
Lecturers’ and Students’ Experiences with an Automated Programming
Assessment System

Clemens Sauerwein
University of Innsbruck,

Innsbruck, Austria
clemens.sauerwein@uibk.ac.at

Stefan Oppl
University for Continuing Education Krems,

Krems, Austria
stefan.oppl@donau-uni.ac.at

Simon Priller
University of Innsbruck,

Innsbruck, Austria
simon.priller@uibk.ac.at

Michael Felderer
University of Innsbruck,

Innsbruck, Austria
michael.felderer@uibk.ac.at

Martin Dobiasch
University for Continuing Education Krems,

Krems, Austria
martin.dobiasch@donau-uni.ac.at

Ruth Breu
University of Innsbruck

Innsbruck, Austria
ruth.breu@uibk.ac.at

Abstract

Assessment of source code in university education
has become an integral part of grading students and
providing them valuable feedback on their developed
software solutions. Thereby, lecturers have to deal
with a rapidly growing number of students from
heterogeneous fields of study, a shortage of lecturers,
a highly dynamic set of learning objectives and
technologies, and the need for more targeted student
support. To meet these challenges, the use of an
automated programming assessment system (APAS) to
support traditional teaching is a promising solution.
This paper examines this trend by analyzing the
experiences of lecturers and students at various
universities with an APAS and its impact over the course
of a semester. In doing so, we conducted a total number
of 30 expert interviews with end users, including 15
lecturers and 15 students, from four different universities
within the same country. The results discuss the
experiences of lecturers and students and highlight
challenges that should be addressed in future research.

Keywords: Automated Programming Assessment
System, Empirical Study, Expert Interviews

1. Introduction

In the course of the ongoing digitization of economy
and society, programming education at universities is
gaining an increasingly important role. While in the
past programming played an important role mainly in
the natural sciences, its relevance is increasing in almost
all other scientific fields. For example, in fields like
economics, social sciences, or humanities, a growing
need of programming skills can be observed.

Accordingly, as part of their strategy for digitization

in teaching and research, universities are including new
formats such as supplementary programs or minors with
a focus on programming. As a result, the group of
students who acquire programming skills during their
studies will broaden considerably and become more
heterogeneous. However, the challenge lies not only
in the rapidly growing number of students but also in
their heterogeneous prior knowledge, the shortage of
teachers, and highly dynamic learning objectives and
technologies (Mekterovic and Brkic, 2017).

Accordingly, solutions are needed to support
lecturers in supervising a large number of students
with heterogeneous backgrounds. These solutions
should provide students with automated feedback and
targeted support in learning programming. Automated
programming assessment systems (APAS) are used
for overcoming problems associated with manually
managed programming assignments, such as objective
and efficient assessments in large classes and providing
timely, targeted, and helpful feedback (Mekterovic and
Brkic, 2017). During the last years, a large variety
of APAS appeared on the market (Keuning et al.,
2016, 2018; Mekterović et al., 2020), like Checkpoint
(English and English, 2015), JACK (Goedicke et al.,
2008) or ArTEMiS (Krusche and Seitz, 2018). The
main objectives of these APAS are to motivate students,
provide a well-founded overview of the learning
progress, improve the quality of teaching and students’
contributions, minimize the programming entry hurdle,
standardize and objectify the feedback and decrease
dropout rates (Keuning et al., 2018; Mekterović et al.,
2020).

However, there has been very little research
examining lecturers’ and students’ experiences
related to the use of an APAS. For example,
only studies regarding students’ perceptions of

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 54
URI: https://hdl.handle.net/10125/102636
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



these systems (Barra et al., 2020; Gordillo, 2019;
Restrepo-Calle, Ramı́rez Echeverry, and González,
2019; Restrepo-Calle et al., 2020; Rubio-Sánchez
et al., 2014) and investigations regarding their usability
(Pettit, Homer, Gee, et al., 2015) have been conducted.
Furthermore, anecdotal evidence suggests that an
APAS is typically developed and used at only one
university for a specific programming course and is
rarely used at various universities within different
courses (Amelung et al., 2011; Ullah et al., 2018). To
address these research gaps, we would like to answer the
following research question: What are lecturers’ and
students’ experiences with an automated programming
assessment system used at different universities?

To answer this research question, we conducted an
intervention study in which we used an APAS at four
different universities in seven different programming
courses in Austria over a period of one semester.
In doing so, we used ArTEMiS (Krusche and
Seitz, 2018) as an APAS and primarily focused on
introductory courses in programming with a total
number of approximately 517 students from a wide
variety of fields of study. Our intervention study
was accompanied by a series of expert interviews at
the end of the semester. A total of 15 interviews
with lecturers and 15 interviews with students were
conducted. Experiences, impacts, and challenges related
to the use of an APAS were identified. Our study
showed that teachers and students are satisfied with
the system in use. However, it identified a need
for improvement regarding the integration of existing
learning management systems, the usability of online
editors, the creation of suitable programming tasks, and
the avoidance of the trial-and-error behavior of students.

