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Abstract

The interactions between software and hardware
are increasingly important to computer system security.
This research collects sequences of microprocessor
control signals to develop machine learning models
that identify software tasks. The proposed approach
considers software task identification in hardware
as a general problem with attacks treated as a
subset of software tasks. Two lines of effort are
presented. First, a data collection approach is
described to extract sequences of control signals
labeled by task identity during real (i.e., non-simulated)
system operation. Second, experimental design is
used to select hardware and software configuration
to train and evaluate machine learning models. The
machine learning models significantly outperform a
naı̈ve classifier based on Euclidean distances from
class means. Various configurations produce balanced
accuracy scores between 26.08% and 96.89%.

Keywords: machine learning, microarchitectural
data, constant monitoring, cache attack, zero trust

1. Introduction

The discovery of Spectre (Kocher et al., 2019) and
Meltdown (Lipp et al., 2018) vulnerabilities reinforced
the threat of hardware level information security risks
inherent in contemporary modern processor designs.
A key insight from speculative or transient execution
attacks is that clever software, conceived with awareness
of hardware design, can accomplish adversary goals
that are virtually undetectable by contemporary malware
detection techniques. In a “Questions and Answers”
section of a website dedicated to the attacks (Graz
University of Technology, 2018), the following question

is posed: “Has Meltdown or Spectre been abused in
the wild?” The posted response to this question is
concerning: “We don’t know.”

This research proposes an incremental advance to
improve upon “We don’t know” by embracing the
‘constant monitoring’ requirement commonly specified
for zero trust environments. Transient execution
attacks illuminate the operational challenges associated
with eliminating side effects in shared computing
environments. This research expands a hardware-based
attack detection framework (Mao et al., 2022) to
study the uniqueness of microarchitectural data for
specific applications. Two machine learning techniques
(K-Nearest Neighbor (KNN) and neural network
classifiers) are used to demonstrate the possibility of
confirming software behavioral identity using hardware
gathered data. This research works toward a longer term
goal of providing near real-time hardware monitoring
capabilities to a range of devices from simple
Internet-of-Things (IoT) to complex multi-core systems.
As a first step, this research addresses an early stage
of the problem using a reduced complexity open source
five-stage in-order execution RISC-V microprocessor.

1.1. Motivation

Several hardware-based detection approaches for
malware, cache side channel attacks, and transient
execution attacks are discussed in Section 2. Hardware
Performance Counters (HPCs) are found in many
processors, whether embedded computers or high
performance systems, as they are useful sensors
for temperature monitoring, debugging, and related
performance monitoring tasks. This availability led
prior hardware detection research to rely on HPC data,
which can be problematic for information security
uses for several reasons, including: non-determinism
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(Weaver et al., 2013), the requirement for trusted code
to set up and monitor, and information leakage (Uhsadel
et al., 2008).

The research described in this paper desires to
leverage microarchitectural data, similar to the data
provided by HPCs, but monitored independently
from the operating system during operational use.
Hardware-based monitoring could assist in discovering
transient execution attacks like Spectre and Meltdown.

1.2. Contributions

This research makes three primary contributions:

• Proposes a machine learning model training
approach using a trusted system to develop
models that are usable on untrusted systems.

• Validates a recently published framework (Mao
et al., 2022) for microarchitectural data research.

• Informs future research directions through results
obtained via experimental design and analysis.

1.3. Paper Organization

Section 2 provides a high-level overview of
background material to facilitate interpreting the results
while Section 3 discusses related works. Readers
looking for a thorough review of related work should
consult Das et al., 2019. Section 4 describes the
threat model a final solution would be capable of
defending against. Additionally, Section 4 describes
the data collection, training, and performance evaluation
methodology. Section 5 presents experimental results
and analysis. Finally, Section 6 summarizes the main
findings and Section 7 identifies areas for future work.

2. Background

This section introduces broad microprocessor design
and machine learning concepts to provide context.
These are large research domains. Consequently,
a detailed discussion of microprocessor design and
machine learning is outside the scope of this paper.

