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Abstract 

 
In this research, we developed a novel approach to 

enable a dynamic cyber risk management strategy as the 

dynamic nature of cyber risk is rarely considered in 

current decision support tools. Our explorative case 

study shows that many management challenges such as 

investment decisions, priority setting, and “shelf time” 

analyses can be continuously analyzed. Our research 

using system thinking and modelling provides valuable 

insights about these challenges to support current 

strategic decision-making practices and improve 

managerial learning. These insights enable 

management to identify and analyze the effectiveness of 

future cyber risk management strategies before 

implementing them. 

 

Keywords: strategic cyber risk analysis, cyber risk 

management strategies, simulation, system dynamics, 

continuous risk management. 

1. Introduction  

During the last decade, multiple organizations 

emphasized the need for more adequate investments in 

cyber risk management strategies (Marks, 2021; EC, 

2021). Despite this, organizations remain vulnerable to 

cyber threats, as evidenced by recent cyber threats that 

affected Kaseya (Kari, 2021), SolarWinds (Jibilian & 

Canales, 2021), and Colonial Pipeline (Turton & 

Mehrotra, 2021).  

Meanwhile, cyber risk management frameworks, 

standards, laws and legislations, and other supportive 

tools have been evolving. For example, breach 

notification legislation, data protection acts, security 

directives, the ISO 27000 series, the NIST framework, 

MITRE Att&ck and D3fend, C2M2, OWASP, and CIS.  

Although many approaches to strategic cyber risk 

management are available (Moore et al., 2016), as well 

 
1 defense choices include identification, prevention, detection, 
response, and recovery (NIST 2018). 

as the knowledge about effective security management 

(Kwon & Johnson, 2014), defenders’ security 

performance still lags the evolution of cyber threats and 

advancing skills of adversaries. This paper is about 

improving strategic cyber risk management by using 

simulation techniques. 

2. Cyber risk and decision-making 

Management needs to significantly improve cyber 

strategic and operational defense choices
1
 to address the 

growing gap between offense and defense (SCAN, 

2022; Kagubare, 2022). Executives and senior 

management use decision support tools for analyzing 

and managing cyber risks. For example, approaches for 

allocation and prioritization are based on adherence to 

frameworks (such as NIST, C2M2 etc.), positioning in 

comparative benchmarks, adherence to legislation and 

acting after suffered breaches (Moore et al., 2016). 

Although some available tools and approaches can 

handle more complexity (Wang et al., 2020), they still 

have limitations (Woldhuis et al., 2019). They are static 

and thus do not account for the dynamic nature of cyber 

risk (Falco et al., 2019; Homeland Security 2018). The 

dynamic nature of cyber risk can be recognized in, for 

instance, evolving adversary tactics and skills, shifting 

organizational priorities, emerging security events, 

changing budgets, and new technology (Zeijlemaker, 

2022). The complex dynamic nature of cyber risks 

cannot be covered by traditional risk management 

approaches (Lambert et al., 2013; Linkov et al., 2014).  

To capture this nature of cyber risks in decision-

making, we used a System Dynamics approach to 

develop a simulation tool that mimics the cyber risk 

management eco-system. The purpose of this is to 

explore how simulation techniques can augment the 

static approaches for cyber risk management decision -

making. System Dynamics has rarely been used in the 

field of cyber risk (Jalili, 2019; Zeijlemaker, 2022). 
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Unlike the real world, where a bad choice may cause a  

business to fail, simulations allow managers to test how 

their cyber risk management strategy decisions evolve 

in real life (Jalali et al., 2019; Armenia et al., 2018).  

These insights can be used for feedback on the 

intended decisions and actions that are planned as a 

follow-up. A simulation shows the effectiveness of a 

strategy before making the necessary investments. 

These forward-looking simulations allow for 

continuous evaluation of future strategic cyber risks. So 

far, recent research has focused on security operations 

(Genge et al., 2015; Kannan, & Swamidurai, 2019), 

specific capabilities (Nazareth & Choi 2015) or 

advocate the need for quantitative strategic modelling 

(Xu, 2014; Medoh, & Telukdarie, 2022; Khan et al 

2022). 

2.1 To be in control of cyber risk 

Cyber risk management frameworks conceptualize 

the interconnectedness of threat, risk, security measures, 

and consequences of impact (Graubart & Bodea, 2016; 

ISACA, 2015; NIST, 2018). In this context, the purpose 

of cyber risk management is threefold: (1) bringing the 

exposure of the organization to known and unknown 

threats to acceptable levels (Eling et al., 2021), (2) 

supporting the priority setting of the investments in the 

security program (Paté-Cornell et al., 2018), and (3) 

justifying resources and budgets that are allocated to the 

security function (Paté-Cornell et al., 2018; Moore et al., 

2016). These acceptable levels are often conceptualized 

as being within the organization’s risk appetite (Eling et 

al., 2021; COSO, 2004).  

Risk management provides the concept of “being in 

control”. An organization is in control if it has 

reasonable assurance of its capability to adjust its 

performance timely through its management control 

system when this performance is outside a predefined 

boundary (Paape, 2008; Strikwerda, 2005; COSO, 

2004). These boundaries are often predefined by 

decision-makers and represent the risk the organization 

is willing to take, often referred to as risk appetite (Eling 

et al., 2021; COSO 2004). 

 
Figure 1. Dynamic risk management in terms of 
performance behavior over time (Zeijlemaker, 2022) 

 

Figure 1 (Zeijlemaker, 2022) shows the past and 

future behavior of a performance indicator that is 

expected to go outside the risk appetite boundary under 

the current policies. Timely risk management policy 

interventions (risk mitigation) bring the performance 

within these boundaries (acceptable risk appetite). 