The remainder of this paper is structured as follows.
Section 2 discusses related work regarding comparable
studies in the field. Section 3 provides background
information on our project and why we used ArTEMiS
as an APAS at different universities located in Austria.
Section 4 describes the applied research methodology.
Section 5 presents lecturers’ and students’ experiences
with an APAS. In Section 6 we discuss the results and
outline limitations of the research at hand. Finally,
Section 7 provides a conclusion and outlook on future
work.

2. Related Work

Recent research has been conducted in higher
education to understand and support teachers and
students in learning programming (Luxton-Reilly et al.,
2018). Several studies have examined how students
approach programming assignments (Pettit, Homer,

Gee, et al., 2015) and the problems that make learning
to program difficult (Gomes and Mendes, 2007; Jenkins,
2002). In order to solve these problems, tools have
been developed in this context (Marin et al., 2017;
Souza et al., 2016; Ullah et al., 2018). In particular,
the use of and research on APAS has increased.
Based on a comprehensive review of existing literature
in the field Pettit et al. showed that the use of
an APAS might influence the learning success and
teaching experience (Pettit, Homer, Holcomb, et al.,
2015). Moreover, other researchers demonstrated that
the iterative learning of programming with an APAS
is perceived as very supportive by students (Yan et al.,
2020). For example, the advantages of an APAS include
more objective grading of programming tasks Poženel
et al., 2015, the use of gamification to increase student
engagement (Coore and Fokum, 2019), or the use
of logging data to analyze student learning behavior
(Ihantola et al., 2015; Knobbout and Van Der Stappen,
2020) and code quality (H. M. Chen et al., 2020).
Additionally, APAS have also been developed to provide
a meaningful distributed learning environment and
students’ perceptions regarding these systems have been
investigated (Daradoumis et al., 2019). In the wake of
the COVID-19 pandemic, the relevance of these APAS
has continued to grow (Barra et al., 2020). Queirós et
al. already conducted an extensive study in Portuguese
universities to understand how programming teaching is
approached in their higher education, demonstrating the
need for automation (Queirós et al., 2020). Furthermore,
other researchers have investigated the usability of an
automated test data generator (Romli et al., 2015).
Another strain of research investigates the assessment
of programming assignments or even competency based
assessment (Galan et al., 2019; Vargas et al., 2019).
In contrast to related work, we analyze the experiences
with an APAS that becomes an integral part of
programming teaching at seven universities in Austria.
Moreover, we adopt a user-centered perspective
that includes lecturers and students alike. In
doing so, we interviewed a heterogeneous group
of lecturers (i.e., more or less experienced) and
students (i.e., from different study programs) from
four different universities. We thus contribute to
advancing the state-of-the-art by explicitly examining
the heterogeneous end user experiences with APAS that
emerge from the needs for different target groups and
disciplinary backgrounds when engaging in learning to
program.

Page 55



3. Background Information

In order to align and standardize the teaching of
programming at Austrian universities and to support
teachers and students, the CodeAbility Austria project
was initiated. The goal of the project is the deployment
and extension of an APAS with learning analytics
functionalities to enable adaptive learning and support
just-in-time teaching. In order to find a suitable
APAS for the project, we evaluated various systems,
like Checkpoint (English and English, 2015), JACK
(Goedicke et al., 2008), ArTEMiS (Krusche and
Seitz, 2018) regarding their functionalities, software
architecture, support and license. Based on this
evaluation, we selected ArTEMiS (Krusche and Seitz,
2018) because it provides all basic functionalities of an
APAS (i.e., managing, testing, and providing feedback
on programming exercises), is programming language
agnostic, documents the interactions of users, is a
web application, is still supported, is open source and
expandable. For this intervention study, ArTEMiS
serves as a prototype for APAS in general. Our
investigations showed that the addressed functionalities
in our study are widely available in other APAS and
the focus on evaluation was put on functionalities rather
than the actual form of implementation. Therefore, the
experiences identified are not specific to ArTEMiS but
can be considered for APAS in general.

4. Applied Research Methodology

In order to investigate lecturers’ and students’
experiences with an APAS used at different universities,
we carried out an intervention study over the period
of one semester. Our intervention study consisted
of a preparation (see Section 4.1), operation (see
Section 4.2) and evaluation phase (see Section 4.3).

4.1. Preparation Phase

As part of the CodeAbility Austria project, we
announced a call for study participation among the seven
participating universities. Four of the seven universities
voluntarily agreed to use the central project instance
of the APAS ArTEMiS (Krusche and Seitz, 2018)
in selected introductory programming courses. The
respective universities chose the responsible lecturers
and courses themselves. In total 15 lecturers,
including four professors, three postdocs, three PhD
students, and five teaching assistants, with an average
teaching experience of approximately 9 years and
mainly programming experience in C, Java, and Python
participated in the study. To ensure that all 15 faculty
are familiar with the use of the APAS, we held an

introductory workshop. After his workshop, all lecturers
verbally ensured being able to prepare and conduct
their courses on the APAS. This preparation consisted
of entering suitable programming assignments with
corresponding test cases into the system for automatic
assessment. In order to ensure a fair assessment,
lecturers were instructed to formulate test cases covering
all possible implementation options of the respective
assignment.