2.1. Microprocessor Design

A microprocessor is an integrated circuit providing
key features of a Central Processing Unit (CPU)
(e.g., arithmetic operations and register reads/writes,
etc.) on a single chip (Shirriff, 2016). Microprocessors
contain special purpose modules or units that perform
specific functions such as integer or floating point
arithmetic, hardware for encryption or decryption
algorithms, address translation, and others.

Most commercially available general purpose
microprocessors use a fixed architecture that is
implemented through a series of fabrication steps that
result in immutable circuitry. Microprocessors can also
be implemented with field programmable gate arrays
(FPGAs), which are composed of configurable logic
blocks that can be reprogrammed to alter the system’s
functionality. Fabricated microprocessors significantly
outperform FPGAs on general computing tasks. The
complexity of high performance microprocessors
from vendors like Intel and Advanced Micro Devices
(AMD) are unlikely to be realized on FPGAs.
Nevertheless, thanks to increasing open hardware
design popularity there exists a variety of less-complex
microprocessor implementations which can be used to
study new designs for possible inclusion in future high
performance designs.

The term microarchitectural data refers to any
information produced by the microprocessor’s internal
logic. Examples of microarchitectural data include
the instruction pointer, control signals transmitting
information about system state (e.g., cache miss or
branch mispredict), virtual addresses to translate to
physical addresses, and hundreds more. HPCs are
configurable registers to count signals correlated with
performance problems in a CPU. HPCs are often
user-accessible, making them undesirable for security.

Microprocessors implemented in an FPGA are often
described as “softcore” processors. Contemporary tools,
such as Chisel (Bachrach et al., 2012), Chipyard (Amid
et al., 2020), and FireSim (Karandikar et al., 2018),
make deployment of use case-specific hardware possible
even with limited hardware knowledge. Softcore
processors with an open design (i.e., access to Hardware
Description Language (HDL) source) are viable for
microarchitectural research because processors can be
modified to collect data directly without exposing the
presence of detection logic to the operating system.

The approach taken to provide hardware-based
security is an extension of the MATANA framework
(Mao et al., 2022), which provides a softcore processor
System-on-a-chip (SoC) using a single RISC-V Rocket
Core. MATANA also provides hardware detection of
cache side channel and Return Oriented Programming
(ROP) attacks. The MATANA SoC runs on a Xilinx
ML605 evaluation board and boots a lightweight Linux
operating system with Ethernet.

2.2. Machine Learning

This section provides a brief overview of three
different machine learning classifiers. The first machine
learning classifier is KNN. KNN classifiers identify the
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K points in training data that are nearest to new data and
predicts class membership based on the class with the
greatest probability (James and Daniela Witten, 2017).
KNN works well when the training data and number
of features is relatively small. As the training data
size and number of features grows, KNN becomes too
computationally expensive for practical uses.

In contrast with KNNs, neural networks store
weights associated with features. Neural networks tune
a set of model weights through a stochastic search
process. A benefit of neural networks is that only
weights must be stored, not the training data. Long
Short Term Memory (LSTM) networks are a recurrent
network for predicting future values from a sequence of
historical observations. LSTMs incorporate temporally
aware “forget gates” that preserve information over long
sequences (Goodfellow et al., 2016).

Convolutional Neural Networks (CNNs) use features
observed in space or time. CNNs are commonly used in
image classification tasks using two-dimensional spatial
convolution where pixels are related to neighboring
pixels in a grid. Temporal convolution operates in one
dimension (the time domain). Temporal Convolution
Networks (TCNs) are a related sequence processing
network architecture bringing together ideas from
convolutional and recurrent networks (Lea et al., 2016).
TCNs are outside the scope of this research.

3. Related Works

Prior to MATANA, which was introduced in
Section 2, WHISPER (Mushtaq et al., 2020) and
Speculator (Mambretti et al., 2019) used HPCs to detect
cache side channels and transient execution attacks.
Proposals for detection systems built on HPCs range
from threshold-based metrics to neural networks.

There is an open debate about the utility of HPCs
for information security applications. Early research
conducted by Weaver et al. (2013) identified overcount
and non-determinism issues in HPCs, but did not
relate these issues to information security. Das et al.
(2019) observed that only 10% of information security
papers were aware of non-determinism issues and often
favored HPCs for information security use cases. In
contrast, 45% of published performance analysis and
high performance computing research–using HPCs for
the intended purpose–found HPCs to be inadequate.

