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Abstract 
Static stability is one of the most important 

constraints in the design and efficient calculation of safe 
air cargo pallets. To calculate the static stability of a 
cargo layout, base-focused methods such as full or 
partial base support are often used. Compared to 
mechanical or simulation-based methods, they offer 
high performance and simplicity. However, these 
methods currently reach their limits when dealing with 
the practical complexity of air cargo, making them 
difficult to apply in practice. In this research, we extend 
and generalize these support point methods by modeling 
irregular and multilevel cargo shapes, which enables 
improved practical applications. We follow a design-
oriented approach to capture air cargo requirements, 
design an artifact, and evaluate its performance. Our 
results show a generalized approach that covers a 
greater practical complexity while maintaining its 
efficiency. 
 
Keywords: Pallet Loading, Static Stability, Full Base 
Support, Partial Base Support, Logistics 

1. Introduction  

Throughout the recent global pandemic, air cargo 
has played a vital role in transporting critical products 
like medical equipment and pharmaceuticals. 
Additionally, air cargo remains an essential component 
to global supply chains, enabling international 
businesses to partake in e-commerce (IATA, 2021). 
Despite its importance, air cargo operations like packing 
and loading of cargo on pallets are still largely carried 
out without IT support (Lee et al., 2021), which can 
result in the inefficient construction of packed pallets 
and low volume utilizations, depending on the 
palletizer’s individual skills (Lee et al., 2021).  

To support the packing of pallets and containers, 
many approaches tackled this optimization problem 
called Pallet Loading Problem (PLP) (Dowsland, 1987). 
The complexity of computing optimal solutions varies 

with the complexity of input items and the number of 
constraints that reflect practical requirements. A 
multitude of constraints exist (Bortfeldt & Wäscher, 
2013; Pollaris et al., 2015; Zhao et al., 2016). One of the 
most important constraints is static stability (Bortfeldt 
& Wäscher, 2013; Ramos, Oliveira, & Lopes, 2016), 
which guarantees that items maintain their position 
during loading (Bischoff, 1991; Junqueira et al., 2012; 
Parreño et al., 2008; Ramos & Oliveira, 2018), thereby 
reducing the risk of damaged cargo, injuries of 
personnel, and unsafe operations (Bortfeldt & Wäscher, 
2013; Zhao et al., 2016).  

To compute static stability, authors use base 
support-related constraints like full base support (FBS) 
or partial base support (PBS), which are the focus of this 
research. These two approaches are tightly related as 
they both assess static stability by calculating the 
percentage of the item’s base support (Ramos, Oliveira, 
Gonçalves, and Lopes, 2016). Generally, base support 
approaches are criticized to be very restrictive and not 
to reflect real-world complexity (Kurpel et al., 2020; 
Ramos, Oliveira, Gonçalves, and Lopes, 2016). 

However, the criteria perform well for 
homogeneous input sets only containing boxes of 
similar size (Ramos, Oliveira, Gonçalves, and Lopes, 
2016) and promise lower runtimes compared to more 
sophisticated alternatives like physical simulations, 
which cope with extensive runtimes (Mazur et al., 
2020). 

Although most items in air cargo are of cuboid 
shape, they are often characterized by strong 
heterogeneity up to irregularity (Brandt & Nickel, 2019; 
Lee et al., 2021). So far, base-related approaches 
primarily focus on boxes, neglecting other non-regular 
item shapes or items with multiple bases, which limits 
their applicability to more complex and realistic 
problem instantiations, such as air cargo. Further, to 
meet strict deadlines and flight schedules, constraints 
like static stability must be efficiently evaluated (Mazur 
et al., 2022).  

Due to their simplicity and efficiency, base-related 
approaches might fill this gap and represent a new 

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 1177
URI: https://hdl.handle.net/10125/102775
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



solution to this application domain. To the best of our 
knowledge, no previous study has investigated 
applications of base-related static stability approaches to 
highly heterogeneous, irregular problem contexts such 
as air cargo.  

This research tackles the research problem of 
extending current base-related approaches to the novel 
application domain of air cargo and tries to answer the 
research question:  

How can the base support approach be applied to 
static stability assessments in air cargo? 

