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Abstract

Large language models (LLMs) can synthesize code
from natural language descriptions or by completing
code in-context. In this paper, we consider the ability of
LLMs to synthesize code, at inference time, for a novel
API not in its training data, and specifically examine the
impact of different API designs on this ability. We find
that: 1) code examples in model training data seem to
facilitate API use at inference time; 2) hallucination is
the most common failure mode; and 3) the designs of
both the novel API and the prompt affect performance.
In light of these findings, we introduce the concept of
a Synthetic API: an API designed to be used by LLMs
instead of by humans. Synthetic APIs for LLMs offer the
potential to further accelerate development of natural
language interfaces to arbitrary tools and services.

Keywords: Large language models, Code synthesis,
API design, Human-AI interaction

1. Introduction

Recent work has shown the ability of large language
models (LLMs) to synthesize code from natural
language descriptions and existing code (Brown et al.,
2020; Chen et al., 2021; “GitHub Copilot”, 2021; Li
et al., 2022). These capabilities have been demonstrated
with models trained on a general corpus of web content,
which may include source code (Austin et al., 2021;
Brown et al., 2020), as well as models explicitly trained
for code synthesis (Chen et al., 2021; Li et al., 2022).

One specific use case for code synthesis is to
translate high-level, natural language requests into code
that makes use of a specific application programming
interface (API) or library. For example, a developer
may wish to write code to visualize data using a library
they have never used. In this context, a developer may
be able to clearly articulate the desired outcome, but
otherwise be unable to write the desired code without
external resources (e.g., documentation, Stack Overflow
examples, peer assistance). In these circumstances,

LLM-powered code synthesis can reduce the need to
turn to external resources, while generating code that
makes use of the surrounding context.

In this research, we are interested in the ability of
LLMs to transform natural language requests into code
for novel APIs, which we define as APIs not within the
training data. Instead, the model is exposed to the API
at inference time via prompt engineering, as opposed to
other means, such as pre-training or fine-tuning.

The ability to use associations between natural
language requests and arbitrary functions in a novel API
is an important use case: one cannot expect all APIs
to be represented in a model’s training data (e.g., new
APIs are continually being created). The ability to use
a new API is also of inherent interest to the study of
LLMs: measuring how well, and how quickly, an LLM
can make use of an API is a useful way to compare
different models’ capabilities. Finally, it may be the case
that some API designs are easier for LLMs to use than
others. If this is the case, one can design APIs expressly
for use by an LLM (as opposed to for use by humans).

In this paper, we report results from two experiments
that examine the models’ abilities to synthesize code
using novel APIs. We further consider whether some
API designs are easier for an LLM to use than others.
We call this latter concept a Synthetic API (SynAPI) to
convey the idea of an API intentionally designed for use
by an LLM.

In our experiments, we vary two dimensions: 1)
API naming conventions (verbose, abbreviated, random)
and 2) the number of examples provided for each
API function (1, 3, or 7). We examine performance
across these dimensions for four models, where these
models vary in size (137B, 175B, and 540B parameters)
and training data (more specifically, one model,
PaLM-Coder, includes significant code examples in its
training data, while the other three contain significantly
fewer examples). The experiments examine code
synthesis performance for APIs we designed to act
as programmatic interfaces to the git version control
system.
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We summarize this paper’s contributions as:

• We introduce and test the concept of a SynAPI,
an API designed for use by an LLM, rather than a
human.

• We report results from two experiments testing
four different LLMs’ abilities to use four different
API designs. Our results suggest that:

– Models explicitly trained for code synthesis
are likely to outperform other models for
this task, suggesting the value of training
data for using new APIs.

– The most frequent error mode for the models
is synthesizing code that includes functions
not defined in the API (i.e., hallucination,
which we refer to as “out-of-API” errors for
this task).

– API design choices do impact model
performance. Surprisingly, for two models
tested, an API design employing random
function names (i.e., names with no
meaning in the target domain) outperformed
domain-specific function names.

– Within a prompt, increasing the number of
example uses of a function can increase the
likelihood of correct usage, but to a limit.
Too many examples seem to bias the model
to particular types of output.

These results demonstrate that LLMs can make use
of novel APIs at inference time, and that API design
choices can affect their performance. These results
additionally suggest the value in further researching
SynAPIs, to understand how APIs can be optimally
designed for use by an LLM.

