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Abstract

Recent advancements in unmanned aerial vehicle
(UAV) capabilities have led to increasing research
into swarming systems. Unfortunately, efforts to date
have not resulted in viable secure communications
frameworks, and the limited processing power and
constrained networking environments that characterize
these systems preclude the use of many existing secure
group communications protocols. The Messaging Layer
Security (MLS) protocol, currently under development
at the Internet Engineering Task Force (IETF), offers
some attractive properties for these types of systems.
This work looks at integrating MLS into the Advanced
Robotic Systems Engineering Laboratory (ARSENL)
UAV swarm system as a means of assessing its efficacy.
Implementation test results are presented both for
experiments conducted in a simulation environment and
with physical UAVs.

Keywords: Uncrewed systems, UxS, messaging layer
security, network security, UAV, swarm security

1. Introduction

Recent advances in unmanned aerial vehicle (UAV)
capabilities have made multi-vehicle and swarming
systems potentially applicable to a wide array of
military and civilian applications. Tactical utilization
of UAV swarms will depend, however, on secure
communications. Unfortunately, individual swarming
platforms have limited processing power, and swarm

1This work was done as a private venture and not in the
author’s capacity as an employee of the Jet Propulsion Laboratory,
California Institute of Technology. Sponsorship to present this work
at the Hawai‘i International Conference on System Studies was
provided by the Jet Propulsion Laboratory, California Institute of
Technology, under contract to NASA, the National Aeronautics and
Space Administration.

2Research reported in this publication was supported by ONR
under award number N0001422WX01882 and NSF under agreement
number 1565443.

systems often utilize unreliable and bandwidth-limited
communications frameworks that limit the ability to
implement security features. This calls the ability of
these systems to meet security requirements associated
with classified or sensitive missions into question.

Many current methods of securing communication
for groups of devices are unlikely to be applicable to
existing or envisioned swarm systems. Recent research
in secure group communications, however, indicates
that the Messaging Layer Security (MLS) protocol [1]
can provide an attractive option with characteristics
that seem particularly suited to these types of systems.
This protocol provides a computationally efficient
way to implement asynchronous secure group key
management, but experimentation in realistic systems
is required to assess the protocol’s functionality
in these computational- and communications-limited
environments.

The MLS protocol provides a number of capabilities
that are particularly relevant to multi-UAV systems
including the ability to dynamically add and remove
members without sacrificing continuous secure
communications among active members of the group.
The MLS protocol also makes it possible to forcibly
remove UAVs that have been hijacked, compromised,
or are malfunctioning. In these situations, the protocol
provides the group with a means of updating the
communication keys to exclude the compromised or
malfunctioning UAV.

This paper describes the implementation of MLS
on the Naval Postgraduate School (NPS) Advanced
Robotic Systems Engineering Laboratory (ARSENL)
UAV swarm system using open-source C++ code
maintained by Cisco Systems [2]. In particular,
the MLS group operations for key update, member
addition, and member removal are implemented and
tested. The research includes an analysis of the
effect of MLS protocol utilization on ARSENL swarm
performance. Specific contributions of this work include
the following:

• a proof of concept MLS implementation on a
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real-world UAV swarm system,

• characterization of MLS performance in the
swarm’s lossy communications environment, and

• identification of requirements for successful MLS
utilization in these environments.

The remainder of this paper is organized into
four sections. Section 2 provides a summary of
related work on swarm system architectures and secure
swarm communications. Section 3 describes the MLS
implementation to include an overview of MLS, the
Cisco C++ MLS application programming interface
(API), and the existing ARSENL on-vehicle architecture
into which MLS was incorporated. Section 4 discusses
the results of testing the MLS implementation and
analyzes its performance as a function of swarm size
and key update rate. Finally, a summary of outcomes
and implications of this work is provided in Section 5.

2. Related work

As robotic swarms have emerged as viable options
for a variety of problems, increasing research has
been conducted into the development of effective
communication architectures.

