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Abstract 

A key assumption of a Subgraph Generative Model 
(SUGM) for sparse networks is that a subgraph is 
independent of lower order subgraphs in a sparse 
network. This is not entirely true especially for non-
sparse networks. Additionally, the generated networks 
lack the typical properties of a social network because 
of an assumption of random growth for nodes and 
edges. Finally, there is no concept for explicit ego 
choice or bias when connecting to dyadic or triadic 
relationships. We develop a novel graph generative 
model referred to as the Bayesian Social Subgraph 
Generative Model (BASSUGM). We ground the 
BASSUGM in a proposed sociological model and 
leverage Bayesian tools like belief networks. We 
introduce novel concepts like the networks’ macro 
theme when combines with an ego’s individuality 
realizes the ego’s intent. We also demonstrate how the 
social network twin generated with BASSUGM 
outperforms SUGM for non-sparse, small, social, 
networks. 
 
Keywords: Generative Model, Graph Theory, Bayesian 
Belief Network, Behavior Model, Network Twin 

1. Introduction  

A social network is an embodiment of social life 
between people. It reflects the positions they hold, roles 
they play and the relationships they form or break. 
People help, hinder, trade, fight, and be-friend. In the 
social network of relationships people realize their 
desires and express their intent. Social networks are an 
“invisible structure that underlies society and has its 
influence in determining the conduct of society as a 
whole” (Moreno, 1993).  

Sociological formations are characterized by 
simple structures and their interactions (Wolff & 
Simmel, 1950). The simplest structure is the isolated 
individual who has no interaction with the network. 
Simmel defines an isolated individual as a temporal and 
interrupting social relationship. “Isolation is a relation 
which is lodged within an individual, but which exists 

between him and a certain group”. (Wolff & Simmel, 
1950) 

A network twin is a representation of an existing 
real-world network. We need network twins to model 
dynamic, interacting, social, and temporal real-world 
phenomenon. The use cases for network-twins range 
across descriptive, predictive, and prescriptive 
analytics. These use cases also span a gamut of domains 
include internet of things (IOT), fraud, community 
mining, and customer churn.  

In specific cases, the practical applications of twin 
networks require high representational fidelity in terms 
of the networks actor’s behavior and relationships. This 
is especially true for critical applications like customer 
fraud detection, customer churn management, or anti-
terrorism financing. Low fidelity or coarse network 
representations that focus only on global properties are 
of limited value. This is because the focus of descriptive, 
predictive, and prescriptive analytics in modern network 
applications is not only on the global network 
neighborhood but often the actors local, immediate 
neighborhood. 

The overall problem under consideration is the 
discovery of a straightforward way to construct network 
twins with minimal loss of structural and behavioral 
fidelity. The Subgraph Generative model (SUGM) 
proposes generation of a digital network twin for large 
sparse graphs in a straightforward way using a 
cumulative generation and overlay of subgraphs. First, 
it generates nodes. Then it connects links or dyads. 
Finally, it connects triangles or triads. However, the 
SUGM makes certain assumptions. A central 
assumption is the subgraph independence for large 
sparse networks. This becomes a problem for non-
sparse networks where there is a more pronounced 
dependence between subgraphs. Another assumption is 
the global and random nature of subgraph connectivity. 
This is also a problem because in addition to connecting 
using a global connectivity principle, nodes also connect 
using a local connectivity mechanism that reflects the 
nodes local choices and bias. Hence, the decision to 
connect two or more egos is a combination of global 
trends and local choice. This is important because we 
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want the digital network twin structure to reflect 
sociological behaviors of nodes in the network as well 
as the macro connectivity theme. 

In this research paper propose a novel method to 
generate digital network twins for social networks that 
is simple to implement and still provides the structural 
and behavioral fidelity in the network twin. Our 
proposed solution uses Bayesian belief networks to 
incorporate conditional subgraph dependence as 
observed in the original social network. We use this 
conditional subgraph dependence to probabilistically 
generate subgraphs without the assumption of 
independence. Additionally, our proposed solution 
combines macro concerns with local behavior to 
generate probabilities for connectivity. We call our 
network generation process the Bayesian Social 
Subgraph Generative Model (BASSUGM).  