2. Related Work

Large language models (LLMs) have demonstrated
the ability to generate useful content in a wide variety
of contexts (Brown et al., 2020; Chowdhery et al., 2022;
Thoppilan et al., 2022), including code synthesis (Austin
et al., 2021; E. Jiang et al., 2022). At the most basic
level, these models generate highly probable text-based
content given an input string, with the likelihood of the
generated text dependent upon the training data of the
model. For example, given the input “The opposite of
hot is”, an LLM is likely to produce the word “cold”
(plus additional content).

One of the defining features of recent LLMs
is the ability to customize the model using prompt
programming, or the careful crafting of the text input
to produce a particular outcome (Brown et al., 2020).

For example, to prime the model to translate natural
language requests to HTML, it may be enough to format
the input as a series of examples (referred to as few-shot
prompting). For instance, in this (trivial) example, the
input is designed to produce the HTML for a cancel
button:

Request: An OK button.
HTML: <button>OK</button>.

Request: A Cancel button.
HTML:

From this, the model is likely to produce the HTML
string “<button>Cancel</button>”.

Prompt programming lowers the barrier to
customizing an LLM for specific tasks, such as
code synthesis (Austin et al., 2021; Brown et al., 2020;
E. Jiang et al., 2021). In this paper, we’re particularly
interested in the opportunity prompt programming and
LLMs provide for creating natural language interfaces
to APIs that do not exist in the model’s training data.
This capability could allow software developers to
quickly develop custom natural language interfaces to
arbitrary APIs and services without incurring additional
training and operations costs.

In the realm of code synthesis, a number of efforts
have explored the ability for LLMs to produce code
using 1) models not intentionally trained for this purpose
(Austin et al., 2021), 2) models later fine-tuned for
code synthesis (Chowdhery et al., 2022), and 3) models
purposely trained for code synthesis (Chen et al., 2021;
“GitHub Copilot”, 2021; Li et al., 2022). These efforts
clearly demonstrate the ability for LLMs to synthesize
code from natural language descriptions (as well as
from existing code). Our specific focus is on an
LLM’s ability to translate natural language requests
to code for an API that does not exist in its training
data. We consider models not specifically trained for
code synthesis (GPT-3 [Brown et al., 2020], LaMDA
[Thoppilan et al., 2022], PaLM [Chowdhery et al.,
2022]), as well as a model specifically trained for code
synthesis (a version of PaLM [Chowdhery et al., 2022]).

When an LLM synthesizes code for an API that does
not exist in its training data, it is effectively deriving
new associations at inference time. Recent research
has demonstrated how LLMs can be augmented with
non-differentiable memory to increase their ability to
learn at inference time (Wu et al., 2022). This prior work
shows great promise in supporting our particular use
case. However, in this paper, we consider the ability for
LLMs to use novel APIs without additional fine-tuning
or memory augmentation.

Code synthesis can fail in many ways, making
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assessment of code synthesis capabilities challenging
(Allamanis et al., 2018). For example, synthesized code
may fail to execute because of a small syntax error that a
human (or other automated tool) could easily correct. In
this paper, we are interested in the ability for a model to
synthesize code for a new API, and thus are interested
in how well the model can derive associations to new
function names. We are also interested in the types of
errors it makes in these conditions. For example, when
the model fails to use the correct function name in the
novel API, does it use another function name from the
API, or does it hallucinate a new one?

3. Testing API Usability

To test API usability, we introduce the concept of
a Synthetic API (SynAPI)—an API explicitly designed
for use by an LLM. These APIs can be thought of
as domain-specific languages that encapsulate complex
API surfaces into a form that can be used at inference
time by an LLM. For the purposes of this work, we focus
on SynAPIs that are written for Python 3.

3.1. API Design Choices

In this research, we focus on APIs designs that vary
along two dimensions:

• Faithfulness: An API’s faithfulness is the extent
to which the API’s function and argument names
honor the names used in the target domain (where
the target domain could be an existing tool,
service, and/or other API).

– A faithful API will use the same names that
are used in the target domain (e.g., for an
API to interface with the git program, it
may use the function name “clone” for the
clone operation).

– A semi-faithful API will use semantically
similar names to concepts in the target
domain, but will vary from the canonical
terminology (e.g., for the git clone
operation, a semi-faithful API may use the
function names “copy” or “download”).

