
Creating Synthetic Attacks with Evolutionary Algorithms for Proactive
Defense of Industrial Control Systems

Nathaniel J. Haynes
Naval Postgraduate School
nathaniel.haynes@nps.edu

Thuy D. Nguyen
Naval Postgraduate School

tdnguyen@nps.edu

Neil C. Rowe
Naval Postgraduate School

ncrowe@nps.edu

Abstract
Industrial control systems (ICS) play an

important role in critical infrastructure. Cybersecurity
defenders can use honeypots (decoy systems) to
capture and study malicious ICS traffic. A problem
with existing ICS honeypots is their low interactivity,
causing intruders to quickly abandon the attack
attempts. This research aims to improve ICS
honeypots by feeding them realistic artificially
generated packets and examining their behavior to
proactively identify functional gaps in defenses. Our
synthetic attack generator (SAGO) uses an
evolutionary algorithm on known attack traffic to
create new variants of Log4j exploits (CVE-2021-
44228) and Industroyer2 malware. We tested over
5,200 and 256 unique Log4j and IEC 104 variations
respectively, with success rates up to 70 percent for
Log4j and 40 percent for IEC 104. We identified
improvements to our honeypot’s interactivity based on
its responses to these attacks. Our technique can aid
defenders in hardening perimeter protection against
new attack variants. 1

Keywords: synthetic attack, evolutionary algorithm,
industrial control system, security testing, honeypot

1. Introduction

Industrial control systems (ICSs) operate critical
infrastructure like gas, water, and electric utilities, and
have recently received much attention in the national
cybersecurity strategy (The White House of the U.S.,
2021). ICSs have a well-documented history of serious
attacks to include effects on Ukrainian infrastructure
and U.S. gas pipelines, and technical advisories on the
CrashOverride, Shamoon, and Havex malware
campaigns among others have been published (Cyber

The views expressed in this material are those of the authors and do
not reflect the official policy or position of the Department of
Defense or the U.S. Government.

Security and Infrastructure Security Agency [CISA],
2021a).

Originally ICSs managed only physical processes
through operational technology (OT), but as the
Internet grew, ICSs became integrated with
information technology. Currently 85% of the U.S.
critical infrastructure is commercialized, which means
the pursuit of safe throughput and availability can be
prioritized over confidentiality and integrity (Stouffer
et al., 2015). The reduced security of ICSs entices
malicious actors and enables them to create exploits
which can affect the physical domain and safety of
people. Hence, robust cybersecurity methods are
needed to test and harden ICSs.

Security of live ICSs is difficult to test. One
solution is to emulate ICSs in virtual environments,
which removes the risk of harming actual services.
ICS honeypots could also offer rich data for analysis.
At our school, previous research explored electrical-
grid ICS honeypots and so far, saw attackers favoring
the Hypertext Transfer Protocol (HTTP) much more
than ICS protocols (Dougherty, 2020; Washofsky,
2021). To get more data about attacks on ICSs, some
free and commercial vulnerability databases and open-
source repositories of network traces are available
(National Vulnerability Database [NVD], n.d.; The
MITRE Corporation, 2021). However, they are limited
in re-creating exploits for testing. Commercial
products like Metasploit Pro and Immunity CANVAS
can do penetration testing, but they have few ICS-
related attacks. Most open-source ICS attack tools,
like those in GitHub, are unmaintained. Even large
public repositories of collected malware samples have
sparse instances of ICS malware (VirusShare, n.d.).

During this research, a new exploit targeting the
Apache Log4j Library was revealed, and it is a serious
and wide-reaching exploit (FortiGuard Labs, 2022). It
targets a vulnerability in a Java logging library used in
many systems including ICSs (CISA, 2021b); we saw

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 1684
URI: https://hdl.handle.net/10125/102842
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

it being used against the user interface of our previous
ICS honeypot. However, patches to this vulnerability
are installed slowly by ICS administrators due to
potential losses in availability and incompatibility
with older systems (Stouffer et al., 2015). Alternative
cybersecurity solutions like honeypots may help
protect these vulnerable ICS systems.

Also during this research, several Ukrainian
power grid ICSs that used the IEC 104 protocol were
attacked with the Industroyer2 malware. We have had
experience with this protocol and decided to study the
behavior of this malware as well.

We first collected real Log4j and IEC 104
network traffic to analyze the characteristics of actual
attacks. We then made a honeypot susceptible to Log4j
and created a synthetic attack generator (SAGO). We
rated the output of the generator and compiled
statistics on its degree of success. We also studied the
traffic produced by the malware Industroyer2 and
demonstrated a way to extend our attack-generation
methods for IEC 104.

2. Threat Models and Related Work

2.1. The HTTP Protocol and Log4j

We focused on the Hypertext Transfer Protocol
(HTTP) and the IEC 104 protocol, the IP/TCP
extension of IEC 60870-5-104 standards. Although
not an ICS protocol, HTTP is often used by ICS
systems to provide a Web-based user interface for
controlling industrial processes.

Web technologies like HTTP that handle user
input are vulnerable to exploits like buffer overflows,
cross-site scripting, and command injections
(McClure et al., 2012). This research examined the
recent Log4j HTTP-based attack targeting commonly
used Java-based logging systems. This attack used
command injections to execute code from a remote
address. Rated a 10 out of 10 in severity by NIST’s
National Vulnerability Database, the Apache Log4j
(also called Log4Shell) vulnerability CVE-2021-
44228 quickly gained notoriety in the cybersecurity
world (NVD, 2021).