In FPGA research, public cloud infrastructure added
AutoCounter functionality to FireSim to automatically
insert performance counters into the intermediate
register transfer language to precisely profile specific
areas within the hardware design (Karandikar et al.
(2020)). Lastly, proposals to accelerate machine

learning inference tasks on FPGAs exist for KNN
(Jamma et al., 2017), LSTM (Cao et al., 2019), and CNN
(Bettoni et al., 2017) models.

4. Methodology

A primary contribution of this research is acquiring
real data to develop machine learning models. The
methodology section focuses on collecting training
data and evaluating performance assuming an initial
trusted hardware and software system are available.
Subsection 4.1 describes the threat model targeted by
this research in eventual deployment.

4.1. Threat Model

MATANA (Mao et al., 2022) uses a threat model
requiring operating system collaboration. This choice
is logical because the operating system maintains a
global view of applications and the visibility can reduce
negative consequences during response. Collaboration
with the operating system enables hardware to
benefit from the contextual information (e.g., process
identification). This makes MATANA effective for
detecting user misbehavior. However, adversaries
subverting the operating system–a large attack surface
that is difficult to secure–can evade detection.

The threat model targeted by this research
assumes system defenders have a trusted supply
chain for hardware and software such that a trusted
system can be used to collect data under “normal”
operating conditions. During training activities,
defenders leverage the operating system’s global
view to preserve contextual information (e.g., labeled
samples). However, once the system is deployed, the
defender removes operating system accessible hardware
interfaces so that all security-related decisions are
performed in hardware. The data used to make security
related decisions is inaccessible through software and
therefore unavailable to adversaries, even if they control
the operating system. This threat model supports a
zero trust ecosystem where the operating system and
user applications can be monitored to compare with
baselines developed on a trusted system.

4.2. Data Collection Approach

The data is collected on the trusted system, requiring
modifications to hardware and software. Figure 1
provides an overview of the hardware construction and
software interactions. The hardware design modification
connects existing signals into a structure that preserves
a sequence of state changes over time. Existing control
signals, performance events, or newly derived signals
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can be chosen during this step. This research used
two performance event signals (branch misprediction
and cache miss) and a derived jump instruction signal
implemented in MATANA. The microarchitectural
signal is preserved by left-shifting bits one position
every clock cycle and concatenating the new input
signal as the least significant bit. The output of
each bit-preserving cell is mapped into a memory
addressable register. The operating system writes
control registers on context switch entry and exit to
pause and resume microarchitectural signal propagation.
Memory addressable registers are read and saved in a
kernel buffer. A user program periodically requests that
the operating system copy data from the kernel buffer
into a user buffer that is eventually written to a file. This
structure is extended for multiple signals containing
multiple features per timestep.

The FPGA resources constrain the length of time
to monitor. For the Xilinx ML605 evaluation kit, no
more than 512 32-bit registers were used to collect data.
The proposed software structure exists to collect training
data and a different architectural composition would be
required to perform inference.

Operating System
On Context Switch:

Mem[0]   <- read(0x60000000)

Mem[1]   <- read(0x60000004)

…

Mem[511] <- read(0x60000800)

Cache
Miss

System   Clk

tn+1

Clk

tn

tn-1

0x60000000

tn … tn-31

tn - q

Clk

tn - q - 1 0x60000800

tn - q … tn - q - 2

tn - q - 2

x 512

Pause

Copy Request

Data

Figure 1: Collecting Microarchitectural Data

The data collection scheme was validated with two
different Xilinx ML605 evaluation kits, using the jump
control signal. Three small RISC-V programs were
written to perform 1) no jump operations, 2) exclusively
jump and link operations (i.e., function calls) compiled
without instructions to manipulate the frame pointer, and
3) a program that oscillates between not jumping and
jumping. Data collected on both FPGAs was visually
compared to confirm the expected behavior.

