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Abstract

The multi-agent patrolling problem consists of
positioning agents to minimize the idleness, which
represents the time difference between two visits of a
same location by at least one agent. In the literature,
these locations are defined manually by setting static
nodes within a graph representation. However, in the
context of patrolling a continuous environment, using
static nodes cannot guarantee the coverage of the whole
environment. In this article, we propose to discretize the
continuous environment in order to generate dynamic
waypoints called interest points (IP). We prove that
these dynamic IP guarantee the coverage of the whole
environment while dealing with its topography and the
agent’s observation range. We evaluated and compared
our approach by benchmarking patrolling environment
dealing with different observation ranges. Experiments
show that dynamic IP locations are adaptive and more
efficient to locate high idleness areas compared to static
IP approach.

1. Introduction

There has been an increasing interest in using
multi-agent systems (MAS) to resolve several missions
with complex tasks. MAS are able to collaborate with
each other and adapt to the changing environment.

In this paper, we are interested in the Observation
and Patrolling Problem (OPP) using MAS. The OPP,
defined in Chahal, Belbachir, et al., 2021, is composed
of two sub-problems, the observation problem created
by Parker, 2002 and the patrolling problem defined
in Pamponet Machado et al., 2002. On one hand,
the observation problem consists of positioning agents
to maximize the number of viewed targets by at least

one agent. On the other hand, the patrolling problem
consists of positioning agents to minimize the idleness,
which represents the time difference between two visits
of a same location by at least one agent. The OPP can
be described as an exploration-exploitation dilemma.
Its objective is to merge a target tracking strategy
(exploitation) with an active search for new targets via
the patrolling problem (exploration). However, in the
observation problem, the environment is represented
in a continuous way, while the patrolling problem
is represented in a graph. Thus, a standardisation
of the environment representation is needed for the
OPP. In Chahal, Belbachir, et al., 2021, the authors
proposed to move from a graph to a discretized map,
considered as a matrix, to store idleness information.
This representation, called the discrete idleness map,
can represent a large amount of information, and it is not
trivial to determine the best locations to patrol. Thus, in
this paper, we are interested in the identification of these
locations.

In Sea et al., 2018, the authors study the context
of patrolling using a discrete representation of the
environment such as a graph, where nodes do not have
the same level of priority. Therefore, some nodes
need to be visited with a higher frequency than others.
The proposed solution is based on the graph partition
thanks to the clustering method, where each agent
patrols a specific attributed area. The authors Hattori
and Sugawara, 2021 propose an improvement of the
graph partition to balance the workload of agents
in a decentralized coordination. Assuming that the
collaboration is better in a centralized coordination
than in a decentralized one, Othmani-Guibourg, 2019
proposed a supervised learning approach to apply
a centralized patrolling strategy into a decentralized
coordination system within a graph representation.
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Thus, the agent learns to reproduce the behavior of
the agent from the centralized strategy. In C. Yan
and Zhang, 2016, the authors proposed a distributed
algorithm based on expected idleness. The objective is
to promote the efficiency of cooperation, which remains
to be fault tolerant and scalable.

However, all these works use predefined node
locations which are settled manually within a graph
representation. In the context of patrolling a continuous
environment, using static nodes cannot guarantee
the coverage of the whole environment which is
demonstrated in section 4.

In this paper, we introduce the notion of interest
points (IP), which are interesting locations to patrol.
They are placed to cover the whole environment, while
identifying places that have not been visited for a
long time, characterized by a high idleness. The
IP generation method has to be adaptable to any
environment size, any observation surface of the agents,
and be as fast as possible.

This paper is organized as follows. Section 2
states the related work on observation and patrolling
methods. Section 3 describes our used model. Section
4 defines our new algorithm for Dynamic Interest
Points generation. Section 5 presents the experiments.
Finally, section 6 concludes our work and presents some
perspectives.