Ten days after its disclosure, the attack had been
observed 350 million times and had 1.4 times the
activity volume as the major Apache Struts exploit in
its first year (FortiGuard Labs, 2022). A week
following the disclosure of Log4j, the Cybersecurity
and Infrastructure Security Agency (CISA) issued an
Emergency Directive for Federal Agencies to triage
their systems and report any affected systems (CISA,
2021b). Despite the widespread proliferation of Java-
based logging, no major compromises were reported
(FortiGuard Labs, 2022). Nonetheless, CISA still

recommends that organizations should continue
testing and hardening their devices against the exploit
(CISA, 2021b).

After Log4j was disclosed, many open-source
projects studied the exploit but their usefulness to
testing defenses against the exploit was limited.
Metasploit has three Log4j modules that are
functionally limited and do not offer any obfuscation.
Another tool, Ox4Shell, can de-obfuscate and analyze
Log4j payloads (Abeles & Vider, 2022), but it does not
help test a system’s robustness against such attacks.

Many OT systems are also vulnerable to Log4j
exploits (Kovacs, 2022). ICS vendors such as Siemens
(Siemens ProductCERT, 2021) have confirmed this
problem. Log4j also enables attackers to use
compromised IT systems to pivot to the control
segment of an ICS network.

2.2. The IEC 104 Protocol

IEC 104 standards use Application Protocol Data
Units, a frame with three formats. The formats
distinguish the purpose of transmission: information
transfer (I-format), supervisory activities (S-format),
and unnumbered control (U-format) (Matoušek,
2017). Each frame has a fixed-length header of
Application Protocol Control Information (APCI) and
a payload of the Application Service Data Unit
(ASDU). Only I-format frames have ASDUs, which
hold Information Objects, each with two components,
an information-object address (IOA) and information
elements. The information elements are the main data
structures for passing information in the IEC 104
protocol. Each information element can only contain
one data type, but each ASDU can hold multiple
information elements. Example data types are single
and double commands for controlling IEC devices,
and short floating-point numbers for sensor values.
We refer to I-format frames by the type of data it holds.

IEC 104 devices use I-frames to transfer data.
However, this data is not protected because the IEC
104 protocol lacks encryption and authentication.
Since ICS devices often have outdated software, CISA
recommends continuous monitoring to defend against
these threats (CISA, 2022). Still, the protocol’s
inherent vulnerabilities remain problematic for IEC
104 devices because attackers have several options for
exploitation.

The popular penetration-testing tools Nmap and
Metasploit have extensions specific to IEC 104. Nmap
can perform IP enumeration across ICS devices that
use IEC 104 (Timorin & Miller, n.d.). A rogue device
can spoof an IEC 104 server and send unauthorized
commands to ICS devices using Metasploit’s IEC 104

Page 1685

Client Utility module, though only certain systems are
vulnerable to this exploit (Metasploit, n.d.).

Using several tools (Hping, Ettercap, and
OpenMuc J60870) to attack an emulated IEC 104
network, researchers found that unauthorized access
and denial-of-service attacks were the least successful,
while man-in-the-middle and traffic analysis attacks
were more successful (Radoglou-Grammatikis et al.,
2019). (Baiocco & Wolthusen, 2018) found that
disrupting the time synchronization between two IEC
104 devices can cause a denial of service.

Another project analyzed IEC 104 attacks for
creating intrusion-detection test datasets (Fundin,
2021). Eight out of the twelve attacks succeeded and
while the datasets are publicly available, their Python
code is not.

2.3. Automated Generation of Exploits

Automated testing reduces human dependency on
finding vulnerabilities (Black et al., 2021). One project
tested different open-source ICS software with
“fuzzed” packets (Luo et al., 2020) and found many
bugs. However, for large software applications,
verifying correct behavior of every input through
automated testing is unattainable. (Kuhn et al., 2009)
have argued that exhaustive testing is unnecessary and
only a few parameters typically contribute to faulty
outcomes Instead, combinatorial testing uses input
groups to reduce the testing space to a manageable size
for software with many parameters. Such techniques
can help find crashes and bugs, but do not help to
determine whether the generated exploits succeed.

Compared to traditional software testing and
probabilistic sampling (Choi et al., 2021),
unsupervised learning algorithms have the advantage
of generating new variations of tests. With predictions
made from prior successful tests, unsupervised
learning algorithms are more likely to continue finding
successful tests than techniques like randomly fuzzing
input which only relies on randomization to find new
successful tests. Two approaches, evolutionary
algorithms and generative adversarial networks,
expand the traditional testing space. Evolutionary
algorithms model a well-known biological process, are
easy to implement, and are efficient when searching
for new variations (Vikhar, 2016).

(Appelt et al., 2018) used an evolutionary
algorithm to generate SQL-injection (SQLi) attacks
for testing Web application firewalls. Their mutation
operations were behavior changing, syntax repairing,
and obfuscation. The new offspring, called a
generation, trains a random-forest classifier. Testing
then assigns a probability of detection to each

offspring in the generation. Fitness selection picks the
offspring with highest probabilities to mutate next.