4.3. Experiment Design

The experimental design involves factors and levels
associated with three distinct experiment layers, as
summarized in Table 2. The factor and level
combinations are reported alongside the results in
Table 1. Although the experiment design was intended
to use the same FPGA for all data collection, a
second FPGA was added to reduce data collection time.
Balanced classification accuracy, which accounts for
class sizes, is the target variable of interest for the
machine learning models described in Section 4.5.

The first experiment layer is the hardware (HW)
layer, where signal connection modifications are
required. Changing experiment settings in the hardware
layer requires several hours of computation which
constrained the number of factors considered. The
microprocessor is defined using the Chisel hardware
construction language (Bachrach et al., 2012). Changes
to the design in Chisel must first be compiled to the
target HDL and then synthesized with Xilinx tools
to create a bitstream. The bitstream is then used
to “program” the FPGA with the new design. The
clock divisor (Clk Div) is a MATANA feature enabling
detection logic to run slower than the CPU. When the
clock divisor is 1, data is logged as events occur in the
CPU. When the clock divisor is greater than 1, signals
are OR’d together over the number of clock divisor
cycles. In general, when the clock divisor is 1, less
frequent events such as cache misses appear sparsely in
output data. In contrast, when the clock divisor is 16,
frequent events such as jumps saturate the data.

The second layer, data collection, is accomplished
for all hardware layer configurations. When the
“number of applications” is one, a single application
is scheduled at a time, chosen from either the
three “attack” applications, or the four “legitimate”
applications, for a total of seven options. When the
“number of applications” is three, one of three possible
attacks is chosen alongside two different applications
chosen from the set of four “legitimate” applications.
In total, each hardware configuration requires 25
application runs: (

7

1

)
+

(
4

2

)
×

(
3

1

)
A subset of benchmark programs were chosen

from the Coremark Pro RISC-V suite published with
MATANA. The cache attack provided with MATANA
successfully applies prime+probe to recover AES
keys on an 64-set, 8-way cache. The integer and
memory attacks follow the novel interrogator design
described in Langehaug et al., 2021.
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Table 1: Balanced Accuracy Scores for Naı̈ve, KNN, CNN, and LSTM Classifiers

ID Clk Div Signals Label Attack # Apps Naı̈ve KNN CNN LSTM
0 1 cache, br, jal binary memory 3 0.6048 0.9689 0.9619 0.9516
1 1 cache, br, jal multiple integer 3 0.2080 0.5179 0.5553 0.5644
2 1 cache, br multiple integer 1 0.3491 0.8005 0.8781 0.8621
3 1 cache, jal binary cache 3 0.5939 0.6127 0.6293 0.6241
4 1 br, jal multiple memory 3 0.2666 0.4627 0.5213 0.5084
5 1 cache multiple cache 1 0.2727 0.8377 0.8688 0.8586
6 1 br binary memory 1 0.5660 0.8733 0.8775 0.8291
7 1 jal binary cache 1 0.6080 0.8264 0.8162 0.8054
8 16 cache, br, jal multiple cache 1 0.4837 0.9183 0.8971 0.8998
9 16 cache, br binary cache 3 0.5386 0.6579 0.6816 0.6806

10 16 cache, br binary memory 1 0.6162 0.9543 0.9473 0.9436
11 16 cache, jal multiple memory 1 0.4629 0.9152 0.9032 0.9027
12 16 br, jal binary integer 1 0.7609 0.9422 0.9308 0.8842
13 16 cache binary integer 3 0.5312 0.8576 0.8737 0.8761
14 16 br multiple cache 3 0.1763 0.2608 0.2800 0.2897
15 16 jal multiple integer 3 0.2049 0.3980 0.4346 0.4381

Table 2: Experimental Factors

Layer Factor Levels
HW Clk Div 1, 16
HW Signals cache, br, jal
HW # of Signals 1, 2, 3
Data Attack cache, integer, memory
Data # Apps 1, 3
Data Apps linear algebra, parser

neural net, radix
ML Label Strategy binary, multiple

The final layer, machine learning (ML), specifies
whether to formulate the learning problem as a binary
or a multiclassification problem. In binary classification,
the model predicts attack or no attack for a single attack.
In the multiclass problem, the model predicts one of
many programs. Classification is only based upon data
from instructions executed by a single task prior to the
subsequent context switch.