In one effort, researchers from the Army
Engineering University of the Chinese People’s
Liberation Army and Chengdu University [3]
proposed supporting military swarm operations
with a hybrid architecture combining a software-defined
network (SDN) and Message Queue Telemetry
Transport (MQTT), a publisher-subscriber middleware
for devices characterized by computation- and
communication-constrained networks, low processing,
and low memory. At the time of publication, however,
the researchers had not implemented the network
structure in a real environment.

In 2015, Rosati et al. [4] proposed a flying ad-hoc
network (FANET) in which the Optimized Link State
Routing (OLSR) protocol was extended to use GPS
data to predictively improve routing. Experiments
with a system comprised of two fixed wing UAVs
and a single ground station indicated that predictive
OLSR responded more quickly to topology changes
than than standard OLSR and that it did so without
interruptions. The research did not specifically address
communications security within the swarm.

Cellular network infrastructure has also been
suggested as appropriate for swarm communications.
Researchers from the University of North Dakota [5]
proposed a UAV swarm architecture in which UAVs
communicate among themselves over a cellular network

without the need for a ground control station. This
approach differs from a typical FANET in that routing
is a function of the cellular infrastructure rather
than the swarm system itself. It also potentially
allows the UAVs to be dispersed across a larger
area without sacrificing reliable data transfers. In
addition, this approach allows some security concerns
to be addressed at the infrastructure level, however
it would be unlikely to fully satisfy the requirements
of more sensitive information without additional
application-layer features [6].

A two-phase communication protocol relying on
both device-to-device communications and existing 4G
and 5G cellular networks has been suggested by Han et
al. [7]. In the first phase of their suggested protocol,
ground control stations transmit a control message to
all vehicles simultaneously over a cellular network.
In the second phase, all vehicles that received the
control message forward it to other vehicles in the
swarm using device-to-device communications. The
researchers concluded that this two-phase transmission
protocol provided both high reliability and low latency
for communications within the swarm. Again,
communications security was not addressed.

All of these efforts focused on the capability
of the communications architecture rather than its
security. In effect, the suggested approaches implicitly
assume that security requirements are handled by the
infrastructure (layer 2 mostly–802.11, cellular, etc.) or
that security features will be implemented on top of the
communications architecture at the application layer.

3. MLS implementation on the ARSENL
system

The Messaging Layer Security (MLS) cryptographic
protocol was specifically designed with efficiency in
mind and can potentially mitigate some of the issues
identified in existing research. This section provides a
brief overview of MLS and describes its integration into
the ARSENL codebase using the open source C++ API
developed by Cisco Systems.

3.1. MLS overview

The MLS standard is the product of an Internet
Engineering Task Force (IETF) working group
tasked with designing a protocol for secure group
messaging [8]. MLS builds upon previous efforts in
messaging security that have proven both effective and
efficient [9, 10]. Like many of these approaches, MLS
maintains group keys in a binary tree as depicted in
Figure 1 where individual members are represented
by leaf nodes. Each non-leaf node can contain a
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public key or may be blank (a byproduct of the update
process). For any non-blank node, the associated private
key is known to members occupying descendant leaf
nodes [8]. Thus, the leaf node to which a member is
assigned determines the subset of private keys that it
knows.

Figure 1. A MLS group tree example depicting

member A’s direct path (blue) and co-path

(yellow) [11].

The binary tree allows for efficient updates. A
member conducts an update by first generating a new
public-private key pair for its leaf node and then
iteratively generating key pairs for nodes in its direct
path (depicted in blue in Figure 1). Private keys are
shared with other group members using the public keys
in the updating member’s co-path nodes (depicted in
yellow) [12]. As of Draft 7, MLS conducts these
operations using the TreeKEMB protocol [8].

There are three major operations associated with
MLS [8]. An Update operation is used by a member
to change its own keys and those along its direct path.
This can be seen as changing the blue nodes on Figure 1,
such that the group key is updated. An Add is initiated
by an existing group member to bring a new member
into the group, supplying it with the current group
state. Finally, a Remove is initiated to voluntarily or
forcibly eject a member from the group, an action that is
solidified by updating the group key while not providing
the ejected member information on the update. All
operations are executed through a two-step process in
which the initiating member first sends a Proposal
message indicating the operation type and follows up
with a Commit message containing the updated key
information, which cements the operation action. No
changes are made to the tree until the Commit message
has been processed.