Generative adversarial networks are another
approach for automated test generation (Hong et al.,
2020). Generative adversarial networks have tested
autonomous vehicles image recognition and anomaly
detection in intrusion-detection systems (Lin et al.,
2021; Zhang et al., 2018). However, these networks
are difficult to implement due to their complexity.

These test and attack generators try to craft new
variants, starting from an exploit template or model.
Instead of generating random attacks, examining
attacks observed “in the wild” allows researchers to
test new variants of popular attacks. For our
evolutionary algorithm, we defined the exploit
schema, attack features, and success criteria based on
attacker behavior observed in different datasets.
Recent research at NPS has collected several corpora
of different attacks against ICS honeypots deployed in
a commercial cloud environment (Washofsky, 2021).

3. Attacks on Our ICS Honeypot

3.1. Log4j Attacks

On December 10, 2021 when the Apache Log4j
vulnerability was first announced, our honeypot
experienced a large increase in HTTP requests with
Log4j commands embedded in their headers. As the
vulnerability fixes evolved, we saw different
variations of the exploit. Due to the significance of the
vulnerability and many ICS vendors reporting
exposure (Kovacs, 2022), we decided to further study
the related exploits.

Log4j configuration files contain important data
about the system runtime environment which, if
exploited, attackers can use to weaponize an attack.
Log4j’s lookup mechanism allows applications to
insert values of configuration variables into log-
destination strings. The syntax is “${variable}” where
the variable is replaced with its current value in the
configuration file. By observing the looked up
variables, we can deduce the attacker’s tactics. To
enrich log details, Log4j can also refer to system and
environment variables (The Apache Software
Foundation, 2022). Lookups are triggered with the
syntax “prefix:attribute” or “prefix:attribute:-default”.
As an example, the string “${docker:containerId}”
logs the Docker container’s identification. The symbol
“:-” establishes a default value if the requested
attribute cannot be mapped to the prefix. Lookups can
be recursive which allows for more complex variable
representations and mappings. To thwart intrusion-
detection systems, attackers can recursively embed
IOA lookups to create complex variations of Log4j

Page 1686

exploits that avoid known signatures (National Cyber
Security Centrum, 2021).

 Log4j exploits target the Java Naming and
Directory Interface (JNDI), an interface for Java
programs to retrieve objects from servers (Oracle,
n.d.). JNDI resolves objects using various naming and
directory services like the Lightweight Directory
Access Protocol (LDAP) service. JNDI uses these
services to query, resolve, and download objects from
servers. It can also retrieve compiled Java files and
execute them, a known vulnerability (Muñoz &
Mirosh, 2016). Furthermore, Java applications with
Log4j logging can use JNDI in the form of a JNDI
lookup. This allows attackers to put JNDI command
injections into protocol fields, like HTTP headers, that
Java applications are likely to log.

Based on the Log4j exploit strings we collected
on our honeypot, we explored exploits which use
LDAP servers as the attack vector, the most frequently
exploited service. The LDAP specification defines
client-server interactions on X.500 data and services
(Sermersheim, 2006). If an LDAP server lacks a
requested object, it can refer to another server that
might have it. This way the JNDI lookup can request
compiled Java classes from other servers like HTTP
servers (Muñoz & Mirosh, 2016).

Log4j exploits have a specific syntax. An exploit
string is surrounded by the property substitution
symbols,“${“and “}”. Inside the curly brackets is a
JNDI lookup in the form
“jndi:service://server/Object”, where the “jndi” is the
prefix, “service” is the name of the service, “server” is
either the IP address or domain name of the server and
a port number, and “Object” is the malicious Java
binary. As an example,
“${jndi:ldap://192.168.1.1:1389/Exploit}” looks up
the directory service LDAP for the object “Exploit”
found at 192.168.1.1 using port number 1389. The
LDAP server then redirects the JNDI lookup to
another attacker-controlled server. If it were an HTTP
server, the JNDI server would then send an HTTP
GET request for “Exploit.class”, receive it in the
HTTP response, and immediately execute it.

3.2. IEC 104 Attacks

In April 2022, Ukrainian ICSs using IEC 104
were attacked. The malware used in this attack was a
modified variant of those used in the CrashOverride
campaign (Kapellmann et al., 2022). In 2016 the
original malware, called Industroyer, targeted
different ICS protocols, including IEC 104. The
Industroyer malware was a Windows executable and,
once installed on the victim system, established
command-and-control connections, exploited the

vulnerabilities of the chosen ICS protocol, and finally
wiped the machine’s data (Cherepanov, 2017). The
IEC 104 part of Industroyer would try to end the
original IEC 104 processes and manipulate the states
of the discovered devices.

Industroyer was ineffective due to improper
implementation of its ICS protocols (Slowik, 2019)
that caused communications with IEC 104 devices to
be rejected due to their failure to follow protocol
standards. Industroyer2 appears to derive from the
same codebase as Industroyer but only used the IEC
104 protocol (Tsaraias & Speziale, 2022). Its most
notable improvements were sending test data using U-
format frames prior starting a data transfer and using a
configuration file to customize the attacks.