Another simulation run (performance after simulation in 

Figure 1) provides such assurance.  

2.2 Dynamic cyber security capabilities 

Organizations invest in security measures to limit 

the effect of cyber threats. These security measures can 

be seen as capabilities. A capability is the ability of the 

organization to prioritize and deploy its resources–

people, processes, and technology– to deliver 

performance (Jalali et al., 2019; Teece, 2018). The 

dynamic nature of cyber risk requires organizations to 

rapidly reconfigure its resources for aligning the 

capabilities with the changing internal and external 

environment. For these dynamic capabilities speed and 

degree of alignment are essential (Teece, 2018).  

In terms of cyber risk management investment, a 

decision about security capabilities involves two 

aspects: (1) the extent to which security capabilities can 

improve maturity or; (2) the extent to which security 

capabilities have sufficient resources to cope with 

current workload caused by the rapidly changing 

external and internal environment. Decision-makers are 

often biased to make decisions that yield immediate, 

easy-to-observe gains at the expense of long-term, hard 

to measure, capability maturity improvements 

(Sterman, 2001). What results is that organizations find 

themselves trapped “in a downward spiral of eroding 

process capability, increasing work hours and less and 

less time for improvement”. (Repenning & Sterman, 

2002, p. 282).   

3. Model design and validation 

System Dynamics is originated in the 1950s and 

grounded in system thinking and control theory. The 

method has been known for capturing and analyzing 

complex dynamics problems (Sterman, 2000; Duggan, 

2016). Complex systems demonstrate counter-intuitive 

behavior that arise from the interactions between their 

agents and components (Sterman, 2006; Forrester, 

1971).  

Over the last 60 years the field had a strong 

methodological development (Martinez-Moyano & 

Richardson, 2013, Randers 2019). Besides limits to 

growth System Dynamics has many applications in 

business, social organizations, and society (Randers 
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2019),  referred  to as case studies (Randers 2019, 

Sterman 2003).  

Our research was conducted with a European 

Fortune-500 organization using a System Dynamics 

group modelling approach. For the purpose of 

anonymization, this organization is called Smart Wealth 

Management Inc. (20,000 employees and 40,000 end-

user devices and servers).  

The group model process contributes to achieving 

consensus and shared understanding (Vennix, 1996). In 

this process, the modeler has a facilitating role and 

builds the model together with the experts. The experts 

with their issues and organizational focus have 

experience with the real eco-system (Ford & Sterman, 

1998). We used three group sessions with highly 

experienced security consultants, business consultants, 

product owners, and behavioral security specialists with 

global domain responsibilities to construct the model. 

We used a phased model-building approach. The 

parameters for our model are based on open-source 

external data sources, scientific papers, and case study 

data. We used the Vensim software for building the 

model and SDM-Doc for documentation purposes. 

The model structure has three important sub-model 

structures: (1) the lifecycle of a security capability, (2) 

the defense-in-depth approach, and (3) spillover effects. 

We explain the structures at an aggregated level because 

the model has over 350 variables and 7800 feedback 

loops. Mathematical details on model core structures 

can be requested from the authors. 

3.1. The lifecycle of a security capability  

A System Dynamics approach is well-known to 

analyze the aspect of a lifecycle of a capability 

(McAvoy et al., 2021) and is related to the capability 

trap (Repenning & Sterman, 2002). The systemic 

structure of the lifecycle of a security capability is 

visible in Figure 2.   

 
Figure 2. Security capability 

  

Employees are needed to improve the maturity of 

a security capability from the present to the desired 

level. These employees integrate, build, and reconfigure 

resources –people, processes, and technology– to 

increase the maturity of the capability and deliver better 

security performance. Meanwhile, a daily workload 

needs to be handled, like emerging vulnerabilities that 

require patching, supplier onboarding, employee 

onboarding and training, management of changes and 

acting on emerging incidents. A lack of maintenance 

employees delays this workload and causes the maturity 

of the capability to decline because agreed controls and 

procedures are not properly executed.  

Our model recognizes a four-tier maturity level 

structure ranging from no measures at all (Tier 1) to a 

highly sophisticated, strong, matured, and fully 

implemented capability for a large enterprise (Tier 4). 

This tiered maturity approach is like CIS, C2M2 or 

CMMC but can easily translated to other security 

frameworks. In our case study, we used Smart Wealth 

Management’s internal capability assessment 

supplemented with their security resource assessment 

and IT security risk control reports. This information, 

complemented by interviews, was an important input to 

the parameters of the model and provided insights into 

effectiveness of security capabilities. We applied this 

approach to the following capabilities: asset 

management, vulnerability management, threat 

detection, identity and access management, workforce, 

incident response, service provider management, and 

network protection.  

3.2 Defense-in-depth 

The defense-in-depth approach has measures 

against the adversary across different organizational 

dimensions and if one measure fails, another will be in 

place to thwart an attack (Groat et al, 2012; NIST, 

2015). The adversary launches attacks against the 

defender. Successful attacks evoke more attacks due to: 

(1) the adversary achieves his goals and continues to do 

this (Huang et al., 2019) and (2) conjugation effect 

(Baldwin et al., 2016), and (3) word-of-mouth effect 

mobilize more adversaries to attack (Zeijlemaker 2022). 

Prevented attacks contribute to adversaries’ innovation 

(long-term effect) or attacking other targets (short-term 

effect) (Zeijlemaker 2022). For the defender, there is an 

opposite effect. The defender will improve its defenses 

when the attacker becomes successful (Martinez-

Moyano et al., 2015) either reactively–after an observed 

successful attack–or proactively, based on observed 

emerging attack behavior (Böhme & Moore, 2016). The 

defender’s improvement takes time due to the decision-

making and implementation efforts. Our model 

recognizes four possible points of entry for the 

adversary: servers connected to the internet, 

compromised (user) accounts, end-users’ email and web 

browsers, and unmanaged assets (MITRE 2018).  