2. Related work

The patrolling problem is often addressed by a graph
representation. However, in the literature, other types
of environment representation has been used. Their
formalism is designed to support patrolling method and
specific use cases. For instance, in Chu et al., 2007,
the authors propose to solve the patrolling problem
thanks to pheromone propagation and evaporation
among the agents. For this purpose, the environment
is discretized into several cells, which contains a
pheromone information. The discretization of the
environment is also used in Luis et al., 2020 for a
specific use-case: patrolling a lake with autonomous
surface vehicles. To that end, the agents are trained
with a Deep Q-Learning model. Each agent observes
two images from the gridmap with a local point of view,
to identify the already visited cell and its idleness.

In P. Yan et al., 2021, the authors proposed
to incorporate the tracking of targets with the
patrolling problem, within the Cooperative Multi-UAV
Observation of Multiple Moving Targets (CMUOMMT)
formalism Li et al., 2019. The agents are also
trained by deep reinforcement learning to process input
images thanks to convolutional neural network. Thus,

each agent observes the targets, the other agents, the
map’s boundaries and finally the map’s idleness within
the surrounding cells. However, in the CMUOMMT
formalism, both agents and targets move in a discrete
environment. In contrast to the OPP formalism,
where the environment is continuous, and a discrete
representation is used only by the agents to store the
idleness information. In Chahal et al., 2022, the authors
trained the agents to track moving targets within this
continuous environment representation. However the
work is focus on the observation problem and do not
include the patrolling one.

The main advantage of describing the environment
through a discrete map is to be closer to the topology
of the environment, compared to a graph representation.
Besides, it is possible to store the discrete map as
a matrix within the agent’s memory easily. In the
previous presented works, the agents identify interesting
locations to patrol within the discrete idleness map only
by using a machine learning method.

Within the OPP formalism, Chahal, Belbachir, et al.,
2021 proposes that agents perform both target tracking
and the patrol of the environment to find new or unseen
targets. The method, called the I-CMOMMT, is based
on a force field strategy. Each agent is attracted
by targets within its observation range, repelled by
other agents within its communication range and finally
attracted by the area with the highest idleness.

The efficiency of an OPP method depends on several
parameters such as the number of tracking agents.
In Chahal, El Fallah Seghrouchni, et al., 2021, the
authors proposed a decision-making architecture based
on machine learning to provide optimized parameters
while satisfying all the constraints set by the user for
a specific mission.

However, in the I-CMOMMT method, when agents
are able to communicate, they share and then merge
their idleness map. Therefore, by having the same
idleness information of the environment, the agents are
attracted by the same high idleness area. No previous
research, to our knowledge, has studied the possibility of
formally identifying and extracting multiple interesting
locations to patrol from a discrete idleness map without
using machine learning. In this paper, we propose a
formal solution to identify these locations, as a basis for
defining a coordination system for the distribution of the
patrolling areas.

3. The model description

The patrolling problem is defined as follows:

• S : A two dimensional enclosed area, where S ⊂
R2.
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• A : a set of m patrolling agents.

Each patrolling agent ai ∈ A (with i ∈ [1,m]) is defined
by a set of three parameters (state, obs, com).

• state contains the Cartesian position pai
∈ S of

the agent ai, and the velocity vai
, where vai

<
vamax

.

• obs is described by an observed surface so ⊂
S and the sensor’s description. The sensor’s
description includes the percentage of false
positive and false negative detections and the time
processing.

• com defines the agent’s communication
capabilities, described by a surface sc and
the communication’s limitation. The latter
includes the delay and the bandwidth’s constraint.

The OPP problem also includes a set of n targets,
with a state parameter.

In this article, we define the observation surface so
as a square, with ro half of the side square. In addition,
the environment S is approximated as a rectangle of a
size Sm × Sn (in meter).

Discretization of the environment Let df be the
discretization factor. Let M be a matrix of (Dm ×
Dn), with Dm = ⌊df × Sm⌋ and Dn = ⌊df × Sn⌋.
Thereafter, M is called the map, representing the
discretization of the environment S. Each element of the
map is called a cell. As an example, an environment of a
100×200m surface can be represented as a map of 400×
800 cells, with a discretization factor df = 4cells/m.
Therefore, a cell represents the surface 0.25× 0.25m.

A cell c(x,y) is defined by its location (x, y) in the
map M , and contains an idleness value i(x,y).