Training machine learning models requires
significant time. Therefore, the factors and levels
were used to create a screening experiment design for
16 possible configurations with a goal of identifying
main effects leading to reduced classification accuracy.
Within a hardware configuration, the 25 data collection
runs were randomized. Analysis of Variance (ANOVA)
is applied to a linear model containing all factors to
identify the significant effects on classification accuracy.

4.4. MATANA Validation

A complete validation of MATANA (Mao et al.,
2022) is outside the scope of this work. However,

the cache miss signal is validated as a feature to
enable high detection rates for binary (attack or no
attack) cache attack detection systems. To perform
validation, an experiment with clock divisions of 1 and
16 was performed, observing the cache signal, and
running one concurrent program. The results from
this standalone classification experiment are used to
support the MATANA claim that cache attacks are
detected reliably with low false positive rates. Resulting
classification accuracy that exceeds 90% should be
considered as supporting evidence of its validity because
the initial stages of an attack program often perform
normal operations without correlation to an attack.

4.5. Machine Learning Process

This section describes training and evaluation of
machine learning models. There are slight differences
in training for KNN models versus neural network
models. Both approaches assign 80% of the data as
training/validation and 20% as test. For neural networks,
20% of the 80% of training/validation data was used for
validation and removed from the training set.

The sequence of data produced by control signals,
described as factors in Table 2, are used as features to
train machine learning models. The data is structured
as a time series and the experiment specification
determines the number of features (i.e., channels)
available in each timestep. For multiclassification, the
name of the application or attack is used as the label.
In binary classification the labels are “attack” or “no
attack.” Due to the sequence length and trained model
sizes, data preprocessing created shorter sequences that
aggregated event counts for windows of time.

Preprocessing counted the number of times the
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signal was high per 256 timesteps using a 128-timestep
stride. Neural networks could train over raw long
sequences, but require significant storage for the
calculated weights. For comparison, a neural network
predicting the class for 16K timesteps required 256MB,
whereas a neural network trained with the preprocessed
rather than raw sequences, required only 100KB. This
preprocessing step is roughly equivalent to multiple
HPCs updating a vector of counts over time. Samples
might contain only a few timesteps for the labeled class
when the time between context switches is small.

A naı̈ve classifier was developed that calculated the
mean value for each signal by class. To record test
performance, a vector containing the mean for each
signal in a sample is calculated. Class membership is
determined based on the sample’s Euclidean distance
from the means found in the training data.

Each experiment configuration has a unique number
of samples and distribution of classes. However there
tends to be 40K-80K total samples per experiment
with significant class imbalance. Some classes have
as few as 2.5K samples while other classes have
over 50K samples. To develop the KNN model,
random under-sampling selects training data with class
membership equivalent to the least occurring class. Test
data is not under-sampled but left in the original class
distribution. The balanced accuracy score accounts for
class size in model performance.

The training and test data comes from the same
data collection run conducted on the same FPGA.
This experiment design decision was due to time
constraints. An ideal experiment would compare results
from independent runs on different physical devices.
To consider the possible negative effects of training
in this way, one model was evaluated with new data
obtained from a different FPGA. The new data also
included a benchmark program which was previously
unseen during training. The results of this standalone
experiment are discussed in Section 5.

To train the neural networks, random over-sampling
was used to balance the training set. Over-sampling is
appropriate for the neural network approach because the
storage size of the weights is determined by the network
structure and not the number of training samples.
Validation and test data were not over-sampled.

Many parameters influence the predictive accuracy
of a neural network. Given the large number of possible
experiments, design choices were fixed. Many design
choices could be optimized for individual scenarios.
Models were trained for up to 500 epochs but early
stopping halted training when validation loss did not
improve. Binary classification models used binary
crossentropy loss and multiclass classification used

categorical crossentropy loss. The network structure
was held mostly constant with input shapes changing
to accommodate the shape for a hardware configuration
(batch size, timesteps, channels). Due
to FPGA constraints, as the number of channels grew,
the number of timesteps was reduced.