We structure the sections in the research paper as 
follows. In Section 2, we discuss the sociological model 
of a network. In Section 2.1 we discuss prior work on 
graph generative models in depth. In Section 3, we 
describe our approach to operationalize our network 
generation process in detail. We include the details of 
the probabilistic belief network as well as the dyadic and 
triadic behavior models which we use for the ego’s bias. 
In Section 4, we evaluate our proposed generative model 
by forming hypotheses and experimenting with popular 
non sparse, and small social networks. In Section 5, we 
discuss and reflect on the experiment results. In Section 
6, we discuss the potential for future research work. 
Finally, in Section 7, we conclude the paper.  

2. Background and related work 

An actor is a node in a social network. Ego is a focal 
actor. The ego is defined as “the self especially as 
contrasted with another self or the world” (“Ego.,” 
2022). Ego nodes connect to other ego’s called alters. 
The alter is defined as “a second self or different version 
of oneself” or as “a trusted friend” (“Alter Ego.,” 2022).  

A relation is a tie or link between an ego and an 
alter. An ego can have multiple relationships in the 
network. We will call the set of ego relationships as a 
role. (Lorrain & White, 1971) describes role as 
“consisting of sets of relations linking this person as ego 
to sets of others”. Roles are local and are a characteristic 
of the ego. In this paper, we use the term degrees from 
graph theory to denote the count of ego relations. 

An ego is associated with a position in the network. 
There are a set of egos who share equivalent role 
patterns. Egos with similar positions are structurally 
equivalent. 

Egos are free. To be free is to have choice. To have 
choice is to realize (make concrete) an individual’s 
intent to relate to other alters in the network.  

A dyad is the first structure where there is 
relationship between two egos. It is the germ of the 
society where the individuality of the members is 
favored equally (Wolff & Simmel, 1950). The dyad is 
unique in that either member has equal power to 
dissolve the dyad.  

A triad expands a dyad and brings a third to the 
relationship. There is a direct relationship between two 
individuals but mediated by the indirect one of the third. 
This leads to a dynamism of the relationship. Power and 
the strengths of relationships is unequal and shifting in 
a triad. The power relationship in a triad contributes to 
the temporal dynamism of the network and is an 
important consideration in network construction.  

However, the full realization of the ego’s intent to 
create or maintain a relationship does not depend 
entirely on the ego’s choice. There are global influences 
at play that moderate the full realization of the intent. 
We call these global influences, the macro theme. 

Macro themes apply to the entire network or a 
portion of it. This is the invisible structure of networks 
characterized by (Moreno, 1993). Macro themes are the 
fabric of the network and moderate the realization of 
individual choices. The realization of the ego’s intent is 
an outcome contributed by both the macro theme and 
the ego’s intent. For example, an individual (ego) 
wishes to stay connected with a school friend (alter), but 
macro considerations like the distance, boundaries like 
weather, or even events like war moderate the intent. 
Note the reference to “invisible structures” in (Moreno, 
1993). The full realization of an individual’s intent 
depends in part to those invisible structures which are 
beyond the individual’s local intent and indeed, control. 
The individual “ties others and is tied by others” (Wolff 
& Simmel, 1950). The invisible structures that influence 
the ego’s intent and indeed the network formation are 
the macro themes of the social network.  

The sociological model of the network that we have 
described above is important because it conceptualizes 
and guides our network generation process. We 
operationalize this conceptual model in Section 3. 

2.1. Graph generative models 

The goal of graph generative models is to construct 
a representation of an observed network (Wasserman & 
Pattison, 1996). We can categorize graph generative 
models as feature driven, structure driven, and intent 
driven. (Lim et al., 2016). Feature driven models define 
a “mechanism or a principle by which a network with 
desired features is constructed.” One way to connect 
networks is to probabilistically connect network nodes 
and edges using a uniform distribution (Erdös & Alfréd, 
2011). Another way is to use a preferential attachment 
model where the node attachment probabilities are 
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proportionate to the number of node ties. (Barabási & 
Oltvai, 2004). Structure driven models capture global 
properties to generate the network. dK-Graph 
(Mahadevan et al., 2006) measures and generates 
random graphs by capturing probability distributions of 
the subgraph’s properties. Intent driven models emulate 
actor relationships. Random walks (Vazquez, 2003) 
probabilistically create nodes and ties while traversing 
the network. 