Figure 1 illustrates several scenarios to consider a
cell as observed by an agent. Thereafter, in this paper, a
cell will be considered as observed if the full cell surface
is observed, which is the scenario 1c. Therefore, the
observation range is expressed in cell unit as:

rd = min(0, ⌊ro × df − 1⌋)

And the side square ad of the observation square is
expressed by:

ad = rd × 2 + 1

As an example, let the observation surface be a
square of a side 1.5m, then ro = 0.75m. In a discretized
environment with df = 4cells/m, the observation
range is equal to rd = 2cells. As represented in figure 2,
the side square is equal to ad = 5cells.

(a) More
than 0% is
observed

(b) More
than 50% is
observed

(c) When the
full cell is
observed

Figure 1: Scenarios where a cell is considered as
observed, in white the unobserved surface and in black
the observation surface of an agent applied on the cell.

Agent 
location 

Figure 2: Illustration of the observation surface of an
agent in the discretized map.

3.1. Definitions

Idleness The idleness is defined as the time difference
between two visits of a same location by at least one
agent. In our case, a location is represented by a cell
c(x,y), and its idleness in seconds is noted i(x,y).

Neighborhood We define the neighborhood ν(c(a,b))
of a cell c(a,b), all the surrounding cells which are within
the observation range. In the context of a rectangular
observation surface:

∀x ∈ [max(0; a− rd);min(Dm; a+ rd)],

∀y ∈ [max(0; b− rd);min(Dn; a+ rd)] :

c(x,y) ∈ ν(c(a,b)))

Strong domination We define that a cell c(a,b) is
strongly dominant if and only if there are no other cells
in the neighborhood with a highest idleness i(a,b):

∄c(x,y) ∈ ν(c(a,b)) such as i(x,y) > i(a,b)

Weak domination We define that a cell c(a,b) is
weakly dominant if and only if there are no other cells
in the neighborhood with a highest idleness i(a,b), at
the exception of the already dominated cell in their own
neighborhood.
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Interest point (IP) A cell c(a,b) is an interest point if it
has a strong or a weak domination in its neighborhood.

Free cell A cell is described as free if it is not yet
dominated by any other cell in its neighborhood.

Free neighborhood A free neighborhood ν′(c(a,b))
contains all the free cells in the neighborhood ν(c(a,b)).

Full coverage The map is fully covered if each cell is
either dominated, or considered as an interest points.

∀c(x,y) ∈ IP, ∄c(a,b) ∈M such as c(a,b) /∈ ν(c(x,y))

Redundancy The redundancy is defined as the
number of cell having more than one interest point in
their neighborhood.

Surface idleness The surface idleness of a cell is the
average of all the cell’s idleness within its neighborhood,
with N the number of cells in the neighborhood:

î(c) =

∑
c(a,b)∈ν(c) i(a,b)

N

Filtered map A filtered map Mf is the result of the
convolution of the map M by a kernel ω:

Mf = ω ∗M

4. Generation of dynamic interest point

This section introduces several algorithms proposed
to generate dynamic interest points (DIP). The
algorithms are designed to ensure the full coverage of
the environment, regardless of the redundancy. The
dilemma between partial coverage and minimizing
the redundancy can be addressed in further research.
Thus, the algorithm’s objective is to position DIP in
order to maximise their idleness, to cover the whole
environment and to minimize the computation time for
the generation.

Therefore, thanks to the DIP, the agents have a tool
to identify the best locations to patrol among all the
cells of the map. By moving to these locations, the
agents will consequently tend to minimize the average
idleness of the environment. All the algorithms have
the same structure, taking as input the discrete map,
and returning as output the list of DIP. The function
free(M) returns all the free cell of the map M , while
the function max(M) returns a list of all the cells with
the same highest idleness value.

Iteration among free cells (IFC) The algorithm goes
through all the free cells, one by one, to identify if the
cell dominates the other surrounding free cells. In this
case, the cell is considered as a point of interest. After
the whole iteration, if there are remaining free cells in
the map, then it performs a new iteration until there are
no more free cells.