4.2. Operation Phase

After the preparation phase the APAS was used at
four different universities in seven courses. In total,
approximately 517 freshmen from different fields of
studies participated. Amongst others, they included
bachelor students of computer science and business
informatics but also students from supplementary
programs of computer science or other study programs
with a strong focus on digitization. The seven
courses were introductory courses to programming with
an average number of approximately 73.8 students.
Programming languages of the courses (n) C (n = 1),
Java (n = 3), and Python (n = 3) were taught. In order
to run these courses with the support of the APAS,
in total 38 C, 168 Java, and 17 Python programming
assignments were entered into the system during the
preparation phase.

Students had to solve the programming assignment
using the APAS on a mandatory basis. Thereby,
students had the option to solve the exercise with their
integrated development environment (IDE) or integrated
APAS editor. Finally, students had to submit their
solved exercises on the APAS. The submissions were
automatically assessed by executing the predefined test
cases on the system. Based on the test execution results,
feedback was provided to the students. In addition, the
platform provided services for exercise distribution and
submission management to the respective lecturer.

4.3. Evaluation Phase

After the operation phase we conducted
30 individual expert interviews including the
aforementioned 15 lecturers and 15 students. Each
of the four participating universities was asked to
randomly select four different students that participated
during the operation phase in at least one of the seven
courses. In this context, it is worth mentioning that one
university was only able to recruit three students instead
of four. In addition, only students who passed the
respective course were selected, as no failed students
could be contacted.

The goal of these expert interviews was to create an

Page 56



understanding of the use of the APAS, the acceptance of
the platform, its influence on the learning process, and
compile suggestions for improvement. We developed a
detailed protocol including concrete interview questions
(e.g. Which functionalities of the APAS were
used?) to guide the interviewer and to guarantee the
reproducibility, objectivity, and comparability of the
interviews. All interviews were conducted virtually
by at least one author of this publication. The
interviews lasted approximately half an hour and were
audio recorded. Finally, we compiled the recordings
and notes into transcripts. These interview transcripts
were analyzed to produce qualitative summaries and
extract information relevant to our research (Campbell
et al., 2013). In doing so, we performed an inductive
categorization based on the discussed functionalities
of an APAS during the interviews. Three authors of
this paper performed this categorization. If a conflict
occurred we discussed it and, if necessary, we reached a
consensus by majority voting.

5. Results

In the following section, we present the experiences
gained by lecturers (see Section 5.1) and students (see
Section 5.2) while using the APAS.

5.1. Lecturers’ experiences

During the interviews, the lecturers shared their
experiences, regarding the course management,
preparation of exercises, monitoring of the learning
progress, impacts on students’ solutions, evaluation
of exercises and usability, while using the APAS
ArTEMiS.

Course management: Most of the participating
universities handle their course management in their
respective learning management system (LMS), like
OLAT or Moodle. Accordingly, a few lecturers raised
concerns regarding the introduction of an additional
system as their university was using a LMS in almost
all courses. In this context, several lecturers mentioned
that a thorough integration of the APAS into their
university’s LMS would be appreciated as this would
reduce the number of extra tools lecturers and students
have to use. Moreover, an integration between existing
systems would also enable the APAS to make use
of functionalities for managing individual students or
groups of students. In addition, due to the diverse
nature of the examined courses and their exercises, the
participants highlighted the need for functionalities to
map their course structure in the APAS. While some
courses featured one bigger exercise per week, or
even multiple weeks, other courses consisted of several

smaller exercises per week. For the latter, lecturers
expressed the need of grouping several exercises to
a larger unit such as an exercise sheet. However, it
has to be pointed out that most other features of the
APAS, e.g., discussing exercises or requesting/giving
additional feedback, were not used in the courses since
these features were covered by the respective LMS of
the universities. These examples illustrate once again
the need for close integration between APAS and LMS
for course management.

Preparation of exercises: Before the pilot phase,
the lecturers reported a steep learning curve while
preparing the exercises in the APAS. In this context,
lecturers reported that creating relevant and meaningful
tests with associated feedback might be cumbersome.
For example, introductory exercises heavily rely on
Input-Output (IO) tests which makes it difficult to write
a test case for every possible input or output. In
addition, a minimal deviation in the output of a student’s
solution might result in a failed test case even though the
solution is correct. Moreover, there may be unforeseen
failed tests or error messages from the APAS that
could confuse students. For example, a failed test due
to a timeout caused by a system scanner waiting for
input might lead to the following error message: ’Your
program did not finish within 5 seconds’. This error
message could be hard for students to understand since
the same error message might appear if students write
an infinite loop. In addition, a meaningful test case
contains an appropriate feedback message as to why a
test failed. In this context, participants have reported
that it is difficult to define messages with helpful and
meaningful feedback. In order to address this challenge,
participants suggested that it would be helpful to import
exercises with good and meaningful test cases from
another LMS. However, this approach proved to be labor
intensive as most of the test cases had to be adapted to
the logic of the APAS.

Monitoring of learning progress: The interviews
showed that an APAS is very useful for monitoring the
learning progress. In this regard, lecturers reported that
they gained better insight into each student’s knowledge
because an APAS can analyze the evolution of a
student’s submission and provide an overview of all
solutions with a corresponding score. For example, the
contributions of individual students can be tracked by
their commit history and typical student problems can
be identified early on. In addition, individual students
can be compared to the performance of all students.
Thus, monitoring learning progress can allow lecturers
to respond promptly to problems as they arise and
provide targeted support to students.