There has been extensive research on MLS [12,
13, 14], and the MLS working group has endorsed
API implementations available in C++, Rust, Go, and
TypeScript [15]. The Cisco-developed C++ API [2] was

used for the ARSENL swarm implementation because
of the ease with which C++ can be incorporated into
the existing on-vehicle software. The Cisco C++ API
version that was utilized in this work implements MLS
Draft 11. It is referred to as MLS++ for the remainder
of this paper.

3.2. The ARSENL swarm system

The ARSENL multi-UAV system into which MLS
was incorporated is composed of three UAV platform
types: the Ritewing Zephyr II blended-wing UAV,
the ARSENL-developed Mosquito Hawk quadcopter
UAV, and the Finwing Penguin mid-wing pusher
propeller UAV [16]. Each platform is equipped
with a PixHawk-family autopilot and a Hardkernel
Odroid-family companion computer. The basic
specifications and operational parameters for the three
platforms are shown in Table 1. Variant selections of
these were used in simulation and physical testing, as is
described later.

Table 1. ARSENL UAV Platform Configuration [16]

The ARSENL on-vehicle swarm functionality is
implemented on the companion computer as a set of
related Robot Operating System (ROS) [17] processes.
ROS provides Python, C++, and Lisp APIs. The
ARSENL implementation is written in Python; however,
the C++ API [18] was used for this research to facilitate
use of the MLS++ API.

Each ARSENL process serves a specific purpose in
the architecture and runs as a ROS node. ARSENL
nodes with which the MLS implementation interacts
include the network bridge node that manages current
air-to-air and air-to-ground communications and the
task scheduler node that initiates preplanned actions as
mission milestones are achieved.
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Inter-node communication relies on a ROS
publisher-subscriber model in which nodes publish
messages to named topics to which other nodes can
subscribe. ROS messages are typed data structures
that can be used to encode atomic data elements
(e.g., integers, floating point numbers, or strings) or
composite data elements (i.e., structs) [17]. ROS utilizes
the system’s underlying network implementation to
exchange messages between nodes as User Datagram
Protocol (UDP) packets.

Inter-UAV communications take place over an
802.11n ad hoc network using an ARSENL-developed
application-layer protocol. All messages are sent as
UDP messages to the network broadcast address. With
this architecture, all vehicles potentially receive every
message, but receipt by any UAV is not guaranteed.

Over the course of a mission, ARSENL vehicles
transition through a series of mission states [19]. In the
preflight and flight ready states, the vehicle is prepared
for launch. Once launched, the vehicle transitions to
the ingress state in which it travels through a series
of preplanned waypoints to the staging area. Upon
arrival at the staging waypoint, the vehicle transitions
to the swarm ready state from which swarm behaviors
are executed. Finally, landing and post flight stages
are used to recover the vehicle upon completion of
swarm operations. State transitions are significant
from the standpoint of this work in that transition to
the flight ready state is the point at which the MLS
group is initialized or joined, and the join process
itself requires the identification of another UAV in the
flight ready, ingress, or swarm ready state with which
to initiate the join process. The join or initialize
process is initiated automatically by the joining UAV’s
task scheduler node.

3.3. Integration of MLS as a ROS node

The MLS++ API was installed alongside the
ARSENL codebase within the ROS directory hierarchy,
and the static libraries were automatically linked by the
ROS catkin make build tool at compilation. The API
was used to develop a single MLS class, an instance of
which is instantiated by a mls ROS node on each vehicle.
The implementation is summarized here and described
in detail in [11].

The ARSENL MLS class instance relies on three
MLS++ classes: Client, Session, and PendingJoin. It
uses a Client class instance to create or join the MLS
group and to maintain key and ciphersuite information.
The PendingJoin class instance is used to generate key
packages and execute join-specific operations. After
joining a group, an instance of the Session class

manages the member’s ongoing participation in the
group.