Algorithm 1 IFC

Input: M
Output: IP

1: repeat
2: for each free c(x,y) ∈M do
3: if c(x,y) dominates ν′(c(x,y)) then ▷ Check

for weak domination
4: IP.append(c(x,y))
5: end if
6: end for
7: until No free cells

Single iteration among highest idleness (SIHI) The
algorithm identifies the highest idleness among all the
free cells in the whole map M . In case of several cells
having the same high idleness, then the algorithm selects
the first element as an interest point. The algorithm
repeats this process until there are no free cells left.

Algorithm 2 SIHI

Input: M
Output: IP

1: repeat
2: M ′ ← free(M)
3: listmax ← max(M ′)
4: c(x,y) ← listmax(1) ▷ Select the first element

of the list
5: IP.append(c(x,y))
6: until No free cells

Double iterations among highest idleness (DIHI)
The algorithm has the same process as the SIHI
algorithm. However, in the case of several cells having
the same high idleness, the algorithm will iterate among
those cells to consider them as interest points, at the only
condition that the cell is not already dominated.

Coverage proof The algorithms loop through the
remaining free cells, which are the cells not yet
dominated by at least one interest point in their
neighboorhood. However, there is necessarily at least
one cell with a strong or weak dominance in the
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Algorithm 3 DIHI

Input: M
Output: IP

1: repeat
2: M ′ ← free(M)
3: listmax ← max(M ′)
4: for each free c(x,y) ∈ listmax do
5: IP.append(c(x,y))
6: end for
7: until No free cells

neighborhood of the evaluated free cell. Therefore,
the algorithms guarantee a coverage of the whole
environment by the interest point, where each cell is
either dominated or is an interest point. The experiments
conducted in the next section confirm this intuition.

Illustration of the IFC algorithm Figure 3 represents
several stages of the IFC algorithm for a 7 by 7 cells
map, where idleness values are randomly set between 0
and 100s. In this example, the observation is a 5×5 cells
surface. The IFC loops on the other free cells, from top
to bottom, from left to right. At the first iteration, the
top left cell with a 42 idleness value is selected. In its
5 × 5 neighboorhood, the cell is already dominated by
an idleness of 97, so the first cell is not an IP. Thus, each
cell is evaluated until a dominant cell is found. In the
step 3b, a first dominant cell is found and becomes an
IP, making all the cells in its neighborhood dominated.
The step 3c shows the IP found after iterating all the
other cells. However, some cells remain free, leading to
a new loop to find other IP. For instance, the value 85
is not a strong dominant, because in its neighborhood,
there is an idleness value 95. But during the second loop,
by considering only the free cells, the idleness value 85
is a weak dominant and thus is considered as an IP.

5. Experiments

In this section, the algorithms proposed are firstly
evaluated considering the time used to generate the
dynamic interest points. Then a solution is proposed
to consider the surface idleness instead of the cell’s
idleness. Thereafter the dynamic interest points are
compared with the predefined static interest points on
a benchmarking environment. The evaluated metrics are
the coverage of the environment and the surface idleness
of the interest point. Finally, the dynamic interest points
generated are evaluated regarding the redundancy of the
observation.

The algorithm and the experiments are available on

42 3 72 42 676846

9 6 97 9 88 29 85

60 32 53 26 52 67 34

47 53 32 15 95 70 78

70 66 10 28 64 6 68

70 41 61 44 96 25 0

64 82 78 53 24 22 60

(a) Idleness cells value of a
random map M (7× 7 cells).

42 3 72 42 676846

9 6 97 9 88 29 85

60 32 53 26 52 67 34

47 53 32 15 95 70 78

70 66 10 28 64 6 68

70 41 61 44 96 25 0

64 82 78 53 24 22 60

(b) First strong domination
found, considered as IP.

42 3 72 42 676846

9 6 97 9 88 29 85

60 32 53 26 52 67 34

47 53 32 15 95 70 78

70 66 10 28 64 6 68

70 41 61 44 96 25 0

64 82 78 53 24 22 60

(c) All the strong dominant
cells found, but some free
cells remains.