Hybrid networks combine dynamic random and 
dynamic preferential attachment networks. (Jackson, 
2008). The rationale is that networks in practice are a 
proportional combination of the preferential attachment 
and random networks.  

The U|MAN distribution is a uniform distribution 
conditioned on the dyad census and includes mutual 
dyads, asymmetric dyads and null (or unconnected) 
dyads <M,A,D> (P. Holland & Leinhardt, 1974). The 
distribution emits the conditional probabilities of node 
connections  

The “p1” model are four log-linear models whose 
outcomes were the probabilities of the <M, A, D> dyad 
census (P. W. Holland & Leinhardt, 1981). One can 
introduce actor attributes into log-linear models. 
However, these models impose severe independence 
assumptions. The p* models also called Exponential 
Random Graph Models (ERGM) is a linear combination 
of coefficients and network count statistics (Fienberg & 
Wasserman, 1981). The aim is to find the probability of 
a network observation over all networks and then use 
the estimated coefficients to characterize the network. 
The estimation uses Markov Chain Monte Carlo 
(MCMC) methods to sample the networks. One 
difficulty is that it is hard to get stable parameter 
estimates for a large sparse network because the number 
of all subgraphs is prohibitively large for sampling. 

Subgraph Generation Models (SUGM) is a layered 
and incremental subgraph generative approach 
(Chandrasekhar & Jackson, 2016, 2021). In the SUGM, 
there is an incremental generation of subgraphs. These 
subgraphs are overlayed on top of lower order 
subgraphs. The motivation for SUGM was the difficulty 
in parameter estimation in ERGM. In SUGM, dynamic 
network growth builds the network using subgraphs.  

A key assumption of a SUGM is that a subgraph is 
independent of lower order subgraphs in a sparse 
network. As an example, we could assume that a triangle 
is independent of links. However, triangles are not 
independent of links. A simple illustration in which 
removing a link removes one or more triangles, proves 
this point. So, the probability estimations as calculated 
in the SUGM will not capture any lower order subgraph 
dependence. Additionally, the generated networks lack 
the typical properties of a social network because of 
random network growth. Typical social networks 

properties include fat tails, small diameters, scale free 
behavior, small average path lengths and assortativity. 
Finally, there is no consideration of the ego’s choice. 
The ego has a preference bias when choosing an alter in 
a dyad or a pair of alters in a triad.  

There are two structural limitations in the SUGM. 
One, subgraphs may be incidental. This means that the 
observed count of the subgraphs may not be accurate. 
This is important because for network twins we want the 
subgraph counts of the network twin to be close to the 
original subgraph as possible and to get the closest fit to 
the original network. Two, subgraphs are not 
independent. These difficulties may not be severe for 
large sparse networks. However, this difficulty impacts 
smaller networks. This is important because we want to 
capture the dependence nature of the original network in 
the network twin. 

Additionally, as previously discussed the ego 
exercises choice to realize their intent. However, the 
network macro theme moderates this choice. The 
inclusion of explicit behavior and this combination of 
behaviors is missing in the SUGM and other generative 
models in the literature. By explicitly including these 
behavior models we can probabilistically connect nodes 
not just on a global theme like preferential attachment 
but also on local choices of the nodes or egos. 

The BASSUGM approach uses probabilities of 
nodes, links and triangles conditioned on lower order 
subgraphs to consider the dependent nature of networks. 
Furthermore, this approach uses local behavior models 
that consider the nodes choice of association and 
combine these local choices with the global choice 
characteristics of the network. 

We use graph theoretic notation in this paper. To 
express probabilities, we use common notations from 
probability theory. Finally, to describe causal Bayesian 
networks we use directed influence diagrams and 
conditional probability tables. We also use plate 
notation to represent variables in a Bayesian regression. 