The adversary needs to circumvent multiple 

defensive measures and exploit multiple weaknesses to 

impact critical assets of the defender, wherein insecure 

behavior of unaware employees has a key role 

(BakerHostetler, 2016). Aware employees are essential 
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because they know how to protect themselves and how 

to react in the case of a cyberattack (Pattison et al., 2012; 

CIS, 2021; NIST, 2018). Although unaware employees 

can learn through mistakes, incidents, scheduled 

training, and knowledge-sharing sessions, their 

knowledge decays over time due to reasons such as 

security fatigue, knowledge decay in the workplace, or 

just forgetting problems and topics (Parkin et al, 2016; 

Cram et al, 2021). Besides, the adversary tries to fool 

employees by targeted phishing campaigns or 

sophisticated malicious emails, attachments, or 

websites.  

 
Figure 3. Defense-in-depth  

 

Ultimately, the adversary may reach the asset base 

of the defender. In terms of cyber risk, assets go through 

four different stages (Jalili et al., 2019; Sepulveda Estay, 

2021; Zeijlemaker, 2022): (1) susceptible assets that are 

compromised by the adversary become an unknown 

compromised asset, (2) after detection, unknown 

compromised assets become known compromised 

assets, (3) responsive actions by the defender mitigate 

the effects of the attack and become resolved assets, and 

(4) resolved assets are packed in production as 

susceptible assets. In this sequence, isolation is 

important for limiting adversary activities (Torres, 

2014) because unknown compromised assets can 

compromise more susceptible assets due to lateral 

movement or automated epidemic malware properties 

(e.g., worms). The defense-in-depth approach is 

visualized in Figure 3.  

3.3. The spillover effects 

Spillover effects are related to the fundamental 

tension between efficiency and resilience (Hall et al., 

2013). Resilience requires spare capacity, duplication of 

resources, loosely coupled systems, and layered 

defenses. Improving efficiency means eliminating them 

(Hall et al., 2013).  
Consequently, there are limits to the effectiveness 

of incident response capacity (Wiik et al., 2005) and 

reducing this capacity may draw even more resources to 

this process (Van den Eede, 2006). When the limits of 

response and recovery capability are reached, the impact 

of the security incidents “spill over” to other IT teams 

because those teams need to contribute to solving the 

problems at hand as well. Initially, additional resources, 

including senior management,  are temporarily moved 

from maintenance and support to incident response, but, 

ultimately, project delivery capacity can be drained too. 

A “spillover” effect has an enormous impact because 

staff performance is harmed by switching tasks 

(Hamann et al., 2013), working harder (Sterman, 2000), 

and working longer (Sterman, 2000) under pressure. 

The spillover effect is visualized in Figure 4.  

 
Figure 4. Spillover effects  

 

3.4 Model validation 

Over the years System Dynamics evolved in 

providing strong methods to model validation (Forrester 

& Senge, 1980; Barlas, 1996; Sterman, 2000). 

First, we had two validation sessions with security 

architects where the boundary and structure of the 

model were discussed and accepted. A part of these 

sessions was detailed model walk-throughs based on 

real-world security incidents as well as model structure 

cross-checks with relevant enterprise architecture 

design documents. These documents give insights into 

the design and coherence between different components 

of the organization–people processes and technology 

and how there are used for strategic intent (Jonkers et 

al., 2006; IEEE 1471, 2000; Sowa & Zachman, 1992). 

Strong alignment (Warren, 2015) with enterprise 

architecture enables re-usability of the model (Sowa & 

Zachman, 1992). In the case of model re-usage, most 

adaptations of the model to different organizations 

should be resolved by changing parameters.  

 
Figure 5. Reference mode versus model output  

 

Second, the model can replicate the reference 

mode, a 12-month trend of the number of security 

incidents of our case study organization. Figure 5 shows 

the historical data of the organization, the model output, 

and evaluation statistics (used Theil’s U and Theil 
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Inadequate Statistics). Theil’s U is below 1 which 

indicates that the forecast provided by the model is 

accurate (Theil, 1966). Theil Inadequate Statistics 

shows that the difference between model and real data 

is mostly explained by noise (Uc = 0.6) and limitedly by 

errors in the model structure (Us = 0.1) or errors in 

model parameters (Um = 0.3) (Sterman, 2000). The high 

level of noise can be explained by the emerging and 

uncertain nature of security incidents. 

4. Results 

In this section, we explain the reference mode run of 

Smart Wealth Management Inc., which is a 60-month 

forecast based on the existing cyber risk management 

strategy. Thereafter, different subsections focus on 

exposing threats to the organization, priority setting in 

the security program, and reflection on the case study. 

4.1. Reference mode run 

Figure 6 shows three output graphs on the reference 

mode run. The “security resources required” graphs are 

a forecast of the number of security resources needed. 

After the major breach that occurred in month 40, 

additional security resources are needed for incident 

response and recovery. The “security incidents” graph 

shows the number of non-aggregated security incidents 

per month. The spikey nature of incidents is visible. The 

“resource state diagram” graph shows how IT, and 

security resources evolve over time. The spillover 

effects are visible where project delivery resources are 

reallocated to maintenance & support teams. The 

additional response and recovery workload are 

represented by the higher resource levels of 

maintenance and support. Each graph contains 12 

months of historical data and 60 months of forecasted 

data. We call this run base because, in the scenario 

analyses, we will compare this run to the outcome of 

other simulated runs. 