Impacts on students’ solutions: Lecturers have

Page 57



noticed positive and negative impacts on students’
solutions by the APAS. On the one hand, lecturers
mentioned that the quality of submitted solutions
improved significantly, which might be traced back to
the fact that students’ solutions must conform to a
certain template and meet predefined test cases. In
this context, it is worth mentioning that the quality of
solutions is related to the quality of test cases defined
by lecturers. On the other hand, they criticized that due
to the predefined test cases, the creativity of solutions
is limited. In particular, this plays a role especially in
advanced topics, where the focus is on finding creative
solutions. For example, in the case of an exercise
where a design pattern is searched, the test cases might
provide information about the expected solution and
thus limit creativity or bias students. Unfortunately,
the APAS was sometimes too strict while assessing
students’ solutions. For example, they had to adapt their
correct solutions to meet the test cases. Moreover, a
trial-and-error pattern of students solving the exercises
could be observed. In other words, this means that
students keep trying around with their solutions until all
test cases are passed. In this context, one participant
stated that a student might learn more by failing a test
case and getting (individual) feedback from the lecturer
rather than iteratively modifying the program until the
tests are passed. In other words, it was reported that
students kept modifying their solutions until all test
cases are passed.

Exercise evaluation: Lecturers highlighted that
the APAS reduced the time needed for correcting
exercises. Moreover, the automated assessment of
students’ solutions is beneficial since it solves the
problem of missing teaching assistants to some extent.
In this context, a participant pointed out that it has
become increasingly difficult to find teaching assistants
for evaluating and grading the exercises. Consequently,
if a teaching assistant might grade all submitted
solutions by hand, it might decrease the quality of
teaching. Therefore, an APAS provides a solution
for automated and objective assessment of students’
solutions, it increases the efficiency of assessment and
allows lecturers to focus on their core tasks of teaching.
In addition, several lecturers stated that the use of
the APAS leads to a reduction of discussion about
grades and scores with students. However, participants
also noted that a plagiarism check across different
programming languages would be desirable in order to
detect plagiarism early.

Usability: Regarding the usability of the APAS
lecturers highlighted the need for an API, a feature-rich
online editor, and tight integration into the respective
development environment (e.g., IntelliJ IDEA). The

desired API could automate certain tasks (e.g., grading
of students, exporting a list of participants or solutions,
updating of assignment specifications, ...) and enable
the integration of the APAS into existing LMS. In
addition, a feature-rich online editor would allow
teaching programming without the need for an IDE. This
could avoid installing and learning the functionalities
of an IDE and direct the primary focus on learning
a programming language. Last but not least, the
participants highlighted the need for a tight integration
of the APAS into the used IDE. This could be realized
by implementing plugins for the respective IDEs. In this
context, the participants mentioned that such a plugin
should automate the submission of solutions and present
the feedback of the APAS accordingly.

5.2. Students’ experiences

During the interviews, the students shared their
experiences, regarding the solving of programming
exercises, feedback, automated assessment and used
functionalities, while using the APAS ArTEMiS.

Solving of programming exercises: In order to
solve the programming exercises provided by the APAS,
students had two possibilities to solve them, via the
online editor or in their local IDE. Our interviews
showed that the online editor was used very little
because of the lack of certain functionalities (e.g.,
auto-completion, debugging features, ...). According
to these limitations, only a few students used it to fix
minor issues that were identified by the automated tests
or to solve introductory programming exercises (e.g.,
hello-world programs). As the semester progressed, it
became apparent that all students used their IDE instead
of the online editor. This choice was motivated by more
extensive functionalities, a much more user-friendly
programming experience through customization options
(e.g., dark mode), highlighting of syntax errors, or a
larger editor window. Moreover, students stated that it
was much more convenient to run their code on their
local machine instead of triggering the whole continuous
integration pipeline of the APAS. This might be traced
back to the fact that the evaluation of solutions by the
APAS takes quite some time. Moreover, in this context,
the students wished for a more in-depth introduction
on how their solutions are evaluated by the APAS
since the whole submission approach and the underlying
continuous integration pipeline lacked transparency.

Feedback: Students highlighted immediate feedback
as the greatest strength of APAS but felt that feedback
could be improved or made more precise. In particular,
the possibility of not having to wait for feedback
from the lecturer after submitting a solution was