– An unfaithful API will not use any of the
names from the target domain (e.g., it may
use random function names, like “shoe” to
represent git’s clone operation).

• Brevity: An API can make use of identifiers of
varying length, which we define as brevity. For
example, a function name may consist of one or
two letters, or a long, descriptive name reflective
of the terminology used in the target domain.

Faithfulness and brevity have been studied in both
software engineering and LLM contexts and have
implications for maintenance costs and usability (Ahn
et al., 2022; Attanasio et al., 2022; Flauzino et al., 2018;
Kaur and Fuad, 2010). There are many other design
dimensions that could be evaluated in future research.

3.2. Measuring Performance

In our experiments, the primary measure of
performance we consider is success rate: the proportion
of synthesized code that correctly executes compared to
the ground truth.

3.3. Categorizing Failure Modes

When models fail to produce the desired output, it
is useful to understand how they fail. In this research,
we consider three potential outcomes for the synthesized
code: 1) a correct API call, 2) an API call using an
incorrect function or argument name, where that name
is defined in the target API (i.e., an “in-API” error), or
3) an API call using a function or argument name not
defined in the API (i.e., an “out-of-API” error, often
called “hallucinations”).

Here, we focus on APIs targeting Python 3 with
named argument function calls. This calling convention
offers more specific failure modes. Out-of-API function
names will cause a NameError when the Python
interpreter tries to call a function that is not defined
in the environment. Out-of-API argument names will
cause a TypeError in the Python interpreter. In-API
argument name errors will likely cause a TypeError
when the interpreter calls a function with a named
argument not defined in its signature, but may also
succeed if functions use the same argument names.

The model may also generate incorrect argument
values by extracting incorrect data from the input,
or by hallucinating values. Incorrect values are
always failures, but may provide more detailed error
information, such as a SyntaxError if incorrectly
formatted, a TypeError if the wrong type, or a
ValueError if it exceeds an allowed range.

4. Experiment 1: Using Git

4.1. Task

Git is the world’s most commonly used version
control system. It is also one of the more difficult API
surfaces to understand (Perez De Rosso and Jackson,
2013). In this experiment, we explore the ability of an
LLM to successfully call an API designed to interface
with the git program. We have chosen to focus on a
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subset of git commands, categorized below according
to the “Git Reference Manual” (2022), to make the task
more tractable in an experimental setting.

• Getting and creating a project: git clone,
git init.

• Snapshotting: git add, git commit, git
mv, git reset, git rm, git status.

• Branching and merging: git checkout, git
merge, git tag.

• Sharing and updating projects: git fetch,
git pull, git push.

This subset of git commands varies in the number
of arguments they take (0, 1, or 2) and whether or not
those arguments are required.

4.2. API Designs

We implemented four APIs in Python 3 (Table 1).
All designs have the same structure with one function
for each of the target git commands, and arguments
for each of the most common command parameters.
The four API designs differ only in their function and
argument names.

• The Faithful API uses the exact same function and
argument names as git.

• The Terse API uses one- or two-character
abbreviations of the git names, so clone
becomes cl, etc. We did not change the rm or
mv commands as they already meet this design.

• The Generic API uses terms that are not specific
to any one version control system, but are still
evocative of the functionality provided. For
example, instead of clone, this API uses
download project from server.

• The Random API was designed to use words
that have no connection to any version control
system. It was created using an English-language
random word generator to get a replacement for
each unique function and argument name in the
Faithful API. For example, the function name
fetch became crackpot.

4.3. Models

We compared performance between four models that
use a decoder-only transformer arhcitecture:

Table 1. SynAPI designs used in this experiment.
API Design Faithfulness Brevity
Faithful Faithful Average
Terse Unfaithful High
Generic Semi-Faithful Low
Random Unfaithful Low

• PaLM, a 540B parameter LLM from Google
(Chowdhery et al., 2022), trained on a mix of web
content and source code.

• PaLM-Coder is a PaLM-540B variant explicitly
trained for code synthesis using a Python source
code data set (Chowdhery et al., 2022).

• LaMDA, a 137B parameter LLM from Google
(Thoppilan et al., 2022), trained to specialize in
safe, factually grounded dialog via a corpus of
public dialog data and web content.

• GPT-3 (text-davinci-002 version), a 175B
parameter LLM from OpenAI with training data
explicitly constructed to exclude source code
(Brown et al., 2020).