To answer this research question, we carve out 
requirements for FBS and PBS in air cargo problem 
contexts, implement an artifact that fulfills our 
requirements and demonstrate its functionality as well 
as its efficiency. We follow a Design Science Research 
(DSR) approach that aims to generate knowledge by 
developing novel IS-artifacts to solve practical 
problems. 

The remainder of this work is structured as follows. 
Section 2 presents an overview about related studies 
employing base-related approaches. Section 3 sketches 
our design-oriented approach. In section 4, we present 
our results, which are then discussed in section 5.  

2. Related Work 

Static stability is relevant during loading and unloading 
operations of cargo pallets (Bortfeldt & Wäscher, 2013) 
and measures how well the arrangement of cargo items 
can withstand the force of gravity (Junqueira et al., 
2012). Multiple approaches exist that reflect practical 
complexity and are therefore applicable in practice. 
Apart from FBS and PBS, simulation-based (SIM) 
approaches focus on the static stability evaluation using 
real-time physics engines (Bracht et al., 2016; Mazur et 
al., 2020, 2022). Further, static mechanical equilibrium 
approaches use an equilibrium-based application of 
Newton's laws of motion (Krebs & Ehmke, 2021; 
Ramos, Oliveira, Gonçalves, and Lopes, 2016).  

With respect to base support, Gehring & Bortfeldt 
(1997) present an early application. The authors propose 
to calculate stability for one item using “the ratio of the 
bottom area in contact with the boxes below to the total 
bottom area of the box” (Gehring & Bortfeldt, 1997, p. 
402). This ratio α is termed base support and frequently 
considered in related studies, e.g., in Junqueira et al., 
(2012), Kurpel et al. (2020), and Nascimento et al. 
(2021). It reflects the percentage of an item’s supported 
area. Support means that the item’s lower face is in 
contact with either other items’s top faces or the floor 
(Ramos, Oliveira, Gonçalves, and Lopes, 2016). 

The value for α can range from 0% to 100% (Kurpel 
et al., 2020). Depending on the value assigned to α one 
can distinguish between two cases. If α equals one, then 

full support of the item’s base is imposed (Nascimento 
et al., 2021). This implies that “no overhanging boxes 
are allowed” (Ramos, Oliveira, Gonçalves, and Lopes, 
2016, p. 569). This case is termed FBS. If the required 
base support is set to values below 100%, it is termed 
PBS (Bortfeldt & Wäscher, 2013). 

For PBS, the top surface of item s is at the same 
height as the bottom surface of item i, for item i to be 
stable over item s (Deplano et al., 2021). Additionally, 
the bottom face of item i is in direct contact with the top 
face of item s (Paquay et al., 2016). If the item lays on 
the floor, it is automatically declared stable (Nascimento 
et al., 2021; Ramos, Oliveira, Gonçalves, and Lopes, 
2016). Often authors distinguish between different base 
support for different item types. In such cases, the 
parameter α𝑖 ∈ [0; 1] is used to describe the desired 
amount of static stability for all boxes of type i 
(Junqueira et al., 2012).  

The minimal required α value is frequently 
discussed in related studies, since adjusting α implies a 
tradeoff between space utilization and correct reflection 
of static stability. Only 100% guarantees static stability 
(Ramos & Oliveira, 2018). However, setting α to 100% 
is also the most restrictive approach (Ramos, Oliveira, 
Gonçalves, and Lopes, 2016), since it strictly limits 
placement options for optimization algorithms and 
therefore limits the solution space. So, FBS is “very 
costly for algorithm efficiency, especially in the 
strongly heterogeneous instances” (Ramos, Oliveira, 
Gonçalves, and Lopes, 2016, p. 569).  

To relax the constraint and achieve better space 
utilization, authors set α to smaller values, risking 
unstable loads in return. Elhedhli et al. (2019) impose 
base support of 70%, while Gajda et al. (2022) allow an 
overhanging of 20%, thus requiring 80% of the base 
area to be supported.  

Besides adjusting α, some approaches define a 
minimal number of supported corners. Deplano et al. 
(2021) enforce at least two bottom corners of every box 
to be on the top surface of another item. Similarly, 
Olsson et al. (2020) claim that a box achieves base 
support if either “all four corners have support below 
[…] or two corners and 80% of the base area have 
support below” (Olsson et al., 2020, p. 1026).  