In Figure 6, the “resources state diagram” graph 

shows that spillover effects start around month 20 and 

occur more frequently and strongly with time. This 

suggests a limited ‘shelf-time’ for the current cyber risk 

management strategy. The “security incidents” graph 

indicates a major breach around month 40, impacting 

approximately 25% of the asset base. This suggests that 

Smart Wealth Management Inc. is susceptible to 

advanced cyberattacks with epidemic properties or 

significant major lateral movement. When looking at the 

risk appetite line, the number of incidents crossed that 

boundary three times. This suggests that the current 

cyber risk management strategy is too risky. The risk 

appetite line has been established based on interviews 

with senior management. They tolerated a small 

increase because of continuous digitalization and 

growth in adversarial activities. 

 
Figure 6. Evaluation graphs reference mode 

 
The “security resources required” graph shows an 

oscillating pattern of staff, which suggests that 

capability decline takes place, and some improvement 

investments are made after impacting breaches.  

Additionally, a major increase in resources after month 

40 is visible. 

4.2. Supporting priority setting 

Table 1 shows the decisions taken per alternative 

scenario for two cases, both involve setting priorities for 

investing in security capabilities. The following cases 

are described similar as strategic dialogues with 

senior and executive management. 

 

4.2.1. Case 1: prioritizing investments 

 

Following an assessment, Smart Wealth 

Management Inc. identified both incident response and 

asset management as requiring improvement which start 

over 12 months. In such a situation, management has 

three options: (1) invest in asset management (Scenario 

1), (2) invest a bit in both (Scenario 2), or (3) invest in 

incident response (Scenario 3). Figure 7 shows the 

results of the simulation of Scenarios 1–3 and an 

explanation is provided above the figure. 
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Table 1. Cyber security maturity scores per scenario 
* = additional efforts in network segmentation. ** = additional 
efforts in anomaly detection 

 

Investment in incident response (Scenario 3) 

contributes to faster and better response processes but 

does not significantly lower the number of the incidents. 

Investment in asset management (Scenario 1) lowers the 

number of vulnerabilities that can be exploited by those 

assets. Consequently, this lowers the number of 

incidents because fewer unmanaged assets can be used 

as an entry point for the adversary. When doing a little 

bit of both, the effects of both scenarios are averaged. 

Therefore, the “security resources required” graph and 

the “cumulative security incidents” graph in Figure 7 

show that investing in asset management yields the best 

results (the lowest number of incidents and resources 

required). The “resource state diagram” graph shows the 

favored situation (Scenario 1). This figure shows that 

spillover effects become visible from month 40. This is 

a delay of 20 months compared to the base run (see 

Figure 6). 

4.2.2. Case 2: proactive learning and segmentation 

Smart Wealth Management Inc. has correctly 

stabilized and prioritized the roadmap, which means that 

Scenario 1 will be implemented. Around month 40, the 

cyber risk management strategy is not stable anymore 

because security incidents go up and “spillover” effects 

appear around month 40, as shown in Figure 8. The next 

challenge is resolving this issue. Improvement will take 

place after 10 months in the simulation. 

Management has four options to address these 

issues: (1) contribute to focusing on incident resolution 

(based on the optimal outcome of case 1), (2) invest in 

incident evaluation (Scenario 4), (3) focus on 

understanding threat environment (Scenario 5), and (4) 

hunt for abnormal behavior based on an understanding 

of the threat environment (Scenario 6). 

 

  
Figure 7. Evaluation graphs case 1 

 

Figure 8 shows the results of the simulation of 

Scenarios 4–6. 

 
Figure 8. Evaluation graphs case 2 

 

In Figure 8, the “security resources required” 

graph and the “cumulative security incidents” graph 

show the best results are realized by Scenario 6: 

“hunting for anomalies based on an understanding of the 

threat environment”.  

A focus on incident resolution implies ‘working 

harder’ and yields similar output as Scenario 1. Scenario 
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1 is not visible in Figure 8 (see Figure 7 for Scenario 1). 

Investing in incident evaluation (Scenario 4) shows 

some improvements. Incident evaluation means that 

post-mortem analysis is executed after security 

incidents and defense improvements are done as follow-

up. This is called reactive learning, because these  

improvements prevent similar incidents from happening 

again. Reactive learning yields higher use of resources 

because the defender must resolve the incident, recover 

from its impact, and invest in defense improvements. 

Understanding the threat environment (Scenario 5) is 

proactive learning. This is done using  threat 

intelligence, the synthesis of information detailing 

potential threats with a solid understanding of network 

structure, operations, and activities (Chismon & Ruks, 

2015). Proactive learning contributes to defense 

improvement (Martinez-Moyano et al., 2015), near 

online real-time threat assessment (Riesco & Villagrá, 

2019), and near online real-time event-evaluation 

(Riesco & Villagrá, 2019). It contributes to a higher 

number of prevented attacks because the defender 

already anticipates to the attack before it happens. 

Compared to Scenario 5, Scenario 6 had an additional 

focus on anomaly detection and segmentation. Anomaly 

detection involves the use of algorithms in multi models 

and machine learning to identify abnormal 

communication on the network, between devices, within 

devices, and with malicious domains (Sanzgiri & 

Dasgupta, 2016). Anomaly detection contributes to the 

early detection of lateral movement and attacks with 

epidemic properties. Segmentation provides the means 

to isolate devices and limits the effects of lateral 

movement and the epidemic properties of an attack 

(Johansson et al., 2020). Therefore, the magnitude of 

occurred security incidents in month 40 is very low. The 

“resource state diagram” graph in Figure 8 shows the 

favored situation (Scenario 6). This figure shows only 

one occasion of spillover effects. 

