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Abstract 
Industrial control systems (ICS) play an 

important role in critical infrastructure. Cybersecurity 
defenders can use honeypots (decoy systems) to 
capture and study malicious ICS traffic. A problem 
with existing ICS honeypots is their low interactivity, 
causing intruders to quickly abandon the attack 
attempts. This research aims to improve ICS 
honeypots by feeding them realistic artificially 
generated packets and examining their behavior to 
proactively identify functional gaps in defenses. Our 
synthetic attack generator (SAGO) uses an 
evolutionary algorithm on known attack traffic to 
create new variants of Log4j exploits (CVE-2021-
44228) and Industroyer2 malware. We tested over 
5,200 and 256 unique Log4j and IEC 104 variations 
respectively, with success rates up to 70 percent for 
Log4j and 40 percent for IEC 104. We identified 
improvements to our honeypot’s interactivity based on 
its responses to these attacks. Our technique can aid 
defenders in hardening perimeter protection against 
new attack variants. 1 
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1. Introduction  

Industrial control systems (ICSs) operate critical 
infrastructure like gas, water, and electric utilities, and 
have recently received much attention in the national 
cybersecurity strategy (The White House of the U.S., 
2021). ICSs have a well-documented history of serious 
attacks to include effects on Ukrainian infrastructure 
and U.S. gas pipelines, and technical advisories on the 
CrashOverride, Shamoon, and Havex malware 
campaigns among others have been published (Cyber 
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Security and Infrastructure Security Agency [CISA], 
2021a).  

Originally ICSs managed only physical processes 
through operational technology (OT), but as the 
Internet grew, ICSs became integrated with 
information technology. Currently 85% of the U.S. 
critical infrastructure is commercialized, which means 
the pursuit of safe throughput and availability can be 
prioritized over confidentiality and integrity (Stouffer 
et al., 2015). The reduced security of ICSs entices 
malicious actors and enables them to create exploits 
which can affect the physical domain and safety of 
people. Hence, robust cybersecurity methods are 
needed to test and harden ICSs.  

Security of live ICSs is difficult to test. One 
solution is to emulate ICSs in virtual environments, 
which removes the risk of harming actual services. 
ICS honeypots could also offer rich data for analysis. 
At our school, previous research explored electrical-
grid ICS honeypots and so far, saw attackers favoring 
the Hypertext Transfer Protocol (HTTP) much more 
than ICS protocols (Dougherty, 2020; Washofsky, 
2021). To get more data about attacks on ICSs, some 
free and commercial vulnerability databases and open-
source repositories of network traces are available 
(National Vulnerability Database [NVD], n.d.; The 
MITRE Corporation, 2021). However, they are limited 
in re-creating exploits for testing. Commercial 
products like Metasploit Pro and Immunity CANVAS 
can do penetration testing, but they have few ICS-
related attacks. Most open-source ICS attack tools, 
like those in GitHub, are unmaintained. Even large 
public repositories of collected malware samples have 
sparse instances of ICS malware (VirusShare, n.d.). 

During this research, a new exploit targeting the 
Apache Log4j Library was revealed, and it is a serious 
and wide-reaching exploit (FortiGuard Labs, 2022). It 
targets a vulnerability in a Java logging library used in 
many systems including ICSs (CISA, 2021b); we saw 
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it being used against the user interface of our previous 
ICS honeypot. However, patches to this vulnerability 
are installed slowly by ICS administrators due to 
potential losses in availability and incompatibility 
with older systems (Stouffer et al., 2015). Alternative 
cybersecurity solutions like honeypots may help 
protect these vulnerable ICS systems.  

Also during this research, several Ukrainian 
power grid ICSs that used the IEC 104 protocol were 
attacked with the Industroyer2 malware. We have had 
experience with this protocol and decided to study the 
behavior of this malware as well. 

We first collected real Log4j and IEC 104 
network traffic to analyze the characteristics of actual 
attacks. We then made a honeypot susceptible to Log4j 
and created a synthetic attack generator (SAGO). We 
rated the output of the generator and compiled 
statistics on its degree of success. We also studied the 
traffic produced by the malware Industroyer2 and 
demonstrated a way to extend our attack-generation 
methods for IEC 104. 

2. Threat Models and Related Work 

2.1. The HTTP Protocol and Log4j 

We focused on the Hypertext Transfer Protocol 
(HTTP) and the IEC 104 protocol, the IP/TCP 
extension of IEC 60870-5-104 standards. Although 
not an ICS protocol, HTTP is often used by ICS 
systems to provide a Web-based user interface for 
controlling industrial processes. 

Web technologies like HTTP that handle user 
input are vulnerable to exploits like buffer overflows, 
cross-site scripting, and command injections 
(McClure et al., 2012). This research examined the 
recent Log4j HTTP-based attack targeting commonly 
used Java-based logging systems. This attack used 
command injections to execute code from a remote 
address. Rated a 10 out of 10 in severity by NIST’s 
National Vulnerability Database, the Apache Log4j 
(also called Log4Shell) vulnerability CVE-2021-
44228 quickly gained notoriety in the cybersecurity 
world (NVD, 2021).  