To the best of our knowledge, no related study 
considers items other than boxes. Problem instances that 
contain items other than boxes are characterized as 
irregular, while instances only containing boxes of the 
same size are called homogeneous (Bortfeldt & 
Wäscher, 2013). If only boxes are considered, but with 
varying dimensions, this is termed heterogeneous. A 
high frequency of different dimensions is termed 
strongly heterogeneous, while a low frequency is 
regarded as weakly heterogeneous (Bortfeldt & 
Wäscher, 2013).  
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With respect to air cargo contexts, most items are 
of cuboid shape (Brandt & Nickel, 2019; Lee et al., 
2021), while being “strongly heterogeneous in terms of 
their dimensions” (Lee et al., 2021, p. 1407). Often, the 
cargo is attached underneath a wooden pallet to simplify 
handling. Apart from boxes, other shapes like sacks, 
barrels, or furniture occur (Brandt & Nickel, 2019; Lee 
et al., 2021).  

Studies facing practical air cargo complexity and 
irregular shapes are scarce. Mazur et al. (2020) first 
introduced the integration of simulations using real-time 
physics engines for static stability assessments in an air 
cargo context. In a subsequent work, the authors 
extended their prototype by using graphical processing 
unit (GPU)’s compute capabilities to parallelize stability 
simulations (Mazur et al., 2022). Although faster in 
most cases, the GPU-accelerated simulations still suffer 
from weak performances compared to the CPU-only 
version. Consequently, both studies report weak 
performances with runtimes ranging from minutes to 
hours, which also negatively impact overall solution 
quality. The trade-off between realistic modeling of 
practical complexity and performance remains an issue. 

3. Approach  

Since our goal is to both raise requirements and 
implement a novel artifact, we follow a design-oriented 
approach (Vaishnavi et al., 2017). In doing so, we 
ensure that the resulting implementation can cope with 
real life complexity and is relevant for practical use. In 
the IS field, the DSR methodology is well established 
for knowledge generation through the design and 
development of novel IT-artifacts (Hevner et al., 2004). 
In this research, we adapt the iterative DSR 
methodology by Peffers et al. (2007). Our adapted 
approach consists of three phases: (1) requirements 
analysis, (2) design & development, and (3) 
demonstration. 

In the requirements analysis phase, we first describe 
limitations of the classic base support definition using 
practical examples. Out of this problem analysis, we 
then derive artifact design requirements, which include 
an adapted base support definition. 

 We then create our instantiated artifact based on 
the requirements. Finally, we demonstrate the artifact’s 
functionality, which includes the demonstration of the 
artifact’s suitability to solve multiple problem instances. 
In this research, we apply our new method to calculate 
FBS and PBS to multiple exemplary item arrangements.  

Furthermore, we measure how well the artifact 
solves the problem, which includes quantifying its 
performance in terms of runtime. Further, we compare 
the performance of our approach to the already 
established SIM approach for air cargo, presented by 

Mazur et al. (2020). Finally, we compare and contrast 
our observations to the previously defined objectives.  

4. Development of the Artifact 

4.1 Requirements Analysis 

We derive our artifact requirements (AR) from our 
main goal, that is, the efficient and reliable assessment 
of FBS and PBS for air cargo. We summarize our 
artifact design requirements in Table 1.  

The application of FBS and PBS in air cargo 
implies additional challenges. From a theoretical 
perspective, we notice that FBS and PBS have almost 
exclusively been considered for items of cuboid shape, 
which is also reflected by their definitions. Classic base 
support definitions are not suitable to model shapes that 
have non-rectangle bases, multiple bases (or: height 
levels), or multiple top surfaces.  

Since air cargo includes the loading of irregular 
items, adapted definitions are needed that also take into 
account shapes other than boxes. Classically, in related 
air cargo literature, shapes are modeled through boxes, 
cylinders, polygon prisms, and L-shapes (Mazur et al., 
2020). Boxes, cylinders, and polygon prisms all expose 
a single top surface parallel to one single bottom surface 
(base shape) (AR1). In contrast, when looking at multi-
level shapes (i.e., shapes with multiple height levels, 
such as L-shapes), complexity is added through its 
orientation and cut-out position, as multiple top surfaces 
or multiple base shapes exist (Figure 1).  The classic 
definition, according to which an item lying on the floor 
has full support, is not sufficient when considering 
complex, multi-level shapes. As illustrated in Figure 1, 
it is possible that an item with multiple bases can be in 
contact with the floor but has no FBS. For this reason, 
we develop an adapted version of the base support 
approach that can deal with any three-dimensional shape 
and correctly compute the base support (AR2).  