…
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…

…
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Output

(Timesteps, Features)
Input
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128 Dense
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1 Dense w/Sigmoid
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(a) CNN Base Design

4-cell LSTM, return
sequences
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…
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(Timesteps, Features)
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16 Dense
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7 Dense w/Softmax

(b) LSTM Base Design

Figure 2: Neural Network Structures

Figure 2 shows the basic CNN and LSTM
architectures. The samples for a hardware configuration
are equal width, so sequence padding is not required.
Samples may include information from previously run
applications. In Figure 2a the first convolution layer
uses 4 filters with a kernel size of 8 while the second
convolution layer uses 4 filters with a kernel size of 4.
LSTMs predict sequences. However, in this research the
machine learning task is sequence classification. The
return sequences property shown in Figure 2b returns
the hidden state output for each timestep (Brownlee,
2017). The hidden states are provided to dense layers to
classify the entire sequence. The output layer uses the
sigmoid activation for binary classification and softmax
activation for multiclass problems.

5. Results and Analysis

This section presents experimental results to
derive preliminary conclusions. These results guide
future research toward specific data sources to
implement constant monitoring via machine learning in
microprocessors.

5.1. Data Collection Validation

The jump signal validates the functionality of the
data collection and preprocessing steps. Figure 3 plots
the received jump signal for four different software
configurations. The rolling average is calculated for
256-timestep windows in the raw sequence to reduce
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visual jitter. As expected, Figures 3a-3c show the
microarchitectural control signals preserving distinct
software behavior. Noisy periods where a signal is
inconsistently 0 or 1 could capture operating context
switch code prior to the kernel driver pausing the
collection hardware. Residual data from prior programs
may also be present if the time between context switches
is less than the capacity of the collection hardware.
MATANA counts branches as a jump, so jitter near
zero can be attributed to a loop condition guarding the
sequence of non-jump instructions.

The jump behavior for a benchmark program
shown in Figure 3d is observably distinct from the
crafted jump program behaviors. The graph from
the same benchmark program on a different FPGA
exhibits greater jitter, indicating the potential for
hardware-unique behavior, thus requiring training and
evaluation with data from multiple systems.

5.2. MATANA Validation

Table 3 summarizes the cache attack detection
results for a model using cache misses as the only
feature. Given that not every inter-context switch
contains malicious cache behavior, a direct comparison
with MATANA (Mao et al., 2022) is not possible
because the precise accuracy values are difficult to
discern. Figure 4 compares confusion matrices for
binary classification with data collected at CPU speed
(Figure 4a) and 16x slower than the CPU (Figure 4b).

Table 3: Detecting Cache Attack with Cache Miss

Clk Div KNN CNN LSTM
1 0.9350 0.9357 0.9191

16 0.9357 0.9227 0.8939

5.3. Machine Learning Experiments

Machine learning model performance results are
summarized in Table 1. The inclusion of three different
attacks makes directly interpreting the balanced
classification accuracy difficult. The data from Table 1
were used to fit three different linear regression
models (one for each classifier) to predict the response
(balanced classification accuracy). ANOVA was used
to identify significant effects with α = 0.05. The
process identified the same significant effects for all
machine learning models. The significant effects were
cache miss (β1), multiclassification (β2), and number
of concurrent applications (β3). A new linear model
containing only the significant effects determined
by ANOVA was then used. A Shapiro-Wilk test

for normality (Shapiro and Wilk, 1965) confirmed
residuals were reasonably normal. This result suggests
a linear model is an adequate predictor for classifier
performance at the defined factor levels.

Equation 1 predicts KNN classification accuracy
(ŷ). The equation shows cache signal is related to
an increase in model performance (expected behavior),
while multiclassification and quantity of concurrent
programs decreased model performance. The linear
model achieved an R2 value of 0.7370.

ŷ = 1.06 + 0.13β1 − 0.21β2 − 0.15β3 (1)

Interestingly, the attack program was not significant,
suggesting that hardware monitoring could be broadly
applied to detect various undesirable behaviors. These
results might be of particular interest for IoT device
security where a known and limited set of software
behaviors should exist. The experiment screened for
significant factors. Future studies may consider larger
sets of applications, attacks, and device purposes.