Industroyer2 sent single commands or double
commands, based on the behavior of the victim ICS,
to damage the IEC 104 devices. While running,
Industroyer scanned every IOA of an IEC 104 device
with general interrogation commands. Industroyer
then iterated through the IOAs and turned them off and
on repeatedly. Initial analyses indicated that the IOAs
corresponded to ABB Distribution Recloser Relays,
and that the attackers were trying to disrupt critical
overcurrent protections (Kapellmann et al., 2022).

Our honeypot data did not include attack behavior
like Industroyer2; the observed behavior was limited
to scanning. Of the valid IEC 104 payloads, most
attackers only sent general interrogation commands.
IEC devices respond to general interrogation
commands with every IOAs reachable on that IEC
device. Furthermore, attackers did not perform follow-
up actions after getting every device address, likely
due to their limited understanding of IEC 104.

4. Generation of Synthetic Attacks

We used evolutionary algorithms to generate
variations of existing attacks for testing our honeypots.
To recreate the attacks, we sought exploitable attack
patterns in the HTTP and ICS payloads of the
honeypot’s captured network traffic and sampled
Industroyer2 packet captures. The HTTP and IEC 104
algorithms needed different syntax for setting
machine-learning features.

Our process for generating and testing exploits
(Figure 1) started with creating an initial population of
a size set by a hyperparameter called population size.
The initial population for Log4j comprised exploits
with one random mutation of the base exploit string
“jndi:ldap://”. We did not seed SAGO with our
collected Log4j exploits because our dataset had many
duplicates and lacked variety. Also, crossover
operations can construct a child's features by
combining selected features of two parents. Our

Page 1687

fitness function used the observed response by our
honeypot to determine degree of success. We stored
these success values in a random forest to predict if a
new attack variant would succeed.

Figure 1. SAGO’s process to create exploits

4.1. Log4j Attack Analysis

Our honeypot collected data from November 30,
2021 to January 17, 2022. Since the Log4j
vulnerability was disclosed on December 10, 2021, we
captured some of the first Log4j exploit variants. We
observed 102 packets with Log4j exploits in HTTP
request headers. The HTTP request methods were 98
GET commands and 4 POST commands. This activity
originated from 30 unique sources and represented
0.1% of the honeypot’s overall traffic.

To exploit vulnerable hosts, attackers embedded
their Log4j exploits in the header fields they believed
were the most likely to get logged. The user-agent
header was the most popular and was used in 57 HTTP
requests. Among these were 21 requests with the user-
agent header as the only location with the Log4j
exploit. Using only one header field for the exploit was
common since it happened 48% of the times. On the
other hand, 60% of the HTTP requests only had one
variant of the exploit string in the headers, which
means that the attackers wanted to increase their
chances of the exploit getting logged.

In total, 205 exploits were found in the 102 HTTP
header fields (Table 1). Most exploits tried to call an
LDAP server and that accounted for 187 sample Log4j
strings. The other 18 occurrences had DNS as their
callback server. To obfuscate their exploit, attackers
used lookups.

Table 1. Embedded Log4j Exploits

Callback
Server

Strings
without
Lookups

Strings
with

Lookups
Total

LDAP 104 83 187
DNS 2 16 18
Total 106 99 205

Four unique variations of the LDAP exploit used

different combinations of lookups (lower case,
environment variable, and empty string) to obfuscate
the string. The DNS variations originated from two

scanners: scanworld and securityscan. Scanworld
simply used “jndi:dns://” while securityscan used
“${::-j}ndi://dns://”. This was identifiable because
they included their name in a substring of the URI.

Although many attackers redundantly encoded
their Log4j exploits into multiple HTTP header fields,
they typically copied the same exploit in every header
so if one exploit failed, all would fail.

4.2. Log4j Exploit Generation

The Log4j samples we studied used different
lookup names and variations of recursive lookups.
Therefore, the features we could vary were the number
of lookups per character and the number of unique
lookup names. Other features like string length, the
malicious directory, and the naming-service type were
not useful to vary in the evolutionary algorithm. Two
constraints were to start and end with the property
substitution symbols “${” and “{”, and include the
JNDI lookup; changing any of these characters would
break the exploit. However, if we appended certain
lookup operators to characters in the Log4j exploit
string, we could get a mutated string that would still be
parsed correctly by Log4j. An example exploit string
is in Figure 2.

Though we could mutate every character in the
exploit, we only explored transforming the substring
“jndi:ldap://”. This avoided complications with
disrupting the IP address and instance identifier.
Given the substring “${lower:j}ndi:ldap://”, an
example mutation would insert “$lower:” after the
colon. The mutated string would then be
“${lower:$lower:j}ndi:ldap://”. In mutating
characters, if a randomly generated number between 0
and 1 exceeded a threshold probability established by
the mutation rate hyperparameter, the character was
mutated by applying a lookup to it. All lookup names
were equally likely. The mutation-magnitude
hyperparameter determined how many successive
lookups were applied. For example, if the character “j”
was selected for mutation and the mutation magnitude
was 2, a possible outcome could be “${env::-${env::-
j}}” with two lookups.

Figure 2. Log4j exploit schema

Besides mutations, we also used crossovers to

find possible exploits. Our crossover operation

Page 1688

exchanged lookups between the Log4j exploit
characters. For example, given two parent Log4j
exploit strings, “${{env::-j}ndi:ldap://}” and
“${jndi:${sys::-l}dap://}”, with the “j” and “l”
characters selected to cross, the result would be
“${{env::-j}ndi:${sys::-l}dap://}”. The number of
lookups swapped between parents was controlled by
the number of crossings hyperparameter while the
location of lookups to be swapped was random.