3.3.1. Implementation overview Four ROS
topics were added to the existing ARSENL
runtime architecture as depicted in Figure 2 to
facilitate interaction between the mls node and
other ARSENL nodes. MLS-related information
exchanged between nodes consists of unsigned
integers (i.e., std msgs/UInt8) and byte arrays
containing serialized plaintext ARSENL messages (i.e.,
arsenl msgs/PackedNetworkMessage). Publication
or subscription to the ROS topic is indicated by the
figure’s arrows.

Figure 2. MLS ROS node integration into the

ARSENL on-vehicle architecture [11].

The MLS class instance manages all MLS group
operations. UAV-specific information such as UAV ID,
network device, and network port is maintained as ROS
parameters that are available to all nodes. The UAV ID
is a unique integral value that serves as the vehicle’s
identification in the MLS group. The network device
name and port identify the socket pair that is used for
inter-UAV MLS communications.

UAVs initialize or join the MLS group upon reaching
the flight ready state. The first UAV initializes the MLS
group, and subsequent UAVs request to join the already
established group. We pre-assume the trust structure
for MLS identity keys, for simplicity, and leave the
authentication of such keys (e.g. via certificates) as
out-of-scope.

Both establish and join events are triggered by
publication of a message to the mls/init mls ROS topic
by the task scheduler node when the UAV transitions
to the flight ready state. An integer 0 in the message’s
data field indicates that the UAV is to create a new MLS
group. A non-zero value means that the UAV is to join
an existing group and indicates the ID of the UAV that
will execute the join operation on behalf of the new
member.

The determination of whether to create a new group
or join an existing group is based on the contents of
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unencrypted message traffic that is required for safety
of flight and operator oversight. This traffic includes
messages that enable the task scheduler node on the
joining UAV to identify an established UAV with which
to initiate the join process or to determine that the group
has not yet been established.

All established members of the group can encrypt
messages to other group members and can decrypt
received messages. The network bridge node
publishes ARSENL messages to be encrypted to
the mls/send mls msg topic. The message-handling
callback in the mls node encrypts the messages and
broadcasts them over the MLS socket. Messages
received from other UAVs are decrypted by the mls
node and published to the ROS mls/recv mls msg topic
for processing by the network bridge node.

Updates and removals are initiated by the mls node
as required. The initiating UAV sends the update or
remove operation Proposal and Commitmessages to
all other UAVs over the MLS socket. Receiving UAVs
process those messages to update their local MLS trees
and ensure view consistency among the group.

These processes are described in more detail in the
following sections.

3.3.2. MLS network communications A UDP
broadcast socket is used in this implementation for
all MLS network traffic, and all messages are sent to
the broadcast address. Since much of the ARSENL
code relies on UDP broadcast communications already,
it made sense to continue with this pattern. This
architecture does result in every message potentially
being received by all UAVs. Therefore, messages
intended for a specific recipient (e.g., as part of the
join process) must be differentiated by their payload
and processed accordingly upon receipt by the mls
node. It is also important to note that UDP provides no
guarantee of delivery, and neither the existing ARSENL
codebase nor the mls node implementation checks to
make sure that messages are received. The impact of
this architecture on MLS performance is discussed in
Section 4.

The asynchronous nature of MLS communications is
accounted for by the implementation of a dedicated mls
node thread for reading from the MLS socket. Writing
to the socket occurs primarily within ROS topic callback
functions. The callback for the mls/send mls msg topic,
for instance, writes encrypted messages to the socket.
Callback functions are invoked from within a specific
ROS message-handling thread in response to messages
received from subscribed topics [17].

MLS-specific data, such as encrypted messages,

KeyPackages, Proposal and Commit messages,
and Welcome messages are stored in an MLS++ Bytes
object that encodes its contents as a vector of unsigned
chars (i.e., bytes). Because data is written to and
read from a socket as an array of unsigned chars,
serialization of the Bytes object is required to send data
and deserialization is required to convert received data
back into a Bytes object.