 

Figure 1. L-shape orientations and cut-out. 
 
Our criterion should be able to deal with full base 

support and partial base support. Therefore, we resort to 
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the base support factor α ∈ [0; 1] (AR3) that drives an 
item’s amount of support. 

In the context of this research, we define that an 
item arrangement is statically stable, if it is stable in 
every sequence of its construction (AR4). This implies 
that loading an item on the pallet, the entire arrangement 
should remain stable. Further, when facing the 
constructed item arrangement, there might exist 
multiple in-between states that are not stable, which 
would lead to practically infeasible and endangering 
constructions. 

To determine the supporting area, we need to 
calculate the intersections between items lying above 
each other. In order to do so, we must consider all 
intersecting surfaces between the respective two-
dimensional top and base shapes (AR5). 

Finally, high performances are desirable due to 
multiple reasons. The faster a static stability approach 
operates, the more solutions can be assessed in the same 
amount of time. Especially, when considering 
metaheuristic approaches to the PLP that hold an entire 
population of candidate solutions, high performance 
implies that more candidate solutions are assessed in the 
same time span. In turn, this can positively impact the 
overall solution quality. Furthermore, due to short term 
changes to the flight plan, high performance boosts the 
flexibility and responsiveness of the system (AR6).  

 
Table 1. Artifact design requirements. 

 
AR Description 

AR1 Support irregular shapes 

AR2 Support multi-level shapes 

AR3 Allow variable definition of base support factor 

AR4 Consider stability for every sequence 

AR5 Calculate intersection area for two-dimensional 
shapes 

AR6 High performance 

 

4.2 Design and Development: Instantiation 

4.2.1 Adapted Base Support Definition. In line with 
previous studies, our adapted base support factor is 
noted as α. This factor α ∈ [0; 1] describes the 
percentage of an item's base surface that must be 
supported either by the ground or by other items for the 
item to be classified as stable. 

Every item can be mapped to one or multiple two-
dimensional shapes, the items’ base shapes. We define 
a base shape to be any surface that can be seen when 

looking at the item directly from underneath. Thus, the 
entire base of an item is defined by the union of all its 
base shapes. Equivalently, the top surface(s) of an item 
can be defined as every two-dimensional area that can 
be seen when looking at the item from a bird’s eye view 
(see Figure 2). 

For an item to be supported by another item, two 
conditions must hold. First, the two items have to be in 
a top-bottom relationship. This means that for item s to 
give support to item i, item s must be in a level below 
item i. For item s to be considered in a level below item 
i, any top surface of s must be on the same altitude as 
any base shape of i. This restricts hovering or 
overlapping situations with another item. Second, when 
visualizing top and base shapes in a two-dimensional 
plane, the two shapes must intersect. If both conditions 
hold, we define that item s supports item i (see Figure 
3). 

In Figure 3, we observe that the L-shape and box 
are at the same level, although the L-shape reaches 
higher. The decisive condition is that one of the top 
surfaces of the L-shape is at the same altitude as the base 
of the box and the shapes intersect on a two-dimensional 
plane. In this case, the box is receiving base support 
from the L-shape. The degree of support is equal to the 
percentage of base area covered from the top surface. 
One item can receive support from multiple other items. 
The item’s overall base support factor is then defined as 
the sum of all support factors the item receives from any 
other item or the floor. 
 

  

Figure 2: Base and top 
shapes. 

Figure 3: Supporting 
item. 

 
Formally, we define the base support factor (BSF) 

for an item 𝑖 ∈ 𝐼 as follows: 
 
● I: set of all items. 
● J: set of all items except i together with the 

floor. The floor is modeled as a box with the 
same dimensions as the pallet. 