Generated exploits were sent to the victim server
one at a time. We then trained a random-forest
classifier based on the exploits’ features and the
successes or failures as labels. For our research,
successful exploits are those which cause Log4j to
send unintended outbound requests to servers of our
choosing. Failed exploits will get logged by Log4j but
would not trigger any network traffic.

We sampled 75 percent of the generated Log4j
exploits to train a random-forest classifier. We used
the Python Scikit-Learn implementation of a random
forest and their library function train_test_split, which
defaults to sampling 75 percent of the input data, to get
our training and test sets (Géron, 2019). The
probability predicted by the random forest classifier is
the likelihood of being a successful exploit. The next
population was based on the exploits with highest
probabilities of success, as predicted by the random
forest, and was created by selecting the top k exploits,
where k is the parent population size hyperparameter.

Once trained, the classifier estimated the
probability of each successful exploit and used the
exploits with the highest probabilities to generate the
next population.

4.3. IEC 104 Attack Analysis

Since our honeypot runs on a Linux operating
system, we could not natively run the Industroyer2
malware to assess its effects on our simulated power
grid. Instead we used three packet captures from
(Hjelmvik, 2022) who executed Industroyer2 in their
isolated environment. We used these samples because
most of our honeypot’s IEC 104 traffic was either
malformed or sent out of order. The valid IEC 104
payloads only used general interrogation commands
and no further commands were sent to the IOAs
returned by our honeypot. This could indicate a lack
of understanding of the IEC 104 protocol.

Compared to our collected IEC 104 data, the
Industroyer2 traffic is more complex. Industoyer2 sets
up the IEC 104 data transfer, interrogates to find all
addressable IOAs, and then sends commands to each
IOA depending on the data type each IOA supports.
After probing all IOAs, Industroyer2 ends the
connection.

4.4. IEC 104 Exploit Generation

Industroyer2 sent single and double commands to
query a simulated industrial process. We chose to
generate double commands because our honeypot
does not process single commands. The specification
for double commands is in Figure 3.

Figure 3. IEC 104 double command specification

Besides varying the double command bits, we

kept the rest of the frame the same as Industroyer2.
Since we only manipulated eight bits of the command
field, fewer variants were possible for the IEC 104
attacks than for Log4j exploits. For our IEC 104
evolutionary operations, crossover operations
randomly selected bits and swapped their
corresponding values while mutation toggled the value
of one random bit in the command, making the
mutation-magnitude hyperparameter irrelevant.

To check the success of the generated IEC 104
attack, ideally our exploits would cause the honeypot’s
IEC 104 server to change our simulated power grid’s
state. However, our honeypot’s implementation only
allowed read-only requests. Instead, we relied on the
log produced by our honeypot to determine the success
of the generated exploits. Some commands that used
non-implemented or undefined bits caused our
honeypot to end the connection without writing to its
log. Hence, we could tell that a command succeeded if
a log entry for the command was created. We
considered the exploit succeeded if a generated IEC
104 attack was accepted by a simulated ICS device,
which in a real system could result in the disruption of
the power grid. This is like the objective of
Industroyer2 which used various commands to disrupt
power-grid operation (Kapellmann et al., 2022).

5. Testing of Potential Exploits

We used two Debian Linux virtual machines on
the DigitalOcean cloud platform for the attacker and
victim systems (Figure 4). The victim machine was an

Page 1689

instance of the GridPot honeypot used in past NPS
research (Washofsky, 2021). It ran T-Pot (Telekom
Security, 2016), which manages honeypots running as
Docker containers. Our honeypot was one of them. It
uses GridLab-D to simulate a power distribution
system (Chassin et al., 2008). GridPot also
encapsulates the HTTP and IEC 104 honeypot Conpot.

Figure 4. Experiment Design

We changed the honeypot from (Washofsky,

2021) to make it vulnerable to Log4j exploits. In our
honeypot we sent HTTP logs produced by Conpot to a
custom Java application, called the Conpot Log4j
Handler, that logged HTTP user-agent strings with
Log4j. If any user-agent string triggered the Log4j
exploit, the victim machine tried to resolve the
malicious server’s IP address with DigitalOcean’s
DNS resolver. SAGO used Tcpdump’s output to get
feedback for its Log4j evolutionary algorithm. No
changes to (Washofsky, 2021) were necessary for IEC
104. We used SSH to pull the IEC 104 server’s log file
and correlated successful attacks based on its entries.

5.1. Log4j Experiments

We ran Log4j exploits generated on our honeypot.
Typically, developers use Log4j in their servers to log
headers of HTTP requests. Since our implementation
of T-Pot does not use Log4j, we had to simulate a
vulnerable server. Since Conpot’s HTTP server logs
all the HTTP request headers, our solution was to send
the Linux tail command on the Conpot log as input to
the Conpot Log4j Handler.

On the victim machine, we installed a vulnerable
version of Java and Log4j. Our custom Java
application read from standard input, matched for a
user-agent string, and if one were found, logged it
using Log4j. A successful exploit sent to our honeypot
server would trigger the JNDI lookup and result in a

DNS query. SAGO used these queries to correlate
success labels to the exploits.