LaMDA was specifically included to compare the
performance of general-purpose text completion models
(GPT-3 and PaLM) against one trained for a specific
type of natural language text completion (in this
case, dialog). PaLM-Coder was chosen to compare
the performance of a code synthesis model against
general-purpose text completion models.

4.4. Prompt Designs

We used prompt engineering to prime the models to
synthesize code for the novel APIs. Prompt engineering
provides a fast on-ramp for experimentation, supports
the target use cases (i.e., synthesizing code for a novel
API), and was the only method supported by all models.

To test the API designs, we developed a baseline
prompt design consisting of manually curated examples
(see the next section for an excerpt of the prompt
design). Each example consists of a natural language
input and API call pair. The natural language input is
formatted as a Python comment immediately preceding
the API call. The prompt includes one example for each
function call parameterization, totalling 21 examples.
As an example, the git mv command requires a source
and destination parameter, so there is a single example
of this API call present in the prompt. In contrast, the
git reset command can operate in three different
modes, so there are three examples of this API call in
the prompt, one for each mode.
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Python has flexibility in its argument passing
style—positional arguments, named arguments, or both.
In this work, all of the code in the baseline prompt uses
only the named arguments convention.

From this baseline prompt design, we derived four
different prompts, one for each API design.

4.5. Test Inputs

We manually created a set of 105 natural language
inputs, which represent the user’s objective, to use as
test inputs. Examples of these test inputs are: “create
a new project”, “pull down the latest changes”, and
“add the .py files”. Each test input is concatenated to
the end of the prompt as a Python comment, shown in
an abbreviated example from the Faithful API below.
These prompt-plus-test-input formulations are fed to the
LLM. Each test input is associated with a ground truth
git command. Note that none of the test inputs are
contained in the baseline or derived prompt designs.

# init
init()

# (Other function examples...)

# pull changes
pull()

# pull changes from dev
pull(branch="dev")

# (Other function examples...)

# add my_file.py
add(pathspec="my_file.py")

# (Other function examples...)

# checkout feature_branch
checkout(branch="feature_branch")

# checkout feature_branch and create
# it if it does not exist
checkout(branch="feature_branch",

create=True)

# (Other function examples...)

# tag with my_tag
tag(name="my_tag")

# create a new project

4.6. Experimental Procedure

The prompt-plus-test-input formulation for each of
the 105 test inputs, in each of the API designs, was
fed to each of the four models. All models were run
with temperature = 0 to avoid non-deterministic
behavior. The text output generated, referred to below
as a “code generation,” was collected for analysis.

We implemented each function in the four API
designs in Python, so that calling the function in the
Python interpreter generates a correctly parameterized
git command string.

We test performance by 1) executing the code
generation in a Python 3 environment (loaded with the
target API), and 2) comparing the output to the ground
truth git command for the corresponding test input.

For each code generation, we collect measures of
correctness and failure mode. A code generation
may contain multiple errors that each would cause the
execution to fail in the Python interpreter. For example,
a code generation may contain an incorrect but in-API
function name, and an out-of-API argument name, but
pass a valid value to that function. For each code
generation, we record the most severe error type for
each error category (function name, argument name,
argument value). We order severity from least to most
severe as: correct, in-API, and out-of-API.

4.7. Results

Table 2 summarizes the success rate of the different
API designs across models. The PaLM-Coder model
outperforms all other models, suggesting the importance
of training data on the ability for an LLM to synthesize
code using a novel APIs introduced at inference time.
Surprisingly, the two PaLM model variants have the
highest success rates on the Random API design,
whereas this API design is the worst or tied-for-worst
design for the other two models.

Per-git command success rates are summarized in
Table 3. We observe that LaMDA performs slightly
differently than the other models. Looking a bit closer,
we observe that LaMDA performs best with function
calls requiring no arguments, no required arguments, or
a fewer number of arguments than the function defines
(i.e., in instances when default argument values can be
used). Trends are unclear when looking at this data
across API designs, independent of model.