Page 58



emphasized very positively. This way, students can
see whether a programming assignment has been
completely misunderstood or where their mistakes are.
The fact that the tests pointed them to certain mistakes
(e.g., division by zero, null reference,...) was perceived
as helpful and students indicated that it improved their
learning performance. In general, students reported
that the feedback made them feel even more mentally
engaged in the task, allowing them to correct their
mistakes directly. In this context, students reported that
they felt more independent because they could correct
their own mistakes without the help of a lecturer. They
also indicated that they were more engaged with their
code and learned a lot by correcting their own mistakes.
However, this behavior leads to the trial-and-error
pattern observed by the lecturers. In addition, several
students pointed out that in other courses, they do not
know if their solutions are correct when they submit
their exercises. Accordingly, they feel nervous before
the classes where the submitted exercises are discussed.
Students reported that this problem is solved by the
immediate certainty of having successfully submitted
the solution into the APAS. In their opinion, this is
another aspect of why immediate feedback is perceived
as beneficial. However, the students stated that the
instant feedback can be improved. For example, some
error or feedback messages were incomprehensible or
inaccurate. Moreover, students mentioned that it would
be also beneficial to get exact error locations instead of
just stating that a test failed. In this context, students
emphasized that they would appreciate a concrete
description of the test case so that they can investigate
why a certain test fails. Sometimes they were not able
to identify the cause and hence were unable to fix it. As
already discussed, in general, this might be traced back
to the fact that the definition of appropriate test cases
with meaningful feedback represents a major challenge
for lecturers.

Automated Assessment: After the solutions have
been successfully submitted to the APAS, the automated
assessment takes place. In general, students commented
positively that submitting and reviewing assignments
through the APAS provides a comparable and objective
evaluation. This might be attributed to the fact that the
solutions are now assessed by a single instance and not
by different lecturers as before. One criticism, however,
was that it was not possible to submit incomplete code
or partial solutions. For some students, this meant that
not all submissions could be evaluated.

Used functionalities: Finally, we interviewed the
students regarding their scope of use of the automated
programming assessment system. Since the students
primarily work on the exercises in their local integrated

development environment and use the continuous
integration pipeline to submit their solutions to the
automated programming assessment system it becomes
apparent that the system is perceived and used as
a submission platform. Other functionalities of the
system, such as sending questions or complaints about
the assignments and assessment, were not used. One
reason for this might be that the universities already use
established learning management systems that are used
for all courses. Registration for courses takes place via
these systems. All results are also listed there. Quizzes
and communication with teachers also take place partly
via these tools or in the respective seminars.

6. Discussion

While both teachers and students were satisfied with
the APAS, it became evident that the system does not yet
fulfill all of the needs of both parties. In the following,
we discuss the key findings (see Section 6.1 to 6.4) with
recommendations for future work (see Section 6.5). As
already discussed in Section 3, our key findings are not
limited to the APAS used, but also apply to APAS in
general. In addition, we outline potential limitations of
the research at hand (see Section 6.6).

6.1. Limited user acceptance and integration
into existing systems

Our investigations showed that lecturers and students
did not use the full functional scope of the APAS and
heavily rely on their university’s LMS (e.g., OLAT,
Moodle,...). For example, many features of the APAS
like asking questions or requesting feedback were not
used by the students. This was mainly because they were
instructed by their lecturer to use email communication
or accustomed to using the LMS of their university. In
this context it is worth mentioning that the use of LMS
at universities has become even more widespread as a
result of the COVID-19 pandemic. At most universities
they are the primary tool for course management, course
operation, exams, and student assessment. Accordingly,
the use of the APAS meant that lecturers and students
had to accept an additional system and switch between
different systems to perform their tasks. In order to
address these issues, it is highly recommended that
an APAS offers functionalities or APIs to facilitate
integration into existing systems, like LMS. However,
former research (Amelung et al., 2011) showed that this
is a major challenge. Besides this, further empirical
investigations are needed to understand the factors
influencing user acceptance and satisfaction of APAS.

Page 59



6.2. Limited functionalities of code editors

The expert interviews showed that the APAS’s
integrated code editor has limited functionalities
although this might put students attention on learning
programming instead of challenging them with a
locally installed integrated development environment
(IDE). Additionally, our investigations have shown that
integrating an APAS into a local IDE can be difficult
due to missing plugins. However, students prefer locally
installed IDEs due to their extensive range of functions
and the possibility to customize them. Nevertheless, an
integrated development environment is another system
that students must install on their operating system and
become familiar with. Accordingly, an integrated online
editor would remedy the situation, focus the attention on
learning programming and not introduce another system
in the learning environment. Especially for freshmen
or students from other disciplines, this removes the first
hurdle to programming. Accordingly, an improvement
in the functionality of integrated code editors in APAS is
required to achieve the necessary acceptance by students
and thus provide a full-fledged system for programming
learning.

6.3. Challenging preparation of assignment
with corresponding test cases

During the interviews, lecturers shared their
experiences of preparing exercises with corresponding
test cases and feedback. Similar to previous research
(Ala-Mutka, 2005; Cerioli and Cinelli, 2008; Enström
et al., 2011), they stated that it is not a trivial
but an elaborate, difficult and time-consuming task.
Especially the definition of good test cases and valuable
feedback was a challenge for some lecturers. This
was also illustrated by the fact that students would
like to see improvements in terms of feedback and
error reporting. In addition, as also highlighted
by P. M. Chen, 2004 the creation of test cases is
made more difficult, as they might limit or bias the
creativity of students. For example, students might
see the solution to the problem based on the test
cases and focus their implementations only on fulfilling
these test cases. Accordingly, there is room for
improvement in the process of creating exercises with
corresponding test cases and feedback. Due to the
fact that several lecturers from different universities are
involved in the CodeAbility Austria project, it would
be conceivable to implement an exchange of exercises
and a corresponding peer-review process to increase the
quality of exercises and test cases. Moreover, such
collaboration was already mentioned by the lecturers
as an expectation regarding the APAS in an earlier

project phase. In the course of this collaboration, the
expertise of several lecturers could be drawn upon or
standardized exercises for certain problems could be
created jointly. Therefore, it would be worth considering
introducing and establishing an exchange platform for
teaching materials and exercises. In a further step, this
platform could be expanded and pursue a crowdsourcing
approach involving lecturers outside the CodeAbility
Austria project.