42 3 72 42 676846

9 6 97 9 88 29 85

60 32 53 26 52 67 34

47 53 32 15 95 70 78

70 66 10 28 64 6 68

70 41 61 44 96 25 0

64 82 78 53 24 22 60

(d) Environment fully covered
by IP with the final weak
dominant cell found.

Figure 3: Illustration of several stages of the IFC
algorithm. Dominated cells are in grey, weak dominant
IP in diamond, strong dominant IP in circle.

Github1.

5.1. Step 1: Algorithm comparison

As a first step, the three algorithms have been
tested to evaluate the time used to generate the
dynamic interest points. It is interesting to note that
experimentally, the three algorithms generate exactly the
same dynamic interest point regardless of the size of the
environment, its topography or the observation range of
the agents.

Table 1 shows the average time processing, in
seconds, for several observation range. The map is
considered as a square, defined by a map side. Each
configuration evaluated is run 100 times. For each run,
the map generated is composed by cells with a random
idleness value between 0 and 100.

The experiments are conducted on a computer with
an i5 9th generation 2,40 GHz processor, with Matlab
2022a.

As highlighted in table 1, the algorithm DIHI
(algorithm 3) shows the best performance regarding

1https://github.com/JamyChahal/dynamic interest point
generation
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Table 1: Average time processing, in seconds, for the
dynamic interest point generation algorithms. cu stands
for cell unit.

Obs.
range (cu)

Map
size
(cu)

IFC (s) SIHI (s) DIHI (s)

3 30 1,6e-02 8,2e-04 7,9e-04
5 30 1,7e-02 2,8e-04 2,7e-04

10 30 1,6e-02 1,3e-04 1,2e-04
3 50 7,5e-02 2,6e-03 2,5e-03
5 50 8,0e-02 9,9e-04 9,7e-04

10 50 9,2e-02 3,4e-04 3,4e-04
3 100 1,3e+00 2,8e-02 2,3e-02
5 100 1,4e+00 1,0e-02 9,9e-03

10 100 1,4e+00 2,7e-03 2,6e-03

the calculation time, compared to the other proposed
algorithm. The IFC is time consuming by checking
all the free cells one by one, then computing the
neighborhood’s boundaries and finally comparing the
idleness values of the cell with the cells in the
neighborhood. In contrast, SIHI and DIHI assume
that global maximum idleness are also local maximum
idleness in their neighborhood. Therefore, identifying
layer by layer the highest idleness among the free
cells to directly find the interest point. And this
without the need to perform a check of the dominance
in their neighborhood. Futhermore, the SIHI and
DIHI calculation time are boosted by the max Matlab’s
function, which is performed by a multithread process.

5.2. Step 2: From cell idleness to surface
idleness

When an agent is on an interest point, it observes not
only the interest point’s cell, but also all the cells within
the neighborhood of the interest point. Depending on
the use case, the location of the dynamic interest point
might consider the maximization of the surface idleness
î(x,y) instead of the idleness cell itself i(x,y). However,
the generation of DIP maximizes only the cell idleness
with the original map idleness as an input.

Our proposition to maximize the surface idleness,
instead of the cell idleness, is to filter the original
map before the generation of the DIP. The filtering is
performed thanks to a convolution. We propose an
average kernel ω, with the same shape as the observation
surface. In the case of an observation surface as a square,
with a side square ad, the kernel is defined as:

ω =
1

a2d
ones(ad, ad) (1)

The function ones is a all-ones matrix, with ad rows
and ad columns.

Table 2: Comparison of average idleness (i(c)) and
surface idleness (̂i(c)), with and without filtering the
map idleness, named Mf and M respectively. cu stands
for cell unit.

Obs.
range (cu)

Map
size (cu)

Avg. (i(c)) Avg. (̂i(c))
M Mf M Mf

3 30 84,8 41,7 49,1 52,9
5 30 91,6 43,2 49,6 51,6

10 30 96,5 44,9 49,9 50,5
3 50 85,0 41,5 49,0 53,1
5 50 91,8 43,2 49,6 51,9

10 50 96,7 45,5 49,9 50,8
3 100 85,2 41,5 49,0 53,3
5 100 92,0 43,2 49,6 52,2

10 100 96,9 45,5 49,9 51,1

Table 2 presents the average idleness and surface
idleness of the IP, for several configurations of
observation range and map shape. The result of each
configuration is the average of 1000 evaluations, where
the cells have a random idleness value between 0 and
100. IP generated from the original map M , without
filtering, have a higher average cell idleness compared
to the filtered map Mf . Though, the filtered map tends
to maximize the average surface idleness covered by the
IP.