Table 4 lists the prevalence of the two failure modes
examined (in-API and out-of-API). Out-of-API errors
were by far the dominant failure mode, accounting for
48.82% of failures (across all models and API designs),
compared to 17.32% for in-API errors. PaLM-Coder
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Table 2. Percent correct output by API design and model.
API Design PaLM PaLM-Coder LaMDA GPT-3 Mean
Faithful 39.05 44.76 30.97 40.95 38.93
Terse 39.05 40.95 15.74 36.19 32.98
Generic 33.33 56.19 31.48 51.43 43.11
Random 48.57 59.05 4.46 36.19 37.07
Mean 40.00 50.24 20.66 41.19 38.02

Table 3. Percent correct by Git command for models and API designs.
# of
Req.
Args.

Models API Designs
# of
Args.

PaLM-
CoderCommand PaLM LaMDA GPT-3 Faithful Terse Generic Random

init 0 0 25.00 25.00 20.00 15.00 30.00 0.00 40.00 15.00
clone 1 1 50.00 66.67 8.00 45.83 58.33 28.00 29.17 54.17
fetch 1 0 29.17 41.67 42.31 45.83 32.00 20.83 83.33 24.00
pull 1 1 10.42 14.58 5.77 22.92 12.00 10.42 26.53 4.08
push 1 0 40.62 40.62 28.12 37.50 40.62 31.25 50.00 25.00
add 1 1 50.00 67.50 21.74 60.00 68.29 41.46 43.90 41.86
commit 0 0 31.25 50.00 47.06 50.00 25.00 43.75 75.00 35.29
mv 2 2 43.75 56.25 12.50 43.75 31.25 56.25 12.50 56.25
reset 1 0 15.00 17.50 7.14 25.00 26.83 21.95 15.00 0.00
rm 1 1 62.50 81.25 17.65 50.00 64.71 56.25 25.00 62.50
status 0 0 35.00 55.00 20.00 30.00 25.00 40.00 25.00 50.00
checkout 2 1 63.33 75.00 30.65 45.00 45.90 48.33 60.00 59.02
merge 1 1 8.33 25.00 4.00 20.83 12.50 12.50 16.00 16.67
tag 1 1 77.50 85.00 29.27 75.00 58.54 52.50 77.50 77.50

consistently has the lowest out-of-API error rate. Trends
across models for in-API error rates are less clear.

Examining these data across API designs, the Terse
API design was the most likely to induce out-of-API
errors across models, with a mean rate of 54.49%.
The Generic API design was the least likely to induce
out-of-API errors, with a mean rate of 45.53%, followed
closely by the Random design at 46.31%. These mean
rates suggest that LLMs may derive utility from more
verbose API designs.

Table 5 lists the distribution of errors organized
by NameError and TypeError (recall that
NameError errors denote an attempt to call a
function not defined in the environment, while
TypeError errors can denote incorrect argument
names). PaLM-Coder has the lowest NameError rates
among all models, with trends for TypeError rates
less clear across models. Looking across API designs,
TypeError rates are consistent across models with
the Random being least likely, followed by Terse,
Generic, and Faithful. While possible, no generation
contained a SyntaxError.

We examine the differences in NameError rates
by considering the information density of the function
names in each API design. We use token count as a

proxy for information density. The Faithful, Terse, and
Random designs all have very low mean token counts
(1.14, 1, 1.14 tokens per function name respectively),
whereas the Generic design has 4.33 tokens per function
name. Mean token count aligns with the mean success
rate for each API design (see Table 2).

5. Experiment 2: Few-shot prompting

Prior research has shown that LLMs perform
differently when provided with more examples in a
prompt engineering context (Logan IV et al., 2021).
Our first experiment (above) shows that certain git
commands were difficult for all models to use across
all API designs using single-shot prompting (see Table
3). Given these data, we conducted a second experiment
that used multiple examples per API function, using a
subset of the worst-performing git commands from the
first experiment. We used the same API designs and
experimental procedure in this experiment as in the first.

5.1. Selecting the command subset

We chose to focus on the three git commands that
had the lowest mean success rates across models in our
first experiment: fetch, merge, and reset.
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Table 4. In-API and out-of-API (i.e., hallucination) rates, inclusive of function and argument names, across

models by API design.
In-API Error Rate Out-of-API (Hallucination) Error Rate

PaLM-
Coder

PaLM-
CoderAPI Design PaLM LaMDA GPT-3 Mean PaLM LaMDA GPT-3 Mean

Faithful 29.52 23.81 17.70 12.38 20.85 44.76 41.90 53.98 55.24 48.97
Terse 17.14 16.19 20.37 13.33 16.76 45.71 40.95 71.30 60.00 54.49
Generic 20.95 10.48 11.11 11.43 13.49 57.14 29.52 58.33 37.14 45.53
Random 28.57 23.81 8.04 12.38 18.20 21.90 19.05 92.86 51.43 46.31
Mean 24.05 18.57 14.30 12.38 17.32 42.38 32.86 69.12 50.95 48.82