6.4. Trial-and-error behavior of students

Last but not least, similar to previous studies
(Edwards, 2004; Karavirta et al., 2006; Restrepo-Calle,
Ramirez Echeverry, and Gonzalez, 2019) our
investigations showed a trial-and-error behavior of
students while solving exercises with the automated
programming assessment system. This can also be
attributed to the fact that a test-driven approach is taken
when solving and assessing the exercises. Students
indicated that after a failed attempt, they searched
for solutions on the Internet or kept trying until the
tests were passed, which could be annoying. In this
context, lecturers mentioned that they would like to
monitor the learning process in order to understand
what the problems were. Furthermore, monitoring of
failed attempts could also help to identify and prevent
trial-and-error behavior as this approach has been
shown to be detrimental for students’ performances
(Restrepo-Calle, Ramirez Echeverry, and Gonzalez,
2019). Based on the knowledge of failed attempts and
the competencies to be taught, individual learning paths
could be defined. In other words, the system should
provide support for typical failures or problems which
might occur when solving the exercises. For example,
this support could be advanced exercises, additional
learning materials, or tutorials. To support the approach
of individualized learning paths, the respective course
should be mapped in the system as a competency graph.
For each task, the student’s competence gain is checked
by the predefined test cases. If a competence has not
been acquired, the student is given another task and the
aforementioned support to acquire it. This approach
results in individual learning paths that are aligned with
the competency graph.

6.5. Directions for future Work

Based on the key findings (see Sections 6.1 to 6.4),
the following directions for future work emerge: (1)
Design, implementation, and evaluation of concepts
to integrate APAS into commonly used LMS (cf. 6.1),
(2) Empirical investigations on factors influencing user
acceptance and satisfaction of APAS (cf. 6.1), (3)

Page 60



Design, implementation and evaluation of an integrable
full-featured code editor for APAS. (cf. 6.2), (4)
Design, implementation and evaluation of a sharing
platform to exchange standardized assignments with
corresponding test cases for APAS (cf. 6.3), (5)
Application and evaluation of crowdsourcing concepts
to create assignments with corresponding test cases for
APAS (cf. 6.3) and (6) Development, implementation
and evaluation of concepts for individualized learning
paths in APAS based on students’ learning traces and
competency graphs (cf. 6.4). As mentioned earlier,
the proposed directions are not limited to our APAS.
Rather, they are intended as topics for future research
and suggestions for improving all APAS.

6.6. Limitations

The research at hand might be limited by a (i)
selection bias of participants, a (ii) selection bias of
courses, the (iii) used APAS and (iv) limited experience
of lecturers and students with an APAS. In order to limit
(i) we asked all universities involved in the project and
their lecturers to voluntarily participate in our empirical
investigations (cf. Section 4.1). Moreover, we asked
them to randomly select four students for the interviews
(cf. Section 4.3). Accordingly, we had limited influence
on the participants who agreed to take part in the
empirical investigations. It is worth mentioning that
those students who did not pass the respective course,
unfortunately, did not participate in the expert surveys
and interviews. This might possibly influence the results
by introducing a more positive attitude towards the
automated programming assessment system. The results
might be limited by (ii), since we primarily studied the
use of the APAS by freshmen in introductory courses.
This was also the primary goal of our research. Future
research will also look at the use of APAS by advanced
programmers in advanced software engineering courses.
Limitation (iii) is only present to a certain extent,
since we evaluated various APAS at the beginning
of the project (cf. Section 3) and our investigations
showed that the offered basic functionality is similar
for all analyzed APAS. Furthermore, it should be
noted that the primary goal of our work is to report
on the lecturers’ and students’ experiences with basic
functionalities of an APAS and not to evaluate the actual
implementation of functionalities. Last but not least,
in order to counteract limitation (iv) we conducted an
introductory workshop for lecturers on how to use the
APAS ArTEMiS (cf. Section 4.1). Moreover, students
had the possibility to participate in an interactive tutorial
provided by the APAS.

7. Conclusion & Outlook

In this paper, we provided an intervention study on
lecturers’ and students’ experience with an APAS used
at four different universities within the same country.
In total 15 lecturers and 517 freshmen from different
fields of studies participated in the study over the period
of one semester. In order to learn more about their
experiences 30 expert interviews, including 15 lecturers
and 15 students, were conducted. Our investigation
showed that an automated programming assessment
system needs a tight integration in existing LMS and
IDEs to increase user satisfaction. The interview results
suggest that collaborative creation and peer-reviewing
of exercises with corresponding test cases and feedback
might increase exercise quality. Furthermore, individual
learning paths might avoid the trial-and-error behavior
of students while solving exercises. Our future work will
focus on developing a user satisfaction model for APAS,
approaches to crowdsource, share and peer-review
programming exercises, and a concept for implementing
individual learning paths based on competency models.