Message serialization necessitated specific features
to ensure that data was sent over the network in a manner
that enabled it to be reassembled in a meaningful way.
When a Bytes object is serialized, metadata associated
with the object, including the type of message, is lost. In
order for it to be deserialized successfully upon receipt,
at least some of the associated metadata was included in
the serialization.

The MLS++ API differentiates between message
types through subtyping. That is, messages encoded as
specific Bytes class subtypes can be handled correctly
through polymorphism. The subtype is lost, however,
when the object is converted to a char array. To account
for this, our implementation adds a single element to
the front the serialized array to serve as a packet type
indicator that is checked during deserialization.

3.3.3. Proposal and Commit messages MLS
operations are executed through a two-step process in
which a Proposal message is used to specify the
nature of the operation and a Commit message is used
to finalize the operation and provide the information
necessary to update the group members’ local MLS
trees. Group members can process Proposal
messages in any order, but every UAV must process
Commit messages in the same order to ensure
consistent views among the group.

3.3.4. Group creation and member addition In
the ARSENL MLS implementation, the first UAV to
transition to the flight ready state, creates the group.
As subsequent UAVs transition to the flight ready state,
the task scheduler node identifies another flight ready,
ingress, or swarm ready UAV, and the network bridge
node sends an unencrypted ARSENL message to that
UAV requesting to join the group.

The join process consists of a series of interactions
between the joining and established UAVs as depicted
in Figure 3. Upon receipt of the join request, the
network bridge node on the established UAV publishes
a message containing the ID of the joining UAV to the
mls/mls recv join ROS topic. The message-handling
callback in the mls node initiates a handshake process
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with the joining UAV by sending a Handshake
message. Both the join request and handshake are an
addenda to the MLS protocol, which we incorporate to
synchronize the join within the ARSENL framework to
ensure that messages are processed in the correct order
[11] (denoted by font difference). Once initiated, the
join process is completely implemented in the joining
and established UAV mls nodes (i.e., it does not involve
any ARSENL nodes).

Figure 3. The ARSENL swarm MLS join process.

When the joining UAV receives the Handshake
message, it prepares a KeyPackage containing its
public key (among other information) and sends it
to the established UAV [8]. Upon receipt of the
KeyPackage, the established UAV prepares and
broadcasts an add Proposal message and a Commit
message to all other UAVs to add the new member.
Group UAVs process these messages to update their
local group tree views. Following addition of the
new member to the existing group, the established
UAV sends a Welcomemessage containing information
regarding the current state of the group and any
required public and private keys to the new member [8].
The joining UAV processes the Welcome message to
finalize its addition to the group.

3.3.5. Sending and receiving encrypted messages
As indicated in Figure 2, the mls node subscribes to
the mls/send mls msg ROS topic. When an ARSENL
message is to be encrypted and sent to one or more
group members, the network bridge node serializes
the plaintext message and publishes it to this topic.
The mls node callback function encrypts the message
and broadcasts the encrypted data over the MLS

socket. When a UAV receives an encrypted message,
it is decrypted and published to the mls/recv mls msg
ROS topic by the mls node’s socket-read thread.
From there, the network bridge node callback function
processes (i.e., deserializes) the message and forwards
the plaintext contents for use by other ARSENL nodes.

As implemented, the mls node only encrypts some
ARSENL network traffic, namely the intra-swarm
traffic. Information exchanged between UAVs and
the ground station that would normally be required to
ensure safety of flight and maintain operator oversight
is not encrypted as swarm traffic. As noted earlier,
this unencrypted traffic includes the ID and swarm state
information that is used by the task scheduler node
to identify a UAV to perform the join operation. In
our tests, this is left unencrypted as an out-of-scope
communication link, but in a normal operating scenario
the channels from devices to the operator might
be encrypted under a different protocol. It is the
information that is transmitted between UAVs that is
encrypted using MLS. In particular, state/telemetry
messages transmitted by each UAV at a rate of eight
hertz and autopilot status messages transmitted at one
hertz are encrypted. Since these messages comprise the
bulk of the ARSENL network traffic [19], performance
observations are considered representative of the overall
system.