Table 5. NameError and TypeError rates across models by API design.
NameError Rate TypeError Rate

PaLM-
Coder

PaLM-
CoderAPI Design PaLM LaMDA GPT-3 Mean PaLM LaMDA GPT-3 Mean

Faithful 39.05 36.19 53.98 46.67 43.97 19.05 16.19 4.42 13.33 13.45
Terse 44.76 37.14 69.44 58.10 52.36 3.81 4.76 2.78 1.90 3.31
Generic 53.33 26.67 56.48 33.33 42.45 9.52 6.67 5.56 5.71 6.86
Random 20.95 19.05 91.96 51.43 45.85 0.95 0.00 1.79 0.00 0.68
Mean 39.52 29.76 67.96 47.38 46.16 8.33 6.90 3.64 5.24 6.08

5.2. Models

Given the overall performance observed in the first
experiment, this second experiment was only run on the
PaLM model.

5.3. Prompt Design

In this experiment, we want to compare the
performance difference with our first experiment, the
results from which we use as a reference. We revised
our prompt designs to create 1-shot, 3-shot, and 7-shot
examples for each API.

PaLM imposes a limit on the number of tokens (500)
that can be included in prompts to bound inference
performance (Chowdhery et al., 2022). This can be
challenging when using prompt engineering techniques,
as we chose to here, since all examples plus the novel
input must fit within the context window.

Due to this token limit, we had to vary the prompt
construction based on shot-size classes to fit in the
context window. For 1-shot and 3-shot prompting,
we were able to use the exact same prompt design
as in our first experiment, where every example
for every API function was included in one prompt
for that shot-size class. For 7-shot prompting, we
were forced to separate the examples for fetch,
merge, and reset into different prompts because
they would overflow the 500-token context window.
This means that prompts for each these commands only
contain examples for that specific command (and no

Table 6. Success rate by Git command by the

number of examples (shots) included in the prompt

for each API
Command Reference 1-Shot 3-Shot 7-shot
fetch 29.17 20.83 33.33 16.67
merge 8.33 45.83 79.17 31.94
reset 15.00 27.50 45.00 13.33
Mean 17.50 31.39 52.50 20.65
∆ - +13.89 +35.00 +3.15

other command). However, each command has three
parameterizations (i.e., different API call permutations),
so each 7-shot prompt included 21 examples.

5.4. Test Inputs

We filtered the original 105 test inputs from our first
experiment to include only those for git commands in
this experiment, totaling 21 test inputs.

5.5. Results

Table 6 lists the results of this experiment. As can be
observed, providing two additional examples (the 3-shot
condition) improved performance. However, providing
seven examples reduced performance.

Manual inspection of the synthesized code results
reveals that examples in the 7-shot condition may be
biasing the models towards unnecessary and/or incorrect
arguments. Consider the following test input under the
7-shot condition for the fetch command:
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# fetch changes from the server

Correct calls in the Faithful API would
include: fetch(), fetch(remote=""), and
fetch(remote="origin"). Per-API formulations
of the former were used as the ground truth. (The latter
two are semantic equivalents that require knowledge
of git’s internal workings and default names to
formulate, which a LLM is unlikely to have encoded.)

When this test language input is sent to the model, it
produced the following output:

# In the Faithful API...
fetch(remote="server")

# In the Terse API...
f(r="server")

# In the Generic API...
check_for_updates(remote="server")

# In the Random API...
crackpot(organize="server")

In all cases, the PaLM model is generating a
function call with the correct syntax, function names,
and arguments names, but with an argument value of
“server” when no argument value is required.

To understand why this may be occurring, we
observe that the prompt is structured such that the
first seven examples are calls to fetch without
arguments (the ground truth formulation of a correct
call). However, the last seven examples are calls to
fetchwith a string extracted from the natural language
input. In fact, several of these inputs use a similar
prefix as the test input (e.g., “# fetch changes from. . . ”),
though none are identical. Thus, it appears that these
latter examples bias the model toward synthesizing a
function call with an unnecessary argument.