Acknowledgments

The CodeAbility Austria project has been funded by
the Austrian Federal Ministry of Education, Science and
Research (BMBWF).

References

Ala-Mutka, K. M. (2005). A survey of automated
assessment approaches for programming
assignments. Computer science education,
15(2), 83–102.

Amelung, M., Krieger, K., & Rösner, D. (2011).
E-assessment as a service. 4(2), 162–174.
https://doi.org/10.1109/TLT.2010.24

Barra, E., López-Pernas, S., Alonso, Á.,
Sánchez-Rada, J. F., Gordillo, A., &
Quemada, J. (2020). Automated assessment
in programming courses: A case study during
the covid-19 era. Sustainability, 12(18), 7451.
https://doi.org/10.3390/su12187451

Campbell, J. L., Quincy, C., Osserman, J., &
Pedersen, O. K. (2013). Coding in-depth
semistructured interviews: Problems of
unitization and intercoder reliability and
agreement. Sociological Methods & Research,
42(3), 294–320.

Cerioli, M., & Cinelli, P. (2008). Grasp: Grading and
rating assistant professor. Proceedings of the
ACM-IFIP IEEIII 2008, 37–51.

Page 61



Chen, H. M., Nguyen, B. A., Yan, Y. X., & Dow,
C. R. (2020). Analysis of learning behavior
in an automated programming assessment
environment: A code quality perspective. https:
//doi.org/10.1109/ACCESS.2020.3024102

Chen, P. M. (2004). An automated feedback system
for computer organization projects. IEEE
Transactions on Education, 47(2), 232–240.

Coore, D., & Fokum, D. (2019). Facilitating Course
Assessment with a Competitive Programming
Platform. Proceedings of the 50th ACM
Technical Symposium on Computer Science
Education, 449–455. https://doi.org/10.1145/
3287324.3287511

Daradoumis, T., Marquès Puig, J. M., Arguedas, M., &
Calvet Liñan, L. (2019). Analyzing students’
perceptions to improve the design of an
automated assessment tool in online distributed
programming. Computers and Education, 128,
159–170. https://doi.org/10.1016/j.compedu.
2018.09.021

Edwards, S. H. (2004). Using software testing
to move students from trial-and-error to
reflection-in-action. Proceedings of the 35th
SIGCSE Technical Symposium on Computer
Science Education, 26–30. https://doi.org/10.
1145/971300.971312

English, J., & English, T. (2015). Experiences of using
automated assessment in computer science
courses. Journal of Information Technology
Education: Innovations in Practice, 14,
237–254.

Enström, E., Kreitz, G., Niemelä, F., Söderman, P., &
Kann, V. (2011). Five years with kattis – using
an automated assessment system in teaching.
2011 Frontiers in Education Conference (FIE),
T3J-1-T3J–6.

Galan, D., Heradio, R., Vargas, H., Abad, I., &
Cerrada, J. A. (2019). Automated Assessment
of Computer Programming Practices: The
8-Years UNED Experience. IEEE Access, 7,
130113–130119. https : / / doi . org / 10 . 1109 /
ACCESS.2019.2938391

Goedicke, M., Striewe, M., & Balz, M. (2008).
Computer aided assessments and
programming exercises with jack (tech. rep.).
ICB-Research Report.

Gomes, A., & Mendes, A. J. N. (2007). Learning
to program-difficulties and solutions.
International Conference on Engineering
Education, 283–287.

Gordillo, A. (2019). Effect of an instructor-centered
tool for automatic assessment of programming

assignments on students’ perceptions and
performance. Sustainability (Switzerland).
https://doi.org/10.3390/su11205568

Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M.,
Börstler, J., Edwards, S. H., Isohanni, E.,
Korhonen, A., Petersen, A., Rivers, K., Rubio,
M. Á., Sheard, J., Skupas, B., Spacco, J.,
Szabo, C., & Toll, D. (2015). Educational
Data Mining and Learning Analytics in
Programming: Literature Review and Case
Studies. Proceedings of the 2015 ITiCSE on
Working Group Reports, 41–63. https : / / doi .
org/10.1145/2858796.2858798

Jenkins, T. (2002). ON THE DIFFICULTY OF
LEARNING TO PROGRAM. 3rd Annual
LTSN-ICS Conference,Loughborough
University.

Karavirta, V., Korhonen, A., & Malmi, L. (2006). On the
use of resubmissions in automatic assessment
systems. Computer science education, 16(3),
229–240.

Keuning, H., Jeuring, J., & Heeren, B. (2016). Towards
a systematic review of automated feedback
generation for programming exercises.
Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer
Science Education, 41–46.

Keuning, H., Jeuring, J., & Heeren, B. (2018). A
systematic literature review of automated
feedback generation for programming
exercises. ACM Transactions on Computing
Education (TOCE), 19(1), 1–43.