SAGO initialized a population of artificial Logj4
exploits of count determined by the target population
size. Each exploit was a base Log4j exploit string
“jndi:ldap://” with one random lookup applied. SAGO
then sent an SSH command to start Tcpdump on the
victim machine with Tcpdump’s standard terminal
output directed to a DNS log file. Next, it sent Log4j
exploit strings in the user-agent header fields of HTTP
requests to the Conpot HTTP server using the Python
3 Requests library (Reitz, 2022). It also sent another
SSH command to stop Tcpdump and retrieve the DNS
log. The retrieved DNS log recorded every successful
exploit. SAGO could correlate success in the DNS log
to the Log4j exploits using the instance identifiers
(Figure 2). Our evolutionary algorithm for Log4j
exploits used the hyperparameters in Table 2.

Table 2. Hyperparameter combinations for

generating Log4j exploits

5.2. IEC 104 Experiments

We adapted SAGO to send double commands to
the target IEC 104 server. Using Scapy, we simulated
an Industroyer2 data setup using U-format start
frames. We only sent one command per data transfer
to determine if it was accepted by the honeypot. To
end the connection, we sent a U-format stop frame. We
used the hyperparameters in Table 3 for testing the
IEC 104 attack creation.

Table 3. Hyperparameter combinations for

generating IEC 104 exploits

After creating the first population, SAGO sent the
exploits to the Conpot IEC 104 server. Using SSH,
SAGO read the Conpot log and correlated the entries
with the attacks. If an attack was not found in the log,

Conpot Log

Linux

Vic.m Cloud Pla4orm

T-Pot Applica.on

GridPot Container

Conpot GridLab-D

A=acker Cloud Pla4orm
Linux

A=ack
Generator

Conpot
Log4j

Handler

TCP 80

TCP 2404

TCP 22

DNS
Resolver

tcpdump

DNS Log

UDP 53TCP 22

Target ICS Network
Tool

Power-grid
Simula.on
SoIware

Python
A=ack
Script

Log
Storage

Custom
Logging

Tool

Honeypot External
Host

DigitalOcean
Firewall

TCP 6267

Page 1690

its data transfer was prematurely ended, and this was
considered a failed attack. The fitness evaluation and
selection steps of the IEC 104 attack generator were
the same as the Log4j implementation.

6. Results and Discussions

6.1. Log4j Results

When testing SAGO over twenty generations, we
noticed that the success rate flattened around ten
generations (Figure. 5). Figure 6 shows successful
exploits with different mutation rates.

Figure 5. Successful Log4j Exploits over

Generations with Population Size 20, Parent
Population Size 10, Number of Crossings 6,

Mutation Rate 0.50, and Mutation Magnitude 1

Figure 6. Log4j Successful Exploits When

Varying Mutation Rate with Population Size 20,
Parent Population Size 10, Number of Crossings

6, and Mutation Magnitude 1

Higher population sizes caused SAGO to quickly

find the more successful attacks. Conversely parent
population size and crossover did not significantly
affect the cumulative success rate. However, the
mutation rate did affect the creation of successful
exploits. In Figure 6 the lower mutation rates of 0.25
and 0.50 performed the best. For mutation magnitude,

higher values meant finding more exploits quickly, but
in later generations such values caused too much
variation to continually find new exploits.

We produced over 5,200 unique strings exploiting
the Log4j vulnerability. More variations can be
created using other malicious directory services
besides LDAP like DNS and Remote Method
Invocation (RMI). The unique strings created for these
variants can be used to strengthen firewalls and
intrusion-detection systems.

6.2. IEC 104 Results

After twenty generations, the cumulative
percentage of successful attacks was about thirty
percent (Figure 7). Also, the rate of discovering new
attacks had not flattened at twenty generations like the
Log4j attack rate. We saw similar results as Log4j for
all hyperparameters except mutation rate (Figure 8).

Figure 7. Successful IEC 104 Attacks Discovered

Versus Generations with Population Size 20,
Parent Population Size 10, Number of Crossings

4, and Mutation Rate 0.50

Figure 8. Cumulative IEC 104 Attack Success

Rate Versus Generations with Population Size 20,
Parent Population Size 10, and Number of

Crossings 4

The extreme rates of zero and one still caused the

worst performing outcomes, but generally the higher

Page 1691

mutation rates of 0.50 and 0.75 performed the best for
all ten generations. At a mutation rate of 0.50 we saw
our highest IEC 104 attack success at 40 percent. For
IEC 104, SAGO found all 256 variations of the 8-bit
double command.

From the results of our IEC 104 attacks, we found
a deficiency in the translation of the IEC 104
commands to GridLab-D’s API in which our honeypot
accepted the commands used by the exploits but did
not change the underlying power grid’s state as
expected. With proper translation, our honeypot could
change its power readings based on user input.
Attackers then could send IEC 104 double commands
and see the resulting power readings change on the
Web interface of our honeypot. Such interactivity
would make our honeypot more convincing and would
prompt more attack behavior of those trying to disrupt
the power grid.