4.2.3 Reflection on the case study 

A part of the case study was sharing insights with 

stakeholders about how the systemic structure relevant 

to cyber risk management causes the outcome of several 

scenarios. Important input from our case study was 

based on capability assessment (static tool). The 

reference model run showed that the current cyber risk 

management strategy was not future proof. Eventually, 

the current strategy did not contribute to the perceived 

risk reduction (static tool). Our case study addressed 

different common managerial challenges such as 

priority setting in the security program through scenario 

analysis. We were able to simulate a wide range of 

strategies and showed which contributed the most to 

effective and efficient cyber defense and security 

program choices. These insights were not available from 

the current reporting and assessments (which were used 

as input for our case study). 

5. Discussion and future research 

Our simulation results provide insights into threats 

and the notion of the long-term sustainability of its 

current cyber risk management strategy. Although this 

strategy was perceived as sustainable, our analysis 

provides ideas for future improvements. We believe that 

this difference between perception and simulation 

results can be explained by the dynamic complex nature 

of cyber risk management. People have difficulties in 

making decisions in dynamic complex environments 

and tend to use heuristics (simple mental rules) to make 

decisions in such environments (Grossklags & Reitter, 

2014; Sterman, 1989). Heuristics usually help regarding 

short-term objectives (Rosoff et al., 2013; Tversky & 

Kahneman, 1973). Heuristics often lead to biased 

decisions regarding gain and loss estimations 

(Kahneman & Tversky, 1979; Kahneman, 2011), and 

eventually, event-driven decisions or reactive 

approaches may generate problems for tomorrow 

(Sterman, 2001). Our simulation results contributed by 

challenging the perceived risk reduction effectivity and 

identified cyber risks that were wrongly considered as 

distant and far away for the case study organization.  

This is why we advocate augmenting the current 

cyber risk management decision-support tools with 

system-dynamics-based simulation techniques. 

Especially since we used inputs from commonly used 

support tools for cyber risk management (Moore et al., 

2016). 

In addition, where Paape (2008), Strikwerda 

(2005), and COSO (2004) conceptualize “being-in-

control,” we use a System Dynamics approach and 

visualization techniques to operationalize this concept 

and incorporate risk management into the forward-

looking aspect of our analysis. Our graphs show 

accepted behavior (risk appetite) and simulate the 

behavior of performance indicators. The wide range of 

simulated strategies shows what strategies contribute to 

risk mitigation by bringing the simulated behavior of 

these performance indicators within the boundaries of 

the accepted behavior.  

The purpose of our case study is to demonstrate 

how cyber risk management functions can address the 

dynamic nature of cyber risk at an executive level to 

improve their cyber risk strategy design.  

Three security capabilities should be considered 

more in the future. In our study, the security capabilities 

related to 3rd party management, security software 

development, and encryption are limitedly considered in 

our analysis.  

This case study is also limited to one anonymized 

case. Yet, we advocate the re-usability of our simulation 
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model based on our approach and level of modeling. It 

would be interesting to validate this assumption in 

subsequent research. 

6. Conclusion 

Major security incidents drove us to the question of 

how the dynamic nature of cyber risk can be effectively 

captured in decision-making? 

We used a System Dynamics approach to capture 

the system structure relevant to the dynamic nature of 

cyber risk, and we simulated a wide range of strategies. 

This approach reused much knowledge, data, and 

insights that were already present in the case study 

organization and used in the current static cyber risk 

management strategy process. Therefore, we advocate 

that our approach augmented the existing cyber risk 

management decision support tools.  

We can simulate a wide range of strategies and 

allow managers to learn, experiment, and identify 

counter-intuitive strategies for maximizing the impact 

of cyber risk management decisions. We also provide 

the means for continuous evaluation of cyber risk. Our 

research showed how simulated strategies may be 

performed for the future and address relevant and 

common managerial challenges. Important lessons from 

these simulations are the following: 

(1) Obvious solutions do not always yield the best 

and most sustainable impact. 

(2) Proactive learning is critical to organizational 

effectiveness. 

(3) It is critical to anticipate spillover (2nd order) 

effects.  

 

Insights from our study are important for proactive 

cyber risk management, continuous cyber risk 

management, and making sustainable cyber risk 

management strategies for all organizations. In addition, 

simulations have been shown to provide feedback about 

the effectiveness of intended cyber risk management 

strategies before making large investments in these 

strategies. This has been confirmed for our case study 

by the received managerial feedback: 

“Dynamic modeling showed the impact of strategic 

decisions before making large investments. It helps me 

to determine what to invest, where, and when.“ 

“It sure made my job easier to explain investing in 

security to the managing board” 

“Business dynamic modelling has the ability to 

simplify complex problems and make them easy to 

understand”. 

Acknowledgement  

This work is co-funded by ”Fondo Europeo di Sviluppo 

Regionale Puglia POR Puglia 2014 – 2020 – Asse I – 

Obiettivo specifico 1a – Azione 1.1 (RS) - Titolo Progetto: 

Suite prodotti Cybersecurity e SOC” and BV TECH S.p.A.  

 

This work is co-funded by Cybersecurity at MIT Sloan (MIT 

CAMS https://cams.mit.edu) 

References  

Armenia, S., Ferreira Franco, E., Nonino, F., Spagnoli, E., 

Medaglia, C.M., (2018). Towards the Definition of a 

Dynamic and Systemic Assessment for security Risks. 

System Research and Behavioural Science, ISSN: 1099-

1743, doi: 10.1002/sres.2556.  

McAvoy, S., Grant, T., Smith, C., & Bontinck, P., (2021). 