The design resulting in Table 1 does not cover all
valuable experiment configurations. Figure 5 shows data
from a new experiment where the sequence of cache
misses is used to train a machine learning model that
predicts the specific task identity (multiclass). Figure 5a
uses kernel density estimation (Waskom, 2021) to
visualize the distribution of events by class. The many
overlapping density functions provides an indication of
problem difficulty. Figure 5b is the confusion matrix for
the CNN model’s predictions on test data.

The original experiment design did not account for
FPGA differences or previously unseen applications.
The configuration from Experiment 8 was chosen to
perform a standalone evaluation because it contained
all three signals and the trained model reported
performance above 90%. Table 4 reports the balanced
classification accuracy of the trained model with data
from a different FPGA and when the set of programs
includes an unseen benchmark on a different FPGA.

Table 4: Performance on New Data from New FPGA

KNN CNN LSTM
Same Programs 0.8562 0.8410 0.8280

Unseen Benchmark 0.8209 0.7901 0.8041

Truth-normalized confusion matrices were used
to describe performance changes from the original
experiment (Table 1) to “Same Programs,” and “Unseen
Benchmark.” The confusion matrices (not shown)
for the original and “Same Programs,” was visually
similar despite the number of correctly classified “other”
programs being reduced by 40.8%. Basically, several
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Figure 3: Rolling Average for Jump Signal Over 256 Detection Timesteps at 16x Slower than CPU
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Figure 4: CNN Confusion Matrices for Attack Detection

“other” program predictions were distributed across
all the classes. The “Unseen Benchmark” data was
mis-classified by the model as “parser” rather than
“other.” The “other” class in the original data did not
include examples beyond shell scripts and routine kernel
tasks, likely contributing to this behavior.

6. Conclusions

This research presented an approach to collect
microarchitectural data on an in-order RISC-V softcore
processor. The data was used to train and evaluate
the performance of three different kinds of machine
learning models with an aim to inform the development
of constant monitoring, near real-time, operating
system independent hardware detection mechanisms.
This section summarizes the important findings while
Section 7 outlines areas for future work.

This research demonstrated using microarchitectural
data to identify running software and makes at least
three contributions. First, the results validate the
usefulness of the attack detection proposed in MATANA
(Mao et al., 2022). Second, this research identified
the cache miss signal, classification problem (binary
or multiclass), and the number of concurrent programs
as main effects influencing the balanced classification
accuracy. Lastly, these results were obtained using
only data from within a single operating system
context switch. The accuracy achieved by some
configurations suggests that high accuracy systems with
low false-positive rates might be built when samples
are linked across multiple context switches. Constant
monitoring in hardware presents opportunities for zero
trust ecosystems to reduce reliance on operating systems
by independently verifying and proactively making
decisions to preserve a computer system’s security.
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7. Future Work

This research lays a foundation for several areas
which merit further exploration and development. The
first area for future work is extending the analysis
to processors with deeper pipelines, out-of-order
execution, and multicore CPUs. Expanding MATANA
or building similar frameworks for newer platforms
would also be a worthwhile endeavor.

The second area of future work lies in the
identification of context switches using hardware.
A context switch is a meaningful transition in the
operating system that cannot be relied upon if the
end goal is to remove the inference dependency from
the operating system. Examining operating system
actions required to facilitate a context switch (e.g.,
saving user registers or invalidating the cache) could
be used to design a hardware unit that recognizes
them. Reliably identifying the occurrence of a
context switch using microarchitectural data would
allow hardware detection systems to keep statistics for
the development of application profiles across many

context switches. Moving the data logging operations
to hardware (e.g., streaming data off the device over
Ethernet) would support this area of work.

The third area of future work is instantiating trained
machine learning models with inputs coming directly
from microarchitectural data sources. This research area
is rich with opportunity and many important questions.
The following are examples of relevant questions:
“Where should model weights (neural networks) or
reference data (KNN) be stored and how large should
it be?”, “What model structures are suitable for
contemporary hardware?”, “From the time a malicious
event occurs how quickly can hardware identify the
malicious event?” or “How could adversaries defeat
such detection schemes.” Future research in this area
could lead to robust systems, significantly increasing the
price adversaries must pay to succeed.
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