● 𝐵i: set of all bases for item i. 
● 𝑇i: set of all top surfaces for item i. 
● 𝛾!!,!": equal to 1, if the two-dimensional 

shapes s1 and s2 are located at the same 
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altitude in three-dimensional space; equal to 0 
otherwise. 

● 𝑎𝑟𝑒𝑎(i): area of the two-dimensional shape i. 
● 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑠#, 𝑠$): intersection area of two-

dimensional shapes 𝑠# and 𝑠$. 
● 𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑒𝐴𝑟𝑒𝑎(i): the total base area of item 

i ( = ∑%∈'# 𝑎𝑟𝑒𝑎(𝑏)) 
● 𝐵𝑆𝐹i: the base support factor for item i. 

 

𝐵𝑆𝐹( =6
)*+

6
%*'#

6
,*-$

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑏, 𝑡)
𝑡𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑒𝐴𝑟𝑒𝑎(𝑖) × 𝛾%,, 	

If 𝐵𝑆𝐹𝑖 >= α for every item 𝑖 ∈ 𝐼 then the entire item 
arrangement has base support of α.  

4.2.2 Inputs and Outputs. We designed our algorithm 
such that it can be used stand-alone or in optimization 
processes (e.g., metaheuristics). It evaluates a given 
item arrangement and returns a static stability score. The 
input entails an arrangement of items which includes 
information about all items, their packing sequence, 
their shape and packing coordinates. The returned score 
reflects the arrangement’s degree of stability. A score of 
1.0 means that every item is stable, while a score of  .

/
  

indicates that the first k out of n items are stable, and the 
first unstable item occurs at sequence k. Our algorithm 
is parameterized by α, the desired base support factor. 
We employ the same support factor α for every shape 
type. Consequently, α = 1 equals FBS while 0 < α < 1 
implies PBS. 

4.2.3 Base Support Calculation. Our algorithm to 
compute the base support proceeds as follows. For each 
item i, we iterate through all already placed items (i.e., 
that have a lower sequence) and check the respective 
base support i receives from s. If an item is located on 
the floor (y = 0), we consider the floor as well by 
appending it to the set of items to be checked. 

The core base support calculation algorithm 
comprises the following stages: (1) x/z-overlap check, 
(2) y-level comparison, (3) two-dimensional 
intersection area calculation, and (4) BSF calculation. 
The process is depicted in Figure 4. It takes two items i 
and s as input and outputs the base support item i 
receives from item s. 

 

 
1 https://locationtech.github.io/jts/javadoc 

 

Figure 4. Base support calculation process. 

The first stage (1) implements an overlap check on 
the x and z axes (i.e., when looking from a bird’s eye 
view) and therefore abstracts the y-dimension. If we do 
not detect any overlap between the two items, we can 
terminate the computation prematurely, since no base 
support is possible. This is an analogy to the early 
bounding box tests in physics engines’ broad phase 
collision tests.  

In the y-level comparison (2) we compare the y-
coordinates of all base shapes of i to all top shapes of s. 
All matching y-coordinates imply potential base 
contact. With this mapping, we are able to reduce the 
three-dimensional problem to a two-dimensional 
computation of intersections between contacting base 
shapes of i and top surfaces of s.  

Facing our two-dimensional intersection 
calculations (3), we used proven approaches for simple 
cases such as the intersection between two rectangles 
(e.g., using the mins of maxes and maxes of mins 
principle). For more complicated cases such as polygon 
intersections, we employ a geometry library called 
locationtech1. In terms of circle intersections, we need 
to account for accuracy loss by allowing a certain error 
margin when checking the satisfaction of the BSF. We 
evaluated intersection calculations to have a percentage 
error of 0.06% and thus allowed an error margin of 
0.1%.  

Forming the sum of intersections (4), we obtain the 
supported base area of item i by item s. The quotient of 
supported base area to total base area then represents the 
BSF that item i receives from item s.  

When reiterating this process for all potential 
supporting items for i and forming the sum, we obtain 
BSF𝑖. In a last step, the obtained BSF𝑖 is compared to the 
desired base support factor α considering the allowed 
percentage error. Formally, the condition  

 
|𝐵𝑆𝐹( − 𝛼| 	≤		ε  

 
is checked, with ε being the allowed percentage 

error. If this condition is satisfied, we classify item i to 
be stable and proceed with the next item. 