Combining Life Cycle Assessment and System 

Dynamics to improve impact assessment: A systematic 

review, Journal of Cleaner Production 315 (2021) 

128060, https://doi.org/10.1016/j.jclepro.2021.128060. 

Baldwin, A., Gheyas, I., Ioannidis, C., & Williams, J. (2016). 

Contagion in security attacks, Journal of Operational 

Research Society.  

BakerHostetler. (2016). Is your organization compromise 

ready? 2016 Data Security Incident Response Report. 

Retrieved from 

http://f.datasrvr.com/fr1/516/11618/BakerHostetler_201

6_Data_Security_Incident_Response_Report.pdf 

Barlas, Y. (1996). Formal aspects of model validity and 

validation in system dynamics, System dynamics 

Review, 12(3), 183–210.  

Böhme, R. & Moore, T. (2016). The iterated weakest link, a 

model of adaptive security investment. Journal of 

Information Science, 7(2). 

CIS (2021). CIS controls V8. Centre of Internet Security. East 

Greenbush, New York. 

Chismon, D., & Ruks, M. (2015). Threat intelligence: 

Collecting, analysing, evaluating, MWR Security, 

CCERt-UK and CPNI, 2015IEE. 

COSO (2004). Enterprise Risk Management Integrated 

Framework. Committee of Sponsoring Organizations of 

the Treadway Commission, USA.  

Cram, W.A., Proudfoot, J.G. & D’Arcy, J. (2021). When 

enough is enough: Investigating the antecedents and 

consequences of information security fatigue. Inf Syst J. 

2021;31:521–549, DOI: 10.1111/isj.12319. 

Duggan, J. (2016). An introduction to system dynamics 

system dynamics modeling with R. Springer 

International Publishing.  

Van Den Eede, G., Muhren, W., Smals, R., and Van de Walle, 

B., (2006). IS Capability for Incident Management and 

the DERMIS Design Premises. Proceedings of the 3rd 

International ISCRAM Conference (B. Van de Walle and 

M. Turoff, eds.), Newark, NJ (USA), May 2006. 

Eling, M., McShane, M., & Nguyen, T., (2021). Cyber risk 

management: History and future research directions. Risk 

Manag Insur Rev.; 24: 93– 125. 

https://doi.org/10.1111/rmir.12169. 

EC (2021). Shaping Europe’s digital future, read on January 

14th, 2022, retrieved from: https://digital-

strategy.ec.europa.eu/en/policies/cybersecurity-policies . 

Falco, G., Eling, M., Jablanski, D., Miller, V., Gordon, L. A., 

Wang, S., Schmit, J., Thomas, R., Elvedi, M., Maillart, 

T., Donavan, E., Dejung, S., Weber, M., Durand, E., 

Page 6095

https://doi.org/10.1016/j.jclepro.2021.128060
https://doi.org/10.1111/rmir.12169


Nutter, F., Scheffer, U., Arazi, G., Ohana, G., Lin, H. 

(2019, June 3–4). A research Agenda for cyber risk and 

cyber insurance. The 2019 Workshop on the Economics 

of Information Security, Boston.  

Ford, D. N., & Sterman, J. D. (1998). Expert knowledge 

elicitation to improve formal and mental models. 

System Dynamics Review, 14(4), 309–340. 

Forrester, J. W. (1971). Counterintuitive behaviour of social 

systems. Technology Review, 73, 53–68. 

Forrester, J., & Senge, P. (1980). Tests for building 

confidence in system dynamics models. Studies in the 

Management Sciences, 209–228. 

Genge, B., Kiss, I., & Haller, P. (2015). A system dynamics 

approach for assessing the impact of cyber attacks on 

critical infrastructures. International Journal of Critical 

Infrastructure Protection, 10, 3-17. 

Grossklags J, & Reitter R. (2014). How task familiarity and 

cognitive predispositions impact behaviour in a security 

game of timing. IEEE 27th Computer Security 

Foundations Symposium. 

Graubart, R., & Bodea, D., (2016). The Risk Management 

Framework and Cyber Resiliency, The MITRE 

Corporation. Case No. 16-0776. 

Groat, S., Tront, J. $ Marchany, R. (2012) Advancing the 

defense in depth model. 2012 7th International 

Conference on System of Systems Engineering (SoSE), 

2012, pp. 285-290, doi: 

10.1109/SYSoSE.2012.6384127. 

Hamann, H., Karsai, I. & Schmickl, T, (2013). Time Delay 

Implies Cost on Task Switching: A Model to 

Investigate the Efficiency of Task Partitioning. Bull 

Math Biol 75, 1181–1206 (2013). 

https://doi.org/10.1007/s11538-013-9851-4. 

Homeland Security (2018). Cyber Risk Economics Capability 

Gaps Research Strategy. DOI: 10.23721/1460960.  

Huang K., Siegel M., & Madnick, S. (2019). Systematically 

understanding the cyber-attack business: A survey. 

ACM Computing Surveys, Volume 51, Issue 4,Article 

No.: 70, pp 1–36. https://doi.org/10.1145/3199674. 

IEEE 1471 (2000). Defining architecture [online], 

ISO/IEC/IEEE 42010 Website. http://www.iso-

architecture.org/ieee-1471/defining-architecture.html. 

Read in May 2016. 

ISACA (2015). CISM review manual 2015. ISACA. 

Jalali, M.S., Siegel, M., & Madnick, S., (2019). Decision-

making and Biases in Cyber-security Capability 

Development : Evidence from a Simulation Game 

Experiment. The Journal of Strategic Information 

Systems, Volume 28, Issue 1, March 2019, Pages 66-

82. https://doi.org/10.1016/j.jsis.2018.09.003.  