Knobbout, J., & Van Der Stappen, E. (2020). Where
is the Learning in Learning Analytics?
A Systematic Literature Review on the
Operationalization of Learning-Related
Constructs in the Evaluation of Learning
Analytics Interventions. IEEE Transactions
on Learning Technologies, 13(3), 631–645.
https://doi.org/10.1109/TLT.2020.2999970

Krusche, S., & Seitz, A. (2018). Artemis: An automatic
assessment management system for interactive
learning. Proceedings of the 49th ACM
Technical Symposium on Computer Science
Education, 284–289.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A.,
Giannakos, M., Kumar, A. N., Ott, L.,
Paterson, J., Scott, M. J., Sheard, J., &
Szabo, C. (2018). Introductory programming:
A systematic literature review. Proceedings
Companion of the 23rd Annual ACM
Conference on Innovation and Technology

Page 62



in Computer Science Education, 55–106.
https://doi.org/10.1145/3293881.3295779

Marin, V. J., Pereira, T., Sridharan, S., & Rivero, C. R.
(2017). Automated personalized feedback in
introductory java programming moocs. 2017
IEEE 33rd International Conference on Data
Engineering (ICDE), 1259–1270. https: / /doi .
org/10.1109/ICDE.2017.169

Mekterovic, I., & Brkic, L. (2017). Setting up automated
programming assessment system for higher
education database course. International
Journal of Education and Learning Systems, 2.

Mekterović, I., Brkić, L., Milašinović, B., &
Baranović, M. (2020). Building a
comprehensive automated programming
assessment system. IEEE Access, 8,
81154–81172. https : / / doi . org / 10 . 1109 /
ACCESS.2020.2990980

Pettit, R., Homer, J., Holcomb, K., Simone, N., &
Mengel, S. (2015). Are automated assessment
tools helpful in programming courses?
ASEE Annual Conference and Exposition,
Conference Proceedings, 122.

Pettit, R., Homer, J., Gee, R., Mengel, S., & Starbuck,
A. (2015). An Empirical Study of Iterative
Improvement in Programming Assignments.
Proceedings of the 46th ACM Technical
Symposium on Computer Science Education,
410–415. https : / /doi .org /10 .1145/2676723.
2677279

Poženel, M., Fürst, L., & Mahnič, V. (2015).
Introduction of the automated assessment
of homework assignments in a university-level
programming course. 2015 38th
International Convention on Information
and Communication Technology, Electronics
and Microelectronics (MIPRO), 761–766.
https://doi.org/10.1109/MIPRO.2015.7160373

Queirós, R., Pinto, M., & Terroso, T. (2020).
Computer Programming Education in
Portuguese Universities. OpenAccess
Series in Informatics, 81(21), 1–11. https :
//doi.org/10.4230/OASIcs.ICPEC.2020.21

Restrepo-Calle, F., Ramirez Echeverry, J. J., &
Gonzalez, F. A. (2019). Continuous assessment
in a computer programming course supported
by a software tool. Computer Applications in
Engineering Education, 27(1), 80–89.

Restrepo-Calle, F., Ramı́rez Echeverry, J. J., &
González, F. A. (2019). Continuous assessment
in a computer programming course supported
by a software tool. Computer Applications in

Engineering Education, 27(1), 80–89. https://
doi.org/https://doi.org/10.1002/cae.22058

Restrepo-Calle, F., Ramirez-Echeverry, J. J., &
González, F. (2020). Using an interactive
software tool for the formative and summative
evaluation in a computer programming
course: An experience report. Global Journal
of Engineering Education, 22(3). http :
//www.wiete.com.au/journals/GJEE/Publish/
vol22no3/06-Echeverry-J.pdf

Romli, R., Sulaiman, S., & Zamli, K. Z. (2015).
Improving Automated Programming
Assessments: User Experience Evaluation
Using FaSt-generator. Procedia Computer
Science, 72, 186–193. https://doi.org/10.1016/
j.procs.2015.12.120

Rubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C.,
& Velázquez-Iturbide, Á. (2014). Student
perception and usage of an automated
programming assessment tool. Computers in
Human Behavior, 31, 453–460. https://doi.org/
https://doi.org/10.1016/j.chb.2013.04.001

Souza, D. M., Felizardo, K. R., & Barbosa, E. F. (2016).
A Systematic Literature Review of Assessment
Tools for Programming Assignments. 2016
IEEE 29th International Conference on
Software Engineering Education and Training
(CSEET), 147–156. https: / /doi .org/10.1109/
CSEET.2016.48

Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A.,
Al-Ghamdi, A., & Saleem, F. (2018). The
effect of automatic assessment on novice
programming: Strengths and limitations of
existing systems. Computer Applications in
Engineering Education, 26. https : / / doi . org /
10.1002/cae.21974

Vargas, H., Heradio, R., Chacon, J., De La Torre, L.,
Farias, G., Galan, D., & Dormido, S. (2019).
Automated Assessment and Monitoring
Support for Competency-Based Courses.
IEEE Access, 7, 41043–41051. https :
//doi.org/10.1109/ACCESS.2019.2908160

Yan, Y.-X., Wu, J.-P., Nguyen, B.-A., & Chen, H.-M.
(2020). The impact of iterative assessment
system on programming learning behavior.
Proceedings of the 2020 9th International
Conference on Educational and Information
Technology, 89–94. https: / /doi .org/10.1145/
3383923.3383939

Page 63