7. Conclusion

Our synthetic attack generator can generate Log4j
exploits similar to those observed in real attacks, and
it can generate IEC 104 attacks similar to those of the
Industroyer2 malware. Our results suggest that the
most influential hyperparameters were the population
size and mutation rate; larger populations enabled
more variations to get tested, and mutation rate
controlled attack diversity. Mutation rates had an
optimum value between 0 and 1. For Log4j exploit
generation, lower mutation rates were preferable,
while with IEC 104 exploit generation, the opposite
was true. The most successful attacks in our tests were
70 percent for Log4j exploits and 40 percent for IEC
104 attacks.

SAGO can also be improved to support other
hyperparameter values and evolutionary operations to
create more diverse attack variants. Our approach
applies to other industrial protocols that use
commands with various bitstrings to change ICS
states, for example, IEC 61850. Since bit manipulation
is common for these protocols, evolutionary
algorithms can be used to generate new attack variants
for such ICS protocols and systems.

Continuous monitoring is a key proactive
mitigation to defend against emergent exploits.
Existing monitoring solutions can benefit from the
synthetic attacks created by SAGO.

8. References

Abeles, D., & Vider, R. (2022). Ox4Shell (Version 1.1)
[Computer software]. Oxeye Security LTD.
https://github.com/ox-eye/Ox4Shell

Appelt, D., Nguyen, C. D., Panichella, A., & Briand, L. C.
(2018). A machine-learning-driven evolutionary
approach for testing web application firewalls. IEEE
Transactions on Reliability, 67(3), 733–757.
https://doi.org/10.1109/TR.2018.2805763

Baiocco, A., & Wolthusen, S. D. (2018). Indirect
synchronisation vulnerabilities in the IEC 60870-5-104
standard. 2018 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe), 1–6.
https://doi.org/10.1109/ISGTEurope.2018.8571604

Black, P. E., Guttman, B., & Okun, V. (2021). Guidelines on
minimum standards for developer verification of
software. U.S. Department of Commerce.
https://doi.org/10.6028/NIST.IR.8397

Chassin, D. P., Schneider, K., & Gerkensmeyer, C. (2008).
GridLab-D: An open-source power systems modeling
and simulation environment. 1–5.
https://doi.org/10.1109/TDC.2008.4517260

Cherepanov, A. (2017). WIN32/INDUSTROYER a new
threat for industrial control systems (p. 17) [Fact sheet].
ESET. https://www.welivesecurity.com/wp-
content/uploads/2017/06/Win32_Industroyer.pdf

Choi, S., Yun, J.-H., & Min, B.-G. (2021). Probabilistic
attack sequence generation and execution based on
MITRE ATT&CK for ICS datasets. Cyber Security
Experimentation and Test Workshop, 41–48.
https://doi.org/10.1145/3474718.3474722

Cyber Security and Infrastructure Security Agency (2021a,
July 20). Significant historical cyber-intrusion
campaigns targeting ICS. https://us-
cert.cisa.gov/ncas/current-
activity/2021/07/20/significant-historical-cyber-
intrusion-campaigns-targeting-ics

Cyber Security and Infrastructure Security Agency (2021b,
December 23). Mitigating Log4Shell and other Log4j-
related vulnerabilities.
https://www.cisa.gov/uscert/ncas/alerts/aa21-356a

Cyber Security and Infrastructure Security Agency (2022,
May 25). APT cyber tools targeting ICS/SCADA
devices. https://www.cisa.gov/uscert/ncas/alerts/aa22-
103a

Dougherty, J. (2020). Evasion of honeypot detection
mechanisms through improved interactivity of ICS-
based systems [Thesis, Naval Postgraduate School].
NPS Archive: Calhoun.
https://calhoun.nps.edu/handle/10945/66065

FortiGuard Labs (2022). Global threat landscape report
(Report No. 2H 2021). FortiGuard.
https://www.fortinet.com/content/dam/fortinet/assets/t
hreat-reports/report-q1-2022-threat-landscape.pdf

Fundin, A. (2021). Generating datasets through the
introduction of an attack agent in a SCADA testbed
[Thesis, Linköping University]. http://liu.diva-
portal.org/smash/get/diva2:1557696/FULLTEXT01.p
df

Hjelmvik, E. (2022, April 25). Industroyer2 IEC-104
analysis [Blog]. Netresec.
https://www.netresec.com/?page=Blog&month=2022-
04&post=Industroyer2-IEC-104-Analysis

Hong, Y., Hwang, U., Yoo, J., & Yoon, S. (2020). How
generative adversarial networks and their variants

Page 1692

work: An overview. ACM Computing Surveys, 52(1),
1–43. https://doi.org/10.1145/3301282

Kapellmann, D., Leong, R., Sistrunk, C., Proska, K.,
Hildebrandt, C., Lunden, K., & Brubaker, N. (2022,
April 25). INDUSTROYER.V2: Old malware learns
new tricks [Blog]. Mandiant.
https://www.mandiant.com/resources/industroyer-v2-
old-malware-new-tricks

Kovacs, E. (2022, January 5). ICS vendors respond to Log4j
vulnerabilities [Blog]. Security Week.
https://www.securityweek.com/ics-vendors-respond-
log4j-vulnerabilities

Kuhn, R., Kacker, R., Lei, Y., & Hunter, J. (2009).
Combinatorial software testing. Computer, 42(8), 94–
96. https://doi.org/10.1109/MC.2009.253

Luo, Z., Zuo, F., Shen, Y., Jiao, X., Chang, W., & Jiang, Y.
(2020). ICS protocol fuzzing: Coverage guided packet
crack and generation. 2020 57th ACM/IEEE Design
Automation Conference (DAC), 1–6.
https://doi.org/10.1109/DAC18072.2020.9218603

Matoušek, P. (2017). Description and analysis of IEC 104
protocol (Technical Report No. FIT-TR-2017-12).
Brno University of Technology.
https://www.fit.vut.cz/research/publication-
file/11570/TR-IEC104.pdf

McClure, S., Scambray, J., & Kurtz, G. (2012). Hacking
exposed 7: Network security secrets & solutions.
McGraw-Hill.