3.3.6. Update The update operation is conducted
periodically to ensure that security of the group is
maintained. In particular, individual and group keys are
updated according to a key schedule in order to provide
forward secrecy and post-compromise security [8].
When a UAV wants to initiate an update, it sends an
update Proposal message to the group and follows
that with a Commit message with the specific update
information. Each UAV that receives the messages
processes them to update the keys in their local view
of the tree.

3.3.7. Member removal The last MLS operation
tested was removal of a member. This operation is
required when a member voluntarily leaves the group or
when other group members determine that the member
has failed, has been compromised, or is malfunctioning.
The removal process is similar to the update operation in
that it is effected by Proposal and Commit messages
from one member to the rest of the group. In addition
to deleting the removed member’s node from the MLS
tree, all nodes in the removed member’s direct path must
be blanked or updated. Once this occurs, the removed
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member will no longer be able to decrypt messages
exchanged between the remaining group members.

4. Results

Testing was conducted in two stages. The first tests
were conducted in the ARSENL software-in-the-loop
(SITL) simulation environment [20] to provide baseline
metrics and assurances of correct functionality. The
second phase consisted of ground tests with various
numbers of ARSENL UAVs and was used to
assess performance in the actual communications
environment. Live vehicle testing was also used
to evaluate various update intervals in the lossy
communication environment in the absence of delivery
service implementation. Testing results are summarized
here. Exhaustive test results and further analysis is
available in [11].

4.1. Simulation system testing

All three of the MLS operations described in
Section 3.3 were tested in the SITL environment
and were found to be correctly implemented. SITL
environment testing included both fixed-wing Zephyr
II and quadrotor Mosquito Hawk UAVs and included
transition through all of the swarm states and execution
of swarm behaviors. Five variables of interest were
specifically assessed during SITL environment testing
to evaluate MLS performance generally: 1) update
frequency, 2) bytes of plaintext encrypted and sent, 3)
bytes of ciphertext received and decrypted, 4) number
of messages encrypted and sent, and 5) number of
messages received and decrypted. Statistics were
captured and logged every three seconds.

Testing was conducted with various update intervals
associated with the number of messages sent by each
UAV, meaning an update is initiated by the UAV for
every x messages sent. Testing was conducted over
time periods ranging from 30 seconds to 10 minutes,
and data for each experiment was aggregated into a
single per-second rate. Data was collected for update
intervals of x = 50 messages, 150 messages, and
250 messages per device. For these intervals, each
participant initiated an update approximately every five
seconds, 15 seconds, and 25 seconds respectively. Thus,
the group state (e.g., shared group encryption key) was
updated more frequently as the number of UAVs in
the swarm increased. Data was also collected with no
updates being initiated by the participating UAVs.

Every update interval test experienced at least one
UAV that failed to join or dropped out of group
communications. Empirical evidence (i.e., log entries
and ROS messages to the terminal) suggests that

these failures were caused by unprocessed updates and
other errors associated with missed Commit messages.
Update frequency testing was not exhaustive with
respect to an optimum update interval and should
be more thoroughly investigated in future research.
The MLS specification requires a distribution service
that guarantees reliable transport; since one was not
implemented, such a service for MLS maintenance
messages will likely be required before sufficient testing
can be conducted to fully assess update interval options.

Decrypted messages per second results from the
SITL environment update interval tests are depicted in
Figure 4. Results for most intervals for a five-UAV
swarm are close to the expected value of 45 decrypted
messages per second per UAV. Missed updates
were evidently not an issue for small swarms. For
the 10-UAV swarm, however, the update interval
significantly impacted the average number of messages
decrypted per second. Not surprisingly, the swarms that
had no updates and the swarms with the 250-message
update interval outperformed swarms for the other
intervals tested. With an update interval of 50
messages, the 10 UAVs received and decrypted fewer
than half of the messages that were sent. The average
number of messages decrypted per second got closer
to the expected value as the update interval increased,
indicating that the swarm performs better with a longer
period between updates. This result is not surprising
since update operations impose both networking and
processing overhead, and increasing the frequency of
updates increases the number of opportunities for UAVs
to miss Commit messages in absence of a reliable
distribution service.