To illustrate some insights, we visually depict a 
loading situation (Figure 5). Displayed is a set of items 
numbered by their placement sequence. First, consider 
item 1 for the support of item 4. When executing the first 
step, we observe no overlap on the x/z axes and thus no 
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base support. When considering item 4 and item 2, they 
pass stage 1 as they overlap on the x/z axes. However, 
item 4’s base shape is located on a different altitude than 
item 2’s top surface, thus no base support is provided (y-
level comparison).  

 

Figure 5. Item support structure. 

4.3 Demonstration: Functionality 

4.3.1 Example Arrangement. We illustrate our 
algorithm using an exemplary item arrangement that 
consists of multiple irregular shapes. Figures 6 and 7 
display this exemplary arrangement.  

Since the first three items are all placed on the floor 
and only reveal one base shape, they have FBS and thus 
are statically stable (Figure 6). In our algorithm, we 
calculate the intersection of the items’ bases with the 
floor. Consequently, this intersection area equals the 
base area of the item, so FBS holds.  

 

  

Figure 6. Example 
arrangement without 
polygon prism. 

Figure 7. Example 
arrangement with 
polygon prism. 

 
In contrast, the polygon prism’s support differs 

from the other items, as it is not placed on the floor, but 
on top of the L-shape, box, and cylinder (Figure 7). In 
our algorithm, we calculate the individual areas that are 
supported by the items below. Starting with the L-shape, 

the algorithm computes the polygon prism’s base area 
that is covered by any top surface of the L-shape.  

To achieve this, we first check the polygon prism’s 
base shape and the L-shapes’s top shape for overlap 
(stage 1). Since an overlap is present, we proceed. 

In stage 2, the L-shape compares its top shapes’ y-
coordinate to the passed base shape’s y-coordinate. The 
first top shape is on a different altitude; thus no support 
is provided by this surface. However, the second top 
shape’s y-coordinate equals the base shape’s y-
coordinate, and is therefore positioned at the same 
height as the base shape of the polygon prism.  

In the next step (stage 3), our algorithm calculates 
the intersection area between those two matching shapes 
and returns it to the polygon prism. This intersection 
area is depicted in Figure 8.  

In the last stage (stage 4), the polygon prism now 
divides the returned supported area by its entire base 
area. This results in the BSF the polygon prism receives 
from the L-shape, which is approximately 42.84%.  

 

Figure 8. Intersection areas example. 

Subsequently, the same procedure is repeated with 
the other items below (i.e., box and cylinder). We 
respectively add 44.01% and 9.55% to the BSF. In total, 
we obtain a BSF of 96,39%, which implies for every α 
<= 0.9639 the item would be regarded as statically 
stable. Using the FBS approach, this item would not be 
marked as statically stable, which implies a score of 
0.75. 

4.3.2 Unstable Item on Floor. Figure 2 displays an L-
shape with two base shapes. Additionally, the item is 
located on the floor. The example demonstrates the 
advantage of the generalized base support definition: 
Regarding previous definitions, the item would be 
classified as statically stable, since it lies on the pallet 
floor. However, the item exposes multiple base shapes, 
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which are together only partly supported. So, the item is 
not stable and would simply tip over towards its longer 
side. Instead of simply declaring the item as stable for 
being located on the floor, we extend this notion and 
consider the floor as an additional item that can give 
support to other items. As illustrated in Figure 9, a 
smaller percentage of its base shapes is supported by the 
floor. In contrast, the larger base area located above the 
ground is not supported. In total, this item only reaches 
a BSF of 0.25 and is only classified as stable, if α <= 
0.25 is chosen. 

 

Figure 9: Unstable item on floor. 
 

4.4 Demonstration: Performance 

To loop back to our requirements, we opted to 
design a static stability approach that not only better 
reflects practical complexity, but also reaches a high 
performance (AR6). In this study, we operationalize 
performance through runtime. In detail, we compare 
runtimes of our new approach to the SIM approach by 
Mazur et al. (2022). To the best of our knowledge, no 
other approach for static stability equally takes into 
account air cargo complexity in terms of shapes. 