Metasploit (n.d.). IEC 104 client utility. Retrieved March 25,
2022, from https://github.com/rapid7/metasploit-
framework/blob/master/modules/auxiliary/client/iec10
4/iec104.rb

Muñoz, A., & Mirosh, O. (2016). A journey from
JNDI/LDAP manipulation to remote code execution
dream land. Hewlett Packard Enterprise.
https://www.blackhat.com/us-16/briefings.html#a-
journey-from-jndi-ldap-manipulation-to-remote-code-
execution-dream-land

National Cyber Security Centrum (2021, December 23).
Log4Shell. GitHub. https://github.com/NCSC-
NL/log4shell

National Vulnerability Database (n.d.). General information.
National Institute of Standards and Technology.
Retrieved April 5, 2022, from https://nvd.nist.gov/

National Vulnerability Database (2021, December 10).
CVE-2021-44228. National Institute of Standards and
Technology. https://nvd.nist.gov/vuln/detail/CVE-
2021-44228

Oracle (n.d.). Lesson: Overview of JNDI. Java
Documentation. Retrieved September 1, 2022, from
https://docs.oracle.com/javase/tutorial/jndi/overview/i
ndex.html

Radoglou-Grammatikis, P., Sarigiannidis, P., Giannoulakis,
I., Kafetzakis, E., & Panaousis, E. (2019). Attacking
IEC-60870-5-104 SCADA systems. 2019 IEEE World
Congress on Services, 2642-939X, 41–46.
https://doi.org/10.1109/SERVICES.2019.00022

Reitz, K. (2022). Requests (Version 2.28.1) [Computer
software]. Python Software Foundation.
https://github.com/psf/requests

Sermersheim, J. (2006). Lightweight directory access
protocol (LDAP): The protocol (RFC No. 4511). RFC
Editor. https://doi.org/10.17487/RFC4511

Siemens ProductCERT (2021, December 13). SSA-661247:
Apache Log4j vulnerabilities (Log4Shell, CVE-2021-
44228, CVE-2021-45046)—Impact to Siemens
products. https://cert-
portal.siemens.com/productcert/pdf/ssa-661247.pdf

Slowik, J. (2019). CRASHOVERRIDE: Reassessing the
2016 Ukraine electric power event as a protection-
focused attack. Dragos Inc.
https://www.dragos.com/wp-
content/uploads/CRASHOVERRIDE.pdf

Stouffer, K., Lightman, S., Pillitteri, V., Abrams, M., &
Hahn, A. (2015). Guide to industrial control systems
(ICS) security (National Institute of Standards and
Technology Special Publication Report No. 800-82
Rev. 2). U.S. Department of Commerce.
https://doi.org/10.6028/NIST.SP.800-82r2

Telekom Security (2016). T-Pot (Version 16.03) [Computer
software]. Telekom Security.
https://github.security.telekom.com/2016/03/honeypot
-tpot-16.03-released.html

The Apache Software Foundation (2022, February 23).
Lookups. Apache Logging Services.
https://logging.apache.org/log4j/2.x/manual/lookups.ht
ml

The MITRE Corporation (2021, October 12). CVE.
https://cve.mitre.org/

The White House of the U.S. (2021). National security
memorandum on improving cybersecurity for critical
infrastructure control systems [Statements and
releases]. https://www.whitehouse.gov/briefing-
room/statements-releases/2021/07/28/national-
security-memorandum-on-improving-cybersecurity-
for-critical-infrastructure-control-systems/

Timorin, A., & Miller, D. (n.d.). Script IEC-identify. NMAP.
Retrieved March 25, 2022, from
https://nmap.org/nsedoc/scripts/iec-identify.html

Tsaraias, G., & Speziale, I. (2022). Industroyer vs.
Industroyer2: Evolution of the IEC 104 component.
Nozomi Network Labs.
https://www.nozominetworks.com/downloads/US/Noz
omi-Networks-WP-Industroyer2.pdf

Vikhar, P. A. (2016). Evolutionary algorithms: A critical
review and its future prospects. 2016 International
Conference on Global Trends in Signal Processing,
Information Computing and Communication
(ICGTSPICC), 261–265.
https://doi.org/10.1109/ICGTSPICC.2016.7955308

VirusShare (n.d.). Retrieved April 5, 2022, from
https://virusshare.com/

Washofsky, A. D. (2021). Deploying and analyzing
containerized honeypots in the cloud with T-Pot
[Thesis, Naval Postgraduate School]. NPS Archive:
Calhoun. http://hdl.handle.net/10945/68394

Page 1693