3. The approach 

3.1. Bayesian social subgraph generated model 

The aim of the BASSUGM is to construct a close 
representation of an observed network. It 
operationalizes key concepts in Section 2. Table 1 maps 
the key concepts. 

To summarize the procedure, the BASSUGM 
replaces the estimated probabilities of a SUGM with the 
conditional joint distribution of the subgraph over all 
lower order subgraphs using a Bayesian belief network. 
To include social network like properties in the 
generated network, the BASSUGM proposes 
preferential attachment that simulates the small world 
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behavior. To account for dyadic local choice, the 
BASSUGM uses a dyadic local behavior model. The 
models are logit models and provides the probability of 
an ego node “choosing” an alter node. In subsequent 
sections we argue the applicability of the logit model. 
This probability of dyadic choice combines with the 
probability of the preferential attachment to account for 
the macro theme and the full realization of the ego’s 
intent. Finally, BASSUGM also considers the ego’s 
triadic choices. Triads are added or removed by 
adjusting the triad count at random like recommended 
for the SUGM in (Chandrasekhar & Jackson, 2016). In 
addition, in the BASSUGM, we also include the 
propensity of triangle formation from a triadic local 
behavior model. 
 

Table 1. Sociological concept mapping 

Sociological 
Concept 

Operationalization Mapping 

Ego Section 3.3: Ego Generation 

Ego’s Position and 
Role 

Section 3.4: Ego Position 
Generation 

Network Hidden 
Structures (Macro 
Theme) 

Section 3.5: Dyad Intent 
Generation 

Ego’s Dyadic 
Intent 

Section 3.5: Dyad Intent 
Generation 

Combine Hidden 
Structures and 
Dyad Intent 

Section 3.6: Combine Macro 
Theme and Dyad Intent 

Ego’s Triadic 
Intent 

Section 3.7: Triad Intent 
Generation 

 

3.2. Subgraph causal belief network 

In the BASSUGM, we use the discrete condition 
probabilities distribution (CPD) of each subgraph as a 
node over the lower order parent in a causal belief 
network. We want to establish the joint distribution P 
(Ego, Link, Triangle) and infer conditional probabilities 
over the joint distribution. The belief network assumes 
local independencies. As an example, triads are 
independent of ego given its parent. i.e., Triangle ⊥ Ego 
| Link. 

We define the CPD for each node of the belief 
network. Egos have no parent but have two states – An 
isolated or a non-isolated state. Ego is the parent of 
Link. Links states are the unique counts of observed 
dyads for all egos in the network conditioned on ego 
states. Link is the parent of triangle conditioned on link 

states. Triangle states are the unique counts of all 
observed triangles for all egos in the network. 

The Bayesian network computes the joint 
distribution of the network using the chain rule of 
probability and applying the local independence 
condition. To compute conditional probabilities, we use 
Bayesian software for variable elimination to 
marginalize over all other variables. 

 

 
Figure 1. Subgraph causal belief network 

We define the CPD for each node of the belief 
network. Egos have no parent but have two states – An 
isolated or a non-isolated state. Ego is the parent of 
Link. Links states are the unique counts of observed 
dyads for all egos in the network conditioned on ego 
states. Link is the parent of triangle conditioned on link 
states. Triangle states are the unique counts of all 
observed triangles for all egos in the network. 

The Bayesian network computes the joint 
distribution of the network using the chain rule of 
probability and applying the local independence 
condition. To compute conditional probabilities, we use 
Bayesian software for variable elimination to 
marginalize over all other variables. 