Therefore, filtering the original idleness map
generates better IP location for the case where the IP
has to be placed to maximise the idleness covered by
the observation surface. The following experiment steps
considers only the surface idleness case.

5.3. Step 3: Predefined vs dynamic interest
point

In De Luna Almeida et al., 2004 the authors
proposed benchmarking patrolling graphs, with several
environment configurations such as a circular, a grid or
an island map. These graphs are used as a reference to
compare patrolling methods.

In the following section, the map A has been selected
to evaluate our dynamic interest point generation with
the static predefined interest point. Figure 4 illustrates
the discretization of the map A into a 802 x 651 cells
bitmap, where black cells represent obstacles. However,
in De Luna Almeida et al., 2004, the size of the map A
is not specified. Therefore, a cell represents an arbitrary
surface of the environment.

Based on this map discretization, figure 5 illustrates
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Table 3: Coverage of the environment by predefined interest point (pip) and dynamic interest point (dip) for several
observation range.

Observation
range (cell unit)

PIP
DIP outside

obstacles
DIP over
obstacles

Cells not
covered

Number of
IP

Cells not
covered

Average
number

of IP

Cells not
covered

Average
number

of IP
10 68,13% 50 0% 354,68 0% 399,87
15 39,30% 50 0% 169,70 0% 182,30
20 18,46% 50 0% 98,30 0% 102,32
25 7,43% 50 0% 65,88 0% 66,20
30 2,30% 50 0% 46,65 0% 46,75
35 0,89% 50 0% 33,14 0% 33,47

(a) Original map A. (b) Bitmap of the map A.

Figure 4: Bitmap environment generation, inspired by
the map A from De Luna Almeida et al., 2004.

the arrangement of the interest point for a specific
observation range in both static (5a) and dynamic
cases (5b and 5c). We make the assumption that an
agent requires to stop at a location, and not be in motion
in a predefined path, in order to view and analyze the
environment through its sensors. Figure 5b assumes
that dynamic interest point location is only outside the
obstacle, while figure 5c considers another use case,
where agents are able to fly over the ground obstacle.
In this example, the static IP does not cover the whole
environment, as shown in 5a by the presence of orange
areas remaining uncovered by any IP. Therefore, in the
case of the patrolling and observation problem, smart
targets could stay on the orange areas to avoid being
detected or tracked. The only way to discover the target
would be, by chance, that an agent passes through the
orange area when going from one static IP to another.
Meanwhile, the dynamic IP generation covers the whole
environment, as shown in 5b where all the cells are
green, so covered by at least one IP.

The coverage by dynamic IP generation is
guaranteed regardless of the observation range, as
illustrated in table 3. For the same environment map
A, the table represents the average coverage of 1000
experiments for each evaluated observation range. Each

(a) Observed area with
predefined interest point.

(b) Observed area with
dynamic interest point.

(c) Observed area with dynamic interest point flying over ground
obstacle.

Figure 5: Illustration of the covered area (in green) by
the interest point (in red V) with an observation range of
20 cells. Uncovered cells are in orange.

experiment generated random idleness values for each
cell, ranging from 0 to 100. Studying the average of
experiment results is needed, because while the static
IP locations are always the same, the dynamic IP takes
into account the idleness cells value to be placed. The
table 3 also shows that the number of dynamic IP
needed to cover the environment decreases when the
observation range increases. Thus, for the map A, when
the observation range of an agent reaches 30 cells, then
the number of required DIP in average is less than the
original number of PIP.