Jibilian, I., & Canales, K., (2021, April 15th). The US is 

readying sanctions against Russia over the SolarWinds 

cyber-attack. Here's a simple explanation of how the 

massive hack happened and why it's such a big deal, 

Business Insider, read on 10 January 2022, retrieved 

from: https://www.businessinsider.com/solarwinds-

hack-explained-government-agencies-cyber-security-

2020-12?international=true&r=US&IR=T. 

Johansson, D., Jönsson, P., Ivarsson, B. & Christiansson, M. 

(2020). Information Technology and Medical 

Technology Personnel´s Perception Regarding 

Segmentation of Medical Devices: A Focus Group 

Study, Healthcare 2020, 8, 23; 

doi:10.3390/healthcare8010023. 

Jonkers, H., Lankhorst, M. M., Ter Doest, H. W. L., Arab, F., 

Bosma, H., & Wieringa, R. J., (2006). Enterprise 

architecture: Management tool and blueprint for the 

organization. Information Systems Frontiers, 8, 63–66. 

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, 

Straus, and Giroux. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An 

analysis of decision under risk. Econometrica, 47(2). 
Kannan, U., & Swamidurai, R. (2019). Empirical Validation 

of System Dynamics Cyber Security Models. In 2019 

SoutheastCon (pp. 1-6). IEEE. 

Kari, P., (2021, July 23rd). Tech firm hit by giant ransomware 

hack gets key to unlock victims’ data, the guardian, 

read on 10 January 2022, retrieved from 

https://www.theguardian.com/technology/2021/jul/22/r

ansomware-attack-kaseya-key-hacking.  

Kagubare, I., (2022, June, 13). Top cyber official says 

transformation needed in cyberspace, The Hill. 

https://thehill.com/policy/cybersecurity/3521797-top-

cyber-official-urge-for-transformation-in-cyberspace/.  

Khan, S. K., Shiwakoti, N., & Stasinopoulos, P. (2022). A 

conceptual system dynamics model for cybersecurity 

assessment of connected and autonomous vehicles. 

Accident Analysis & Prevention, 165, 106515. 

Kwon, J., & Johnson E. M. (2014). Proactive versus reactive 

security investments in the healthcare sector, MIS 

Quarterly 2014, 38(2). 

Lambert, J.H., Keisler, J.M., Wheeler, W.E. et al., (2013). 

Multiscale approach to the security of hardware supply 

chains for energy systems. Environ Syst Decis 33, 326–

334 https://doi.org/10.1007/s10669-013-9465-2. 

Linkov, I., Bridges, T., Creutzig, F., Decker, J., Fox-Lent, C., 

Kröger, W., … Thiel-Clemen, T. (2014). Changing the 

resilience paradigm. Nature Climate Change, 4(6), 

407–409. 

Marks, J., (2021, November 2nd). Cybersecurity funding is at 

stake in Democrats' spending battles, The Washington 

Post, read on January 14th, 2022, retrieved from: 

https://www.washingtonpost.com/politics/2021/11/02/c

ybersecurity-funding-is-stake-democrats-spending-

battles/) 

Martinez-Moyano, I.J., Morrison, D., & Sallach, D. (2015). 

Modeling Adversarial dynamics. Proceedings of the 

2015 Winter Simulation Conference, 2412–2423. 

Martinez-Moyano IJ, Richardson IJG (2013) Best practices 

in system dynamics modelling. Syst Dyn Rev 

29(2):102–123. 

Medoh, C., & Telukdarie, A. (2022). The Future of 

Cybersecurity: A System Dynamics Approach. 

Procedia Computer Science, 200, 318-326. 

MITRE (2018). MITRE ATT&CK, Initial Access, ID: 

TA0001, Created: 17 October 2018, Last Modified: 19 

July 2019. 

https://attack.mitre.org/versions/v10/tactics/TA0001/  

Moore, T., Duynes, S., & Chang, F. R. (2016). Identifying 

how firms manage security investment. Workshop on 

the Economics of Information Security (WEIS), 

Berkeley, CA, June 13–14.  

Page 6096

https://doi.org/10.1145/3199674
https://www.theguardian.com/technology/2021/jul/22/ransomware-attack-kaseya-key-hacking
https://www.theguardian.com/technology/2021/jul/22/ransomware-attack-kaseya-key-hacking
https://thehill.com/policy/cybersecurity/3521797-top-cyber-official-urge-for-transformation-in-cyberspace/
https://thehill.com/policy/cybersecurity/3521797-top-cyber-official-urge-for-transformation-in-cyberspace/
https://attack.mitre.org/versions/v10/tactics/TA0001/


Nazareth, D. L., & Choi, J. (2015). A system dynamics 

model for information security management. 

Information and Management, 52(1), 123–134. 

NIST (2018, April). Cyber-security Framework Version 1.1. 

Framework Documents, NIST. 

https://www.nist.gov/cyberframework/framework. 

NIST (2015, April). National Institute of Standards and 

Technology Special Publication 800-161, Natl. Inst. 

Stand. Technol. Spec. Publ. 800-161, 282 pages (April 

2015), CODEN: NSPUE2 

http://dx.doi.org/10.6028/NIST.SP.800-161. 

Paape, L. (2008). 'In control' statements: Fried air or a 

phenomenon to be cherished? oration, Nyenrode 

Business Universiteit.  

Parkin, S., Krol, K., Becker, I., & Sasse, M. A. (2016). 

Applying cognitive control modes to identify security 

fatigue hotspots. In Twelfth Symposium on Usable 

Privacy and Security (SOUPS 2016). 