 
 
 
 

Ego

Link

Triangle

P(Ego)

P(Link | Ego)

P(Triangle | Link)
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Table 2. Ego conditional probability distribution 

State  

Isolates P (Ego | Isolates) 

Non-isolates P (Ego | non-Isolates) 

 

Table 3. Link conditional probability distribution 
 

Evidence 

State non-isolates isolates 

Degree = 0 P (Degree = 0 | non-
isolates) 

0 

Degree = 1 P (Degree = 1 | non-
isolates) 

0 

Degree = n P (Degree = n | non-
isolates) 

0 

 

Table 4. Triangle conditional probability distribution 
 

Evidence 

State Degree = 
0 

: Degree = k 

Triangle 
Count = 
0 

P 
(Triangle 
Count = 0 
| Degree = 
0) 

: P (Triangle Count = 0 | 
Degree = k) 

: : : : 

Triangle 
Count = 
n 

P 
(Triangle 
Count = n 
| Degree = 
0) 

: P (Triangle Count = n | 
Degree = k) 

 

3.3. Ego generation 

In BASSUGM, like in the SUGM we generate 
“nicely ordered” subgraphs starting from an empty 
network. First, we create a seed network from a fixed 
number of nodes. We choose the star network as the 
seed because it best represents a basic dyadic formation 
of an ego actor connected to multiple alter actors. We 
then introduce egos dynamically over time. Time t 
generates a node n, then at time t + 1 a new node n+1 
generates. By randomly choosing from a categorical 
probability distribution with two categories, isolates, 
and non-isolates, we tag the ego as isolate, or non-

isolate. We infer this categorical distribution from the 
Bayesian belief network. 
 

Table 5. Ego categorical distribution 

Parameter Description  

Number of Categories (k) k = 2  
{Isolates, non-isolates} 

P(Ego) {p1, p2} 
where pi >= 0, Σ pi = 1 

 

3.4. Ego position generation 

We now generate ego positions. Recall that an ego 
position is simply the count of relations for the ego. We 
randomly choose the count of relations from a 
categorical distribution where the categories are a 
sequence from zero up to the maximum relation count 
in the observed network. We infer the categorical 
distribution from the belief network. 

 
 

Table 6. Position (Links) categorical distribution 

Parameter Description  

Number of Categories (k) n = maximum of ego 
degrees  
{k0, k1, …., kn} 

P(Links|Egos) {p1, p2, ..., pn} 
where pi >= 0, Σ pi = 1 

 

3.5. Dyad intent generation 

As discussed in Section 2, the realization of the 
ego’s intent is a relation to which, the macro theme and 
the local role contribute. 

Preferential attachment approximates the macro 
theme in a social network. We use this as our macro 
theme. To choose an alter, we prepare a categorical 
probability distribution proportional to the number of 
degrees of all existing egos in the network. We then can 
choose randomly to get the dyadic alter for the ego. 

We want to account for local behavior. To model 
this, we use a dyadic local behavior model. The model 
is a logistic random effects model that generates the 
score of a relation between the ego and alter. The inputs 
of the model are structural components of the nodes. 
The outcome is a Bernoulli variable. We prepare a 
vector whose elements are the egos in the network and 
the values are the scores from the dyadic local behavior 
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model. The vector represents the score of all possible 
alters for an ego. 

 
Table 7. Preferential attachment categorical 

distribution 

Parameter Description  

Number of Categories (n) n = count of egos 
n > 0 

Probability Distribution 
Vector (V) 

V = {p1, p2, pn} 
 
where pi >= 0, Σpi = 1 
di= degrees of ego i 
pi = di / Σdi 

 
We justify the use of logistic regression for the 

behavior model as follows. Dyadic Interaction Models 
in the literature use log linear generalized linear models 
(GLM) called the p1 model. If we assume relationships 
are dichotomous. i.e., are present (1) or absent (0), it 
translates into a Bernoulli distribution i.e., k successes 
out of n observations.  
 

 
Figure 2. Dyadic local behavior model 

 
We can then assume a logistic model whose 

dependent variable is a Bernoulli random variable. A 
central assumption of the logistic model is that 
observations are independent. For the Dyadic Local 
Behavior Model, we can argue that the basic modelling 
unit is the Dyad, which means that all observations are 
replicable. We also use the count of relations (degrees) 
for the ego and alter for independent variables. We do 

not use compositional attributes that involve 
dependencies. With this assumption, we can justify the 
use of logistic random models.  