The dynamic IP must be positioned to cover the
whole environment, as opposed to the static IP, but
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Figure 6: Empirical Probability Density Function (PDF) of the surface idleness (y-axis) by the interest point (x-axis)
for several observation range.

also to identify the area with a high idleness. To
evaluate the identification of interesting areas to patrol,
the same experimental process as the previous coverage
experience was used with the map A environment.

Figure 6 represents the empirical probability density
function of the 1000 experiments for each observation
range evaluated to compare the predefined and the
dynamic IP. The x-axis displays the surface idleness, to
be maximized, while the y-axis shows the probability
that the IP has the surface idleness value. The predefined
interest points are represented in a dotted line, the
dynamic interest point outside an obstacle in a solid
line and the dynamic interest point which may be on
obstacles on a dash-dotted line. The density function is
performed thanks to kernel density estimation proposed
in Matlab.

The distribution of the surface idleness is more
concentrated towards high idleness for the DIP compare
to the PIP. This observation is confirmed on the last
peak on the right, where a large number of DIP covers a
higher surface idleness than the PIP’s peak. Therefore,
we can conclude that the dynamic interest points have
a higher surface idleness, regardless of the observation
range, compared to the predefined interest point for this
specific environment. Regarding the surface idleness
between DIP on obstacles, and DIP outside obstacles,

the difference in the map A is not significant.

5.4. Step 4: Redundancy

The dynamic interest point algorithm generation is
designed to cover the whole environment as well as
maximizing the idleness covered by the IP, regardless
of the redundancy of the environment. However, it is
interesting to analyze the impact of the environment size
and the observation range on the redundancy.

Table 4: Average of redundancy ratio for several
configuration.

obs.
range

map size
100 250 500 700

3 0,72% 0,73% 0,73% 0,73%
5 0,79% 0,79% 0,79% 0,79%

10 1,00% 1,00% 1,00% 1,00%
30 0,89% 0,86% 0,86% 0,85%
50 0,74% 0,87% 0,87% 0,86%

Table 4 displays the redundancy ratio, which is the
number of redundant cells divided by the number of
cells in the map, for several configurations. The map
is represented as a square, free of obstacles, defined by
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a map side in cell unit. The observation range is also
in cell unit. For each configuration, 1000 experiments
are run, where each cell of the map takes a random
value between 0 and 100. From this experience, the
maximum ratio of cells having more than one interest
point in their neighborhood is equal to 1,00%. The
map size parameter seems to have almost no influence
in the redundancy ratio, in contrast with the observation
range parameter. However, other parameters such as the
topology of the environment, including the obstacles,
may have an influence on the redundancy.

6. Conclusion and future works

In this paper, we identify areas to visit in the problem
of Observation and Patrolling. In this formalism,
agents seek to maximize target tracking, called the
observation problem, as well as continuously covering
the environment to find unseen targets, called the
patrolling problem. For the target search, agents try
to reduce the time between two visits of the same area
as much as possible. The elapsed time, called the
idleness, is stored in a matrix obtained through a discrete
environment representation, and is called the map of
idleness. This map is known locally by the agent within
a distributed coordination system.

In contrast with a graph representation, where the
areas to visit are fixed and predefined, there is no method
to our knowledge in the literature to identify several
areas to visit based on this map idleness.

In this article, we proposed three algorithms
to generate dynamic interest point (DIP). We first
compared three proposed algorithms regarding the
average of processing time to generate DIP. The selected
algorithm with the best performance is the DIHI (alg.
3). Then, we have shown experimentally that filtering
the idleness map thanks to the convolution of an
average kernel improves the maximization of the surface
idleness covered by the DIP.

Afterwards, we compared the DIP location with
predefined IP location from a benchmarking patrolling
graphs. In the evaluated environment, the static IP does
not guarantee the coverage, while their location covers
a lower surface idleness compared to the DIP. Finally,
we studied the redundancy ratio of the DIP, which is
the number of cells having more than one IP in its
neighbourhood, divided by the number of cells in the
map.

As a future work, because agents have a method to
identify areas to patrol in a continuous environment,
alongside an idleness value for each area, we are
interested in their coordination to perform patrolling
missions. Furthermore, the dilemma between

maximizing idleness of the IP while minimizing
redundancy is also an issue that has been raised.
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