Paté-Cornell, M.E, Kuypers, M., Smith, M., Keller, P., 

(2018). Cyber risk management for critical 

infrastructure: a risk analysis model and three case 

studies, Risk Anal., 38 (2) (2018), pp. 226-241.  

Pattison, M., Jerram, C., Parson, K., McCormac, A., & 

Butavicius, M. (2012). Why do some people manage 

phishing e-mails better than others? Information 

Management & Computer Security, 18–28. 

Randers, J. (2019). The great challenge for system dynamics 

on the path forward: implementation and real impact. 

System Dynamics Review, 35(1), 19–24. 

https://doi.org/10.1002/SDR.1623. 

Repenning, N. P., & Sterman, J. D. (2002). Capability traps 

and self-confirming attribution errors in the dynamics 

of process improvement. Administrative Science 

Quarterly, 47, 265–295.  

Riesco, R., Villagrá, V. A. (2019). Leveraging cyber threat 

intelligence for a dynamic risk framework. Int. J. Inf. 

Secur. 18, 715–739. https://doi.org/10.1007/s10207-

019-00433-2. 

Rosoff, H., Cui, J., & John, R.S., (2013). Heuristics and 

biases in cyber security dilemmas. Environment 

Systems and Decisions 33, 517–529. 

https://doi.org/10.1007/s10669-013-9473-2. 

Sanzgiri, A., & Dasgputa, D. (2016). Classification of insider 

threat detection techniques. Proceedings of the 11th 

Annual Cyber and Information Security Research 

Conference, Article No. 25, Oak Ridge TN USA April 

5 – 7. 

SCAN (2022), Cyber Security Assessment Netherlands 2022, 

National Coordinator Terrorism and Security, Ministry 

of Justice. 

https://english.nctv.nl/documents/publications/2022/07/

04/cyber-security-assessment-netherlands-2022. 

Sepulveda Estay, D., (2021). A system dynamics, 

epidemiological approach for high-level cyber-

resilience to zero-day vulnerabilities, in Journal of 

Simulation, February 2021, DOI: 

10.1080/17477778.2021.1890533. 

Sowa, J. F., & Zachman, J. A. (1992). Extending and 

formalizing the framework for information systems 

architecture. IBM Systems Journal, 31(3). IBM 

Publication G321-5488. 

Sterman, J. (2006). Learning from evidence in a complex 

world. Public Health Matters, 96(3). 

Sterman, J. (2003). System Dynamics: Systems Thinking and 

Modeling for a Complex World, Working Paper, ESD 

Working Papers;ESD-WP-2003-01.13-ESD Internal 

Symposium.  

Sterman, J.D., (2001). System dynamics modeling: tools for 

learning in a complex world. California Manage. Rev. 

43, 8–25. 

Sterman, J. (2000). Business Dynamics: System thinking and 

modelling for a complex world. Irwin MC Graw-Hill. 

Sterman, J. (1989). Modeling managerial behaviour: 

Misperceptions of feedback in a dynamic decision-

making experiment. Management Science, 35(3), 321–

339. 

Strikwerda, J. (2005). To be or not to be: In control. 

Controllers Magazine, 19(4), 38–42. 

Teece, D.J., (2018). Business models and dynamic 

capabilities. Long Range Planning 51 (2018) 40-49, 

http://dx.doi.org/10.1016/j.lrp.2017.06.007. 

Theil, H. (1966). Applied Economic Forecasting. Rand 

McNally. 

Torres, A., (2014). Incident Response: How to Fight Back, A 

SANS Survey. 2014 SANS™ Institute.  

Turton, W., & Mehrotra, K., (2021, June 4th). Hackers 

Breached Colonial Pipeline Using Compromised 

Password. Read on January 10th, 2022. Retrieved 

from: https://www.bloomberg.com/news/articles/2021-

06-04/hackers-breached-colonial-pipeline-using-

compromised-password 

Tversky, A., & Kahnema, D. (1973). Judgement under 

uncertainty: Heuristic and biases. Oregon Institute 

Research bulletin, 13(1). 

Vennix, J.A.M. (1996). Group Model Building, facilitating 

team learning using system dynamics. John Wiley & 

Sons ltd.  

Wang, J., Neil, M., & Fenton, N. (2020). A Bayesian 

network approach for cybersecurity risk assessment 

implementing and extending the FAIR model, 

Computers & Security, Volume 89, February 2020, 

101659. https://doi.org/10.1016/j.cose.2019.101659. 

Warren, K. (2015). Strategy dynamics essentials. Createspace 

Independent Publishing Platform, 2nd edition, 2015. 

Wiik, J., & Gonzales, J.J., (2005). Limits to Effectiveness in 

Computer Security Incident Response Teams, 23rd 

International Conference of the System Dynamics 

Society. The System Dynamics Society, Boston, MA. 

Wolthuis, R., Phillipson, F., Rochat, P., Ingen, B. van, 

Zeijlemaker, S. & Gorter, D. (2019).  Quantifying 

Cyber security Risks. (article). TNO. 

Xu, S. (2014). Cybersecurity dynamics. In Proceedings of the 

2014 Symposium and Bootcamp on the Science of 

Security (pp. 1-2). 

Zeijlemaker, S. (2022, March 16). Unravelling the dynamic 

complexity of cyber-security: Towards identifying core 

systemic structures driving cyber-security investment 

decision-making. Radboud University (342 pag.) (S.l.: 

s.n.) Supervisor(s): prof. dr. E.A.J.A. Rouwette & prof. 

dr. M. von Kutzschenbach.  

 

Page 6097

http://dx.doi.org/10.6028/NIST.SP.800-161
https://doi.org/10.1007/s10669-013-9473-2