We randomly generated item arrangements using 
the dataset of Brandt and Nickel (2019) with varying 
irregularity factors. An irregularity factor measures the 
share of irregular (that is: non-boxes) item shapes to the 
total number of item shapes (from 0 to 1). We generated 
a total of 2852 item arrangements using a genetic 
algorithm metaheuristic that assigns items to a 
placement position and loading sequence, thereby 
ensuring basic constraints like balancing and maximum 
weight, but without static stability. The latter condition 
ensures that our item arrangements are not randomly 
placed but come close to realistic item arrangements. 
We then evaluate every single item arrangement using 
the FBS and SIM approach. The results are aggregated 
in Table 2 and displayed in Figure 10.  

Table 2. Performance evaluation results. 
 

Number of 
arrangements 

Mean 
irregularity 

Mean 
runtime 
FBS 

Mean 
runtime SIM 

2852 0.2438 0.3172 ms 261.9891 ms 

 
The mean irregularity over all item arrangements 

was approximately 0.2438. With respect to runtimes, we 
observe a large discrepancy between both approaches.  
For FBS,it takes an average of 0.3172 milliseconds to 
assess one item arrangement. On the one hand, the SIM 
approach requires substantially more runtime, on 
average 262 milliseconds for one assessment.  

Furthermore, we observe multiple peak runtimes of 
the SIM approach. We illustrate this finding in Figure 
10. For certain assessments, the runtime climbed up to 
1252 milliseconds. In contrast, FBS remained nearly 
constant throughout all tested assessments, which 
makes it a more robust approach far less sensitive to 
input complexity.  

 

Figure 10: Performances for FBS and SIM. 
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5. Discussion and Conclusion  

In this study, we presented the adaption of FBS and 
PBS to static stability assessment in air cargo. Both 
approaches are already well established in related works 
but are hardly applicable to real-world cases as air 
cargo. We tackled our goal using a DSR approach that 
included both the formulation of an adapted base 
support definition and its implementation within an 
artifact. Thereby, we raised and covered six artifact 
design requirements. The key insights of this research 
are as follows: (1) A more generalized definition of base 
support is necessary to tackle the complexity of irregular 
and multi-level shapes and (2) our generalized FBS and 
PBS approaches perform well in terms of runtime when 
compared to the state of the art simulation-based 
approach. 

The demonstration illustrated how our developed 
artifact met the raised requirements. The criterion 
supports irregular (AR1) and multi-level shapes (AR2). 
Our adapted base support definition (AR3) uses a 
minimal support factor α ∈ [0; 1], which implies the 
flexibility for FBS and PBS. Further, (AR4) is covered 
by the identification of unstable sequences and its 
confluence in a compound score. Moreover, we 
sketched the intersection area calculation (AR5). 
Finally, our comparison against the SIM approach 
illustrated that our artifact achieves a high performance 
(AR6). We presented an algorithm that comprises four 
stages that can cope with the identification of 
intersecting items, a y-level comparison to identify 
candidate intersection shapes, a dimensional reduction 
to 2D and a final intersection area calculation. 

Regarding the limitations, our study lacks a 
profound evaluation of performances of FBS and PBS 
in the context of overall solution generation and 
optimization. When implemented and integrated in 
solution-generating optimizations (e.g., genetic 
algorithms), an entire population of item arrangements 
is evaluated. A less restrictive constraint (such as FBS 
or PBS) extends the solution space and simplifies the 
search for good solutions. Also, performances of 
constraint assessments impact the overall optimization 
performance. As demonstrated, the mean runtime for the 
SIM approach largely exceeds the mean base support 
runtimes. It remains unclear how much this performance 
improvement affects overall solution quality (e.g., space 
utilization). 

Another neglected aspect is PBS. We refrained 
from evaluating our results using PBS, since no 
statement about the actual static stability of the 
generated solutions is possible (Ramos, Oliveira, 
Gonçalves, and Lopes, 2016). This unclear impact of 
minimal base support on cargo stability might be the 
focus of future works. In detail, it could be evaluated, 

how much overall solution quality improvements can be 
achieved when relaxing the minimal required base 
support factor α. Further, it could be quantified how 
often PBS wrongly classifies an arrangement as stable 
when varying the minimal base support factor. These 
insights could then help to decide how much minimal 
base support is necessary regarding the trade-off 
between solution quality and restrictiveness.  
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