Figure 4. Observed and expected decrypted

messages per second for groups of five and 10 UAVs

for software-in-the-loop simulation tests [11].

The improvement as the interval increased from
50 to 150 messages and from 150 messages to 250
messages implies that even longer intervals might yield
results equivalent to those of the no update test. Even
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occasional unprocessed updates would be problematic
in an operational system, however, since affected UAVs
would not be able to communicate with the group
beyond the point of the missed update. Over time, the
number of UAVs that successfully process all updates
will decrease even for long update intervals. However,
when update intervals are aligned session length in, e.g.
802.11, this appears less problematic, and the relative
security gains for update intervals shorter than normal
sessions is notable.

In addition, it is reasonable to infer from the
decrease in performance between the five-UAV and
10-UAV tests that an interval sufficient for a 10-UAV
system is unlikely to perform well as size increases
further. Security concerns associated with longer update
intervals will also need to be addressed.

Since the 250-message-per-device interval worked
reasonably well, only this interval and no update
processing were tested on physical aircraft in ground
tests.

4.2. On-vehicle testing

Following testing in the SITL environment, ground
tests were conducted with physical UAVs to test the
functionality of the mls node in the actual ARSENL
vehicles (flight testing is anticipated once satisfactory
results are observed in ground tests). All testing was
conducted on the ARSENL-developed Mosquito Hawk
quadcoptor [21]. This platform was chosen because
it has the least powerful payload computer of all of
the ARSENL UAVs. Potential issues, therefore, are
more likely to manifest on the Mosquito Hawk (or
the identically configured Penguin) than on the more
powerful Zephyr II payload computer.

Mosquito Hawk autonomy and communications
functionality is implemented on a HardKernel Odroid
C0 companion computer, a single-board computer
with an Advanced Reduced Instruction Set Computer
Machine (ARM) version 7 quadcore chipset that
operates at 1.5 gigahertz. The C0 has one gigabyte of
random access memory and a 32 gigabyte embedded
MultiMediaCard (eMMC). Inter-UAV communications
take place over an 802.11n network in the 2.4 gigahertz
band as described in Section 3.2 [19].

Update issues identified in the simulation
environment were taken into account when testing
with the physical UAVs. A main focus with the
ground testing was to determine if the mls node worked
properly on physical aircraft (i.e., to confirm that UAVs
could join a group and encrypt and decrypt messages
to and from other members). Data was collected from
on-vehicle log files to which summary data was written

every three seconds. Collected data includes bytes of
data encrypted and decrypted, number of messages
encrypted and decrypted, and the time in milliseconds
required to join the swarm.

Two types of MLS-related errors were encountered
during the ground tests:

1. failure to join the MLS group and

2. failure to process join or update operation
Commit messages.

These failures were all related in some way
to missed MLS messages (possibly resulting from
UDP unreliability), which in turn affected how MLS
functioned within the swarm. Reliable receipt of MLS
maintenance messages is an important requirement that
future work will need to address.

4.2.1. No MLS update performance Ground tests
were first conducted with UAV swarms that were not
issuing MLS updates. Four different swarm sizes were
tested: three members, five members, seven members,
and 10 members. Both failure types described above
were observed during the ground tests with no updates.
This is not surprising since UAVs still need to process
Commit messages associated with joins even when no
update operations are being processed. If the lossy
communications environment results in a UAV missing
one of these Commit messages, its local view of the
group will lose synchronization with the rest of the
group. As a result the affected UAV will no longer be
able to communicate with the rest of the group using the
updated group keys.

Figure 5 shows the results of the ground tests
conducted with no updates. The blue line shows that as
the swarm size grows, the average number of messages
decrypted per second per UAV grows approximately
linearly. This is expected behavior from the swarm and
supports a promising outlook for the future use of MLS
for secure swarm communications.