6. Discussion

Summarizing the results from the experiments, we
find that: 1) the model explicitly trained for code
synthesis outperforms other models, suggesting the
value of the training data for the task of synthesizing
code for new APIs provided at inference time; 2) using
random names (i.e., names outside the problem domain)
is a surprisingly effective strategy for PaLM model
variants; 3) most of the errors derive from models
hallucinating code, and; 4) increasing the number of
example uses of a function can increase the likelihood
of the model using an API correctly (but perhaps to a
limit).

These results suggest that LLMs can synthesize code
for novel APIs defined at inference time, and that there
are specific strategies one can employ to increase the
likelihood of correct usage. One of the more interesting
threads of future research is to examine additional API
design alternatives to understand which API designs can
be more effectively learned than others.

6.1. Limitations

The largest limitation of this work is the relatively
narrow swath of the API design space explored. The
APIs design space is large, meaning there are many
design criteria that can be tested, such as: the inclusion
of type information, the use of positional and named
argument conventions, and the use of configuration
dictionaries instead of named or positional arguments.
We also did not test the effects of ordering prompt
examples, which prior work (Zhao et al., 2021) and our
own results suggest can be influential.

This research tested APIs for a single problem
domain, for which we manually curated both the prompt
examples and the test inputs. These factors may limit the
generalizability of our results. For a task such as this to
become a benchmark for other research, additional work
should be done to craft a larger and more diverse corpus
across multiple API surfaces, using methods such as
crowd-sourcing (Y. Jiang et al., 2017; Krishna et al.,
2017) or synthetic data generation (Wood-Doughty
et al., 2021) to counteract the potential for implicit and
unintended curator biases.

We did not compare the performance of these
models against an API that is known to be in
their training data. Future research should develop
a method for identifying when a benchmark API
design exists in a model’s training data (whether
intentionally or coincidentally), and compare model
performance between these conditions. In addition to
potential performance gains, controlled studies could
provide useful insight into the effects of task-specific,
task-adjacent, or task-agnostic natural language inputs
on the model’s ability to learn to use the API.

This work exclusively uses prompt engineering.
Other work has shown that model fine-tuning (Wei
et al., 2021) and prompt-tuning (Lester et al., 2021;
Logan IV et al., 2021) can improve model output
compared to prompt engineering. We would expect
that a model fine-tuned on examples of an API
would outperform prompt engineering with an un-tuned
model, at the expense of (potentially per-API) training
and serving costs. Although it is unclear how
effective prompt-tuning would be for this specific use
case, it offers some unique possibilities that make
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it a compelling area for future work. Specifically,
prompt-tuning can be performed on a per-prompt basis,
and requires only a single, fixed model. This allows
one to dynamically load different APIs as needed, a
particularly useful capability if two API designs overlap
in the types of natural language phrases they accept (e.g.,
“add the .py files” has a particular meaning for git, and
a different meaning for an FTP application).

7. Future Work

In this research, we used a relatively small set of
measures to compare model performance. A promising
area of future work is to employ salience methods
(Bastings et al., 2021) or training data attribution (Pruthi
et al., 2020) to determine which parts of the input affect
model performance. Using these methods together
with visual analysis tools (such as LIT; Tenney et al.,
2020) could enable deeper insight into the relationships
between prompt designs, inputs, and model outputs
vis-a-vis API design strategies.

The models used in this research represent a modest
sampling of current models. Obvious areas for future
work include testing SynAPIs with models of different
sizes and architectures. Size may be particularly
approachable, as models like GPT-3 have readily
available size class variants. In general, it would be
useful to understand patterns of behavior as a function
of architecture, size, and training regime.

Finally, should the research described above bear
fruit, it would be prudent to assess the economic and
business value of SynAPIs. This includes the cost of
maintaining SynAPIs, the cost of operating the LLMs,
and the capabilities and affordances of different system
designs that employ SynAPIs.

8. Conclusion

This paper examined how well current LLMs can
synthesize code in a novel API at inference time, and
whether some API designs are easier for models to use
than others. Our experiments demonstrate that modern
LLMs can synthesize code for new APIs, and that
choices in the API designs do affect usability. These
results suggest that SynAPIs—APIs designed expressly
for use by LLMs—are a worthy area of continued
research, and could have larger implications for how
LLMs are employed in human-AI systems.
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