3.6. Combining macro theme and dyad intent 

To completely realize the ego’s intent, we must 
combine the outcomes of the preferential attachment 
and the local behavior model. We assume that both 
probabilities are in a set of pairwise disjoint events 
whose union is the entire sample space. 

 
Bi = {macro theme event, local choice event} 
 
If event A is the realization of the ego’s intent, then 

by the law of total probability: 
 
P(A) = Σ P (A | Bi) P(Bi)  
 
If we assume a discrete uniform distribution for the 

prior of both events, this then translates to a simple 
unweighted average of probabilities. We can now take a 
simple average of the preferential categorical 
distribution with the normalized dyadic behavior scores 
vector to get a new categorical distribution. We 
randomly select the alter from this new distribution. 

3.7. Triad intent generation 

At this point we have grown the network and have 
generated egos and dyads. We still need to include 
triads. 

Dyad formation leads to accidental or incidental 
triads. Two dyads may very well form a triad just by 
chance and not explicit intent. For our representational 
network to be as close to the original network as 
possible, number of triangles in the network must 
closely match the number of triangles in the observed 
network. We use a variation of the proposed approach 
in (Chandrasekhar & Jackson, 2016). In general, we 
remove or add new triangles to the network until we 
approximate the observed number of triangles. To get 
the expected number of triangles for a node we 
probabilistically pick the number of triangles from a 
categorical distribution of count of triangles conditioned 
on the number of node links from the belief network. 

We randomly select an ego, randomly select two 
alters, and then add or remove their relation to update 
the triangle count. We continue the process until we 
obtain the expected triangle count. 
 

beta_0 ego degree
 count

alter degree
 count

p
~

Deterministic

choice

~
Bernoulli

225
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Table 8. Triangle categorical distribution 
conditioned on link count 

Parameter Description  

Number of Categories (k) n = number of triangles 
{0, 1, …., n} 

P (Triangle | Link = m)  n = maximum of all 
unique relations   
{k0, k1, …., kn} 
 
m = count of ego degrees 

 
However, a random selection of two existing alters 

does not take into consideration local choice. To 
improve the random selection of a connection and to 
model the local triadic choice, we use a triadic local 
behavior model. The model is a logistic random effects 
model that emits the propensity score of a relation 
between the ego and both alters. The inputs of the model 
are structural components of the actors. The outcome is 
a Bernoulli variable. 

To select a relation between two alters for addition 
or deletion, we score all combinations of alters for the 
ego. For deletion we target the pair with the lowest 
score. Conversely for addition, we target the pair with 
the highest score. We can interpret this as the ego de-
friending their least compatible friend or friending the 
alter with the highest friend propensity. 

 

 
Figure 3. Triadic local behavior model 

4. Evaluation 

We use three well-known social networks as 
benchmarks for our experiments: 

 
• Padgett’s Florentine Families (FF) 
• Zachary’s Karate Club (KC) 
• Knuth’s Les Misérables (LM)  

For the purposes of this research, we treat all 
networks as non-directional, one mode networks, and 
single relation. We execute our implementation of 
SUGM and BASSUGM on the three benchmark 
networks. The SUGM implementation follows the 
algorithm proposed in (Chandrasekhar & Jackson, 
2021) for small networks. For the generation of dyads, 
we vary preferential attachment, random selection, and 
preferential attachment with the dyadic local behavior 
model. For triangle generation, we vary random 
selection and the triadic local behavior model.  

We use the following measures to compare the 
observed and the twin networks. 

 
• Average Degree 
• Triangle Count 
• Average Clustering 
• Global Transitivity 
• Global Density 
 
 

Table 9. Benchmark network statistics 
 

Nodes  Edges Mean 
Degree 

Global 
Clustering 
Coefficient 

Sparsity  
Index 

FF 16 35 4.38 0.30 0.709 

KC  34 77 4.53 0.26 0.863 

LM 77 254 6.60 0.5 0.914 

 
The measures of both the observed and generated 

networks are vectorized after normalization. We then 
measure the cosine similarity of the two vectors. 
BASSUGM generates a random network. The generated 
network is just one random choice from the set of all 
networks. To ensure reliability we take the average of 
the measures from thirty random generated 
representations for our comparisons. We assume that 30 
samples are a boundary for a large sample which is a 
popular statistical rule of thumb. We calculate the cosine 
similarity after link and triangle generation. We use the 
metrics to evaluate the following hypotheses: 

 
H1: BASSUGM performs better than SUGM when 

generating representations for small non-sparse 
social networks. 

