.k ⊆ o.k).
One observation is that a modified BRQ can be utilized
towards textual-based geolocation under two settings. In
the first setting, the anonymous vehicle (AV) attempts to

perform initial geolocation based on surrounding textual
imagery, similar to what a GPS unit performs during
the first fix GPS geolocation [University., 2020]. In the
second setting, the anonymous vehicle (AV) is aware
of the initial source location and requires geolocation
services as it travels along a priori trajectory T . In
the first setting, one immediate observation is that we
can utilize BRQ by setting the bounding region q.r
to a very large region i.e., entire Manhattan, and q.k
can be specified according to the actual surrounding
textual information. However, one immediate issue with
BRQ is that the results are not ranked based on the
text relevance. In the second setting, when the the
AV requires continuous geolocation services, it would
be beneficial to retrieve contiguous records in order to
minimize the amount of queries sent. Here we will
explore to modify and extend the BRQ query in order
to retrieve ranked results i.e., according to the relevance
of surrounding keywords o.k and utilize the modified
version of BRQ to support the verification of the initial
first-fix GPS geolocation based on surrounding textual
information.

Figure 10. Sample level 3 Hilbert SFC.

With respect to the continuous GPS signal verification,
one immediate observation is that the query should
ideally retrieve, not only the immediate coordinates,
but also surrounding ones. The intuition is to organize
the spatial database in such a way as to retrieve
contiguous spatial objects through one query. For this
setting we will explore the application of two crucial
geospatial structures namely (i) space filling curves
(SFCs) (ii) Voronoi diagram. SFCs have the ability
to map space from 2-D into 1-D hence nearby points
in the SFC line will be guaranteed to be spatially
close in their 2-D representation. A popular SFC is
the Hilbert SFC [Kamel and Faloutsos, 1993] shown in
Fig. 10. Therein, one can notice 64 records, which
are indexed according to their Hilbert SFC ID. We
first studied this problem in [Troja and Bakiras, 2015],
in the context of mobile clients in a database-driven
DSA deployment and we introduced two processing
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Table 1. Sample DB segmentation with 4 segments
D segment 0 D segment 1 D segment 2 D segment 3

0–7 8–15 16–23 24–31
32–39 40–47 48–55 56–63
64–71 72–79 80–87 88–95

96–103 104–111 112–119 120–127
128–135 136–143 144–151 152–159
160–167 168–175 176–183 184–191
192–199 200–207 208–215 216–223
224–231 232–239 240–247 248–255

improvements. First we experimented with various
ways of how to index the spatial database D. We
experimented with different space filling curves which
allowed query retrievals to process spatially consecutive
locations of D. Furthermore, we introduced a spatial
retrieval method where the database D was split into
multiple, k disjoint segments. This method which
allowed us to retrieve k times the number of spatially
close records can be applied towards retrieval of the
required records in order to significantly reduce the
overall amount of issued queries during the traversal of
the trajectory T .
[Christoforaki et al., 2011] proposed several evaluations
of hybrid geo-textual retrieval schemes, which combine
SFCs with inverted index files. Among them
SFC-QUAD is shown to perform best according to
the experimental results in [Christoforaki et al., 2011].
Specifically, SFC-QUAD index is built of an inverted
file where all of the compressed geo-textual objects in
the inverted list is assigned and ordered through their
spatial position in the SFC. Since SFC-QUAD is an
optimized geospatial data structure, we will utilize it
with the goal of improving the baseline proof-of-concept
accuracy and efficiency. By using the SFC-QUAD
data structure, another possible research approach
is to investigate the retrieval optimization based on
partitioning of the database in multiple segments. For
example, a toy geo-textual database D, consisting of
256 geo-textual objects which are indexed through their
SFC ID, can be partitioned into 4 segments according to
Table 1. As shown in Fig. 11, retrieval of consecutive
geo-textual objects can be performed by retrieving the
entire first row containing all of the 4 geospatially close
segments. Ultimately the optimization research question
we are solving in here is: What is the optimal database
segmentation which minimizes the number of queries
with respect to a priori trajectory T ?
Another interesting venue, with respect to the
geo-textual localization, is to create a spatial index
based on the Voronoi diagram [Du et al., 1999]. In
its most basic state, a Voronoi diagram (VD) has the
property to partition space into disjoint polygons based
on a set of arbitrary generators G and to associate all
locations in the plane to its respective closest generator

g ∈ G. Therefore, the nearest neighbor of any query
point which is located inside a Voronoi polygon is the
generator g ∈ G. A sample space partitioning as well
as the nearest neighbor (NN) query through Voronoi
diagram (VD) indexing is shown in Fig. 12.

Figure 11. 4 segments partitioning.

A research pursuit in here would be to build a VD index,
with the generators g being the set of all spatial objects
o in the database D. Continuous Autonomous Vehicle
(AV) geo-textual localization would then utilize not only
the immediate surrounding textual information, but also
the immediate nearest spatial objects. For example, an
AV who is located at point p1 will utilize its surrounding
textual keywords q.k to geolocate itself at point p1.
However, through a VD index, it can seamlessly retrieve
all of the nearest neighbors (NN) by selecting all of the
adjoining Voronoi cells. Here an Autonomous Vehicle
(AV), incapable of accurately calculating its first-fix at
point p1 (through textual geolocation), can utilize the
textual information contained in the nearest neighbor
(NN) objects to approximate its hypothesized first-fix
textual geolocation coordinates.

Figure 12. NN query through Voronoi diagram.
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4. Conclusion and Future Work

The paper presents an approach to GPS signal
spoofing mitigation by researching and investigating the
problem, both from an empirical and systems-based
perspective, of how surrounding textual information
can be meaningfully leveraged towards secure and
accurate geolocation. The paper presents a mitigation
solution that aims to overcome the above challenges
and since it requires no modifications of the current
GPS infrastructure, it has the potential for a higher
societal and industrial adoption rate. The contributions
of this paper can be summarized as follows. The
paper elaborates and emphasizes the GPS spoofing
adversarial threat model with respect to Autonomous
Vehicles and self-driving cars. The paper researches and
investigates methods of how Autonomous Vehicles can
extract, through machine-learning based STR, textual
information from surrounding scenes as they travel
along a trajectory T . In a similar fashion to how
a human driver/operator leverages surrounding textual
information in order to validate the coordinates/location
shown in GPS navigation system, the paper researches
and proposes geospatial and machine-learning models
which leverage the extracted textual information in
order to build a text-based geolocation system to
validate the received GPS signal. The paper’s
future research directions are to evaluate the proposed
methods empirically in a laboratory setting and provide
preliminary results in order to build a baseline of
system accuracy. Another research direction includes
a pathway towards a systems-based real-world setting
deployment. The ultimate research goal extension of
the paper is to build a real-time physical systems model,
where 360°images which are captured in real-time from
an overhead mounted panoramic camera, are utilized
as explained in the the scene text imagery extraction
method of Section 3.
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