4.2.2. 250 message MLS update interval
After testing swarms with no updates, a
250-message-per-device interval between updates was
introduced. Based on the typical message throughput
(i.e., nine ARSENL messages per second), this interval
equates each vehicle initiating an update approximately
every 28 seconds. This interval performed the best in
the SITL environment tests, so it was assumed to be
the most likely interval to perform well on the physical
UAVs. Results indicate that the much more demanding
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Figure 5. Observed and expected decrypted

messages per second for ground tests with no MLS

updates [11].

real-world communications environment significantly
impacted the ability to conduct scheduled MLS updates
even at this interval, however.

Swarm sizes of three, four, five, seven, and 12
were tested for this interval, but unreliable MLS
message receipt made testing with updates difficult.
Communications issues among the UAVs led to multiple
ground tests that yielded no data for any UAVs in the
group. For the tests of swarm size four and seven, for
instance, not a single UAV produced a log file, indicating
a failure to join the group. Failure to join the group can
result from one of two failures. First, a UAV can get
stuck during the handshake if a packet to or from the
adding UAV is not delivered. It is also possible for a
UAV to send the join request to a UAV that is not an
active group participant (i.e., either its own join was
unsuccessful or it missed an update). This second failure
is partially a result of the ARSENL implementation in
which the task scheduler node assumes that any UAV
that has reached the flight ready state is a member of the
group. This cascading effect of UAVs failing to join the
group was not accounted for in this implementation but
should be addressed in follow-on work.

Figure 6 summarizes the results of the
250-message-per-device update interval tests. Even
among UAVs that successfully joined the group, the
results indicate that as swarm sizes increased and more
update operations were processed, UAVs were more
likely to miss processing a Commit message and lose
communication with the rest of the group. This graph
shows that as the swarm size increased, fewer messages
were decrypted on average, indicating that few UAVs
maintained synchronization with the common group
keys for the duration of the tests. As with the SITL
environment tests, this performance can be expected
to degrade even further over time as more UAVs fail

to process updates. UAV-specific logs in which some
vehicles processed more encrypted messages than
others or only decrypted messages for a portion of the
experiment reinforce this observation.

Figure 6. Observed and expected average decrypted

messages per second for ground testing with a

250-message MLS update interval [11].

In-vehicle results clearly indicate that a reliable
delivery service is required for MLS to work
with a lossy-communications swarm system such as
ARSENL’s. Both the join operation and the update
operation are heavily dependent on receipt of all MLS
maintenance messages.

Overall, the SITL environment and real-world test
results are encouraging in that they demonstrate the
ability of the swarm to successfully employ MLS
for communications security. On the other hand,
the difficulty when updates were included or swarm
size increased highlight the susceptibility of MLS to
situations in which reliable delivery of MLS messages
cannot be assured.

5. Conclusion

This work provides a proof of concept for using MLS
to provide secure communications within a swarm of
small UAVs. Results provide evidence that MLS can
perform well in a swarm and that swarm platforms are
capable of satisfying MLS computational requirements
without impacting swarm performance. However, the
results also highlight the need for future work on
mitigations for the unreliable transport channels upon
which these systems often rely.

Most shortcomings identified with the ARSENL
MLS implementation are associated with join and
update operations, which coincide with key rotation.
Given the lossiness and frequent segmentation that
often characterize swarm communications architectures,
UAVs can easily get out of synchronization with the rest
of the swarm. Once this occurs, there are few good
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options available to repair the group. This loss of key
synchronization contributed to some limitations in the
testing and verification of the mls node in the ARSENL
swarm.

The testing conducted here did indicate that a
longer period between updates works better with the
swarm architecture because of reduced overhead and
vulnerability to network limitations. Longer intervals
between updates do leave the swarm open to some
period of vulnerability if a UAV is compromised;
however, such periods may still be several magnitudes
of measure shorter than update intervals of an 802.11
session for example. Inclusion of a distribution service
that can ensure reliable delivery of MLS maintenance
messages may make it possible to conduct updates
more frequently. The MLS protocol does call for a
distribution service when used with unreliable networks,
however a swarm-suitable system was not available
for testing. Future research will need to include the
development of a such a distribution service if MLS is to
be successfully utilized with these systems. Regardless,
update interval decisions will often come down to a
trade-off between what the communications bandwidth
will allow (particularly as swarm size increases) and
what security the mission requires.
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