H2: Use of the dyadic local behavior model to select an 
alter in BASSUGM generates a better 
representation as compared to using SUGM. 

H3: Use of the triadic local behavior model to select 
triangles in BASSUGM generates a better 
representation as compared to using SUGM. 
 

beta_0 ego degree
 count

alter A
 degree
 count

p
~

Deterministic

choice
~

Bernoulli

47

alter B 
degree
 count
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In general, the FF, KC and LM networks get 
sparser. We use a sparsity measure that is one minus the 
edge density. We can also express this in the following 
formula for the sparsity index, where n is number of 
nodes and e is number of edges. 

 
𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥 = 1 −

𝑒
1!"2

 

 
We first generate benchmark representational 

networks using the SUGM. Note that the performance 
of the SUGM as measured by the similarity measure 
degrades with the increase in the network global 
clustering coefficient. As network clustering and 
sparsity increases, dependencies among dyads and 
triads increase and the assumption of independence for 
isolates, links, and triangles in the SUGM becomes 
increasingly invalid. Next, we use three BASSUGM 
configurations that correspond to our three hypotheses. 
In the first configuration, we generate links using 
preferential attachment and then update triangles by 
selecting alters randomly. This is the basic BASSUGM 
configuration and the first building block for other 
configurations. In the second BASSUGM 
configuration, we build on the first configuration and 
generate links by using preferential attachment and a 
dyadic behavior model which injects the nodes local 
choice. Finally, in the third configuration, we build on 
the second configuration by using a triadic behavior 
model to inject the nodes triadic choice. 

5. Results and discussion 

 Table 10 summarizes the results of the 
experiments. Generating the representational network 
using the first configuration we find that the BASSUGM 
outperforms SUGM for all three networks. In addition, 
the second configuration BASSUGM also outperforms 
the SUGM for one of the networks (LM) and ties for the 
other two networks. For the third configuration 
BASSUGM ties for the LM network and does not 
outperform the SUGM for the other two networks. Thus, 
we fail to reject our first hypothesis H1 and conclude 
that BASSUGM outperforms SUGM in at least one 
configuration of the BASSUGM. 

The second configuration extends the first 
configuration by using a dyadic behavior model to 
account for the node’s local choice. This configuration 
outperforms one network (LM) and ties for the other two 
networks. Note that the BASSUGM outperformed the 
SUGM in the network with the highest global clustering 
coefficient and the highest sparsity. These types of 
networks consist of clusters that tightly connect to each 
other and do not tightly connect to nodes outside the 
group. In these networks local choice has a greater 

impact than the global theme. By using the dyadic 
behavior model, we inject this behavior explicitly 
during network construction which results in a better 
network representation. Hence, the results support 
hypothesis H2 and we can conclude that using the 
dyadic local behavior model in BASSUGM generates a 
better representation as compared to using SUGM 
especially for networks with high sparsity and high 
clustering coefficients which are typical for large social 
networks. 

The third configuration extends the second 
configuration by adding a triadic behavior model. This 
configuration does not outperform the SUGM or any 
other BASSUGM configuration. Hence, the results do 
not support hypothesis H3. One reason could be that we 
did not include shared attributes of the triad actors in the 
regression. Another reason could be the inherent 
dependent nature of the triad which increases with the 
increase in clustering. We will include shared ego 
attributes and analyze dependencies for triadic behavior 
models in future research. 

Overall, increasing the sparsity of the network 
resulted in a decrease the performance of BASSUGM 
for small networks. As sparsity increases the global 
probabilities or the global theme become less relevant 
and local behavior becomes more pronounced. We used 
unweighted priors while combining macro and local 
behaviors. Weighing priors proportionately to the 
sparsity index may better similarity performance but we 
have postponed this reasoning for future research. 

 
Table 10. Experiment results * 

 FF KC LM 

SUGM    

 0.95 0.95 0.86 

Configuration 1: BASSUGM Generate links with 
preferential attachment + Select triangle alters randomly 

 0.96 0.96 0.91 

Configuration 2: BASSUGM Generate links with 
preferential attachment and the dyadic behavior model + 
Select triangle alters randomly 

 0.95 0.95 0.90 

Configuration 3: BASSUGM Generate links with 
preferential attachment and the dyadic behavior model + 
Select triangle alters with the triadic model 

 0.93 0.94 0.86 
*Cosine similarity of evaluation vectors 
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The BASSUGM is especially useful in applications 
that need descriptive, predictive, and prescriptive 
analytics at the actor level. For example, we can 
construct a telephone network that needs a churn 
analysis application using the BASSUGM process. In 
this type of network, customers are nodes, and the call 
connections are relationships. Initially, we can create 
new isolate customers. Then, we can establish the 
number of connections (position). The telephone 
network is social so it would use preferential attachment 
to connect the nodes as a first step. This will form the 
fabric of the network. Then the dyadic behavior model 
can generate the appropriate customer connections at a 
local i.e., per customer level. After which the triadic 
behavior model could connect the triadic relationships 
for each customer. 

6. Future work 

There are multiple ways to extend this research. 
First, the observed network is ever evolving. Egos join 
the network and leave. Macro themes are temporal and 
constantly changing. Ego behaviors will vary across 
groups and will change over time. How will the 
representation network synchronize with changes in the 
observed network? This is a key research area because 
of the real time use of network twins in analytics and 
predictions. 

Second, the dyadic and triadic local behavior 
models use “structural properties.” These are properties 
that involve pairs of actors like the count of 
relationships. One class of information are 
compositional variables, which are attributes attached to 
the actor like gender. How can we incorporate actor 
attributes in these models? 

Third, there are other types of more complex 
networks like multigraphs (more than one actor 
relations) and hypergraphs (affiliation networks). In 
directed graphs, relations are directional which adds 
additional sociological concepts. A good example is 
marriage. Marriage is a directed relationships either way 
from two actors. Future extensions to this work may 
take into consideration these additional concepts. One is 
reciprocity which is the strength of the choice or the 
exchange of the directed relationship. In the marriage 
example above, the strength of the tie can be an 
important consideration of a stability prediction. 
Bipartite graphs are popular in practice because they 
include concept abstraction between actors. We can add 
these concept abstractions. For example, in a 
corporation network, corporations share resources. 
These lead to bipartite graphs because there is resource 
sharing between corporations. Thus, a resources node 
connects two corporation nodes. Finally, temporal 
concepts are important in network applications. We can 

include temporal concepts including time and the 
changes to network structure over time.  

Finally, modern social networks are large with 
millions of nodes. It is difficult or impossible to directly 
prepare representations because of the scale and 
complexity of the networks. Usually, the broad answer 
to this is sampling. However, sampling should capture 
both macro and behavioral details of the network and go 
beyond capturing only the rough structural 
representation. 

7. Conclusion 

The proposed model conceptualizes social 
networks using Bayesian techniques. It accounts for 
concepts like an ego’s behavior and its freedom to 
connect to their choice of an alter. Furthermore, it 
makes a distinction between macro trends in the 
network that invisibly affect an ego’s choice and local 
behavior that asserts the ego’s individuality. The result 
is a network representation that is closer to sociological 
reality. We use the union of subgraphs in the SUGM as 
foundation and then enhance the BASSUGM with 
belief networks and logistic behavior models. We show 
that BASSUGM social network twins outperform 
SUGM generated representations. 

In conclusion, network generation is not merely 
about the generation of the best statistical 
representation of an observed network. Instead, it is 
paramount to be able to incorporate important 
sociological behaviors and other concepts to get the 
most useful representation for the myriad of use cases 
that network representation has in analytics, 
forecasting, and simulation. 
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