Ten days after its disclosure, the attack had been 
observed 350 million times and had 1.4 times the 
activity volume as the major Apache Struts exploit in 
its first year (FortiGuard Labs, 2022). A week 
following the disclosure of Log4j, the Cybersecurity 
and Infrastructure Security Agency (CISA) issued an 
Emergency Directive for Federal Agencies to triage 
their systems and report any affected systems (CISA, 
2021b). Despite the widespread proliferation of Java-
based logging, no major compromises were reported 
(FortiGuard Labs, 2022). Nonetheless, CISA still 

recommends that organizations should continue 
testing and hardening their devices against the exploit 
(CISA, 2021b). 

After Log4j was disclosed, many open-source 
projects studied the exploit but their usefulness to 
testing defenses against the exploit was limited. 
Metasploit has three Log4j modules that are 
functionally limited and do not offer any obfuscation. 
Another tool, Ox4Shell, can de-obfuscate and analyze 
Log4j payloads (Abeles & Vider, 2022), but it does not 
help test a system’s robustness against such attacks.  

Many OT systems are also vulnerable to Log4j 
exploits (Kovacs, 2022). ICS vendors such as Siemens 
(Siemens ProductCERT, 2021) have confirmed this 
problem. Log4j also enables attackers to use 
compromised IT systems to pivot to the control 
segment of an ICS network. 

2.2. The IEC 104 Protocol 

IEC 104 standards use Application Protocol Data 
Units, a frame with three formats. The formats 
distinguish the purpose of transmission: information 
transfer (I-format), supervisory activities (S-format), 
and unnumbered control (U-format) (Matoušek, 
2017). Each frame has a fixed-length header of 
Application Protocol Control Information (APCI) and 
a payload of the Application Service Data Unit 
(ASDU). Only I-format frames have ASDUs, which 
hold Information Objects, each with two components, 
an information-object address (IOA) and information 
elements. The information elements are the main data 
structures for passing information in the IEC 104 
protocol. Each information element can only contain 
one data type, but each ASDU can hold multiple 
information elements. Example data types are single 
and double commands for controlling IEC devices, 
and short floating-point numbers for sensor values. 
We refer to I-format frames by the type of data it holds. 

IEC 104 devices use I-frames to transfer data. 
However, this data is not protected because the IEC 
104 protocol lacks encryption and authentication. 
Since ICS devices often have outdated software, CISA 
recommends continuous monitoring to defend against 
these threats (CISA, 2022). Still, the protocol’s 
inherent vulnerabilities remain problematic for IEC 
104 devices because attackers have several options for 
exploitation.   

The popular penetration-testing tools Nmap and 
Metasploit have extensions specific to IEC 104. Nmap 
can perform IP enumeration across ICS devices that 
use IEC 104 (Timorin & Miller, n.d.). A rogue device 
can spoof an IEC 104 server and send unauthorized 
commands to ICS devices using Metasploit’s IEC 104 
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Client Utility module, though only certain systems are 
vulnerable to this exploit (Metasploit, n.d.).  

Using several tools (Hping, Ettercap, and 
OpenMuc J60870) to attack an emulated IEC 104 
network, researchers found that unauthorized access 
and denial-of-service attacks were the least successful, 
while man-in-the-middle and traffic analysis attacks 
were more successful (Radoglou-Grammatikis et al., 
2019). (Baiocco & Wolthusen, 2018) found that 
disrupting the time synchronization between two IEC 
104 devices can cause a denial of service.  

Another project analyzed IEC 104 attacks for 
creating intrusion-detection test datasets (Fundin, 
2021). Eight out of the twelve attacks succeeded and 
while the datasets are publicly available, their Python 
code is not. 

2.3. Automated Generation of Exploits 

Automated testing reduces human dependency on 
finding vulnerabilities (Black et al., 2021). One project 
tested different open-source ICS software with 
“fuzzed” packets (Luo et al., 2020) and found many 
bugs. However, for large software applications, 
verifying correct behavior of every input through 
automated testing is unattainable. (Kuhn et al., 2009) 
have argued that exhaustive testing is unnecessary and 
only a few parameters typically contribute to faulty 
outcomes Instead, combinatorial testing uses input 
groups to reduce the testing space to a manageable size 
for software with many parameters. Such techniques 
can help find crashes and bugs, but do not help to 
determine whether the generated exploits succeed.  

Compared to traditional software testing and 
probabilistic sampling (Choi et al., 2021), 
unsupervised learning algorithms have the advantage 
of generating new variations of tests.  With predictions 
made from prior successful tests, unsupervised 
learning algorithms are more likely to continue finding 
successful tests than techniques like randomly fuzzing 
input which only relies on randomization to find new 
successful tests. Two approaches, evolutionary 
algorithms and generative adversarial networks, 
expand the traditional testing space. Evolutionary 
algorithms model a well-known biological process, are 
easy to implement, and are efficient when searching 
for new variations (Vikhar, 2016).  

(Appelt et al., 2018) used an evolutionary 
algorithm to generate SQL-injection (SQLi) attacks 
for testing Web application firewalls. Their mutation 
operations were behavior changing, syntax repairing, 
and obfuscation. The new offspring, called a 
generation, trains a random-forest classifier. Testing 
then assigns a probability of detection to each 

offspring in the generation. Fitness selection picks the 
offspring with highest probabilities to mutate next. 

Generative adversarial networks are another 
approach for automated test generation (Hong et al., 
2020). Generative adversarial networks have tested 
autonomous vehicles image recognition and anomaly 
detection in intrusion-detection systems (Lin et al., 
2021; Zhang et al., 2018). However, these networks 
are difficult to implement due to their complexity. 

These test and attack generators try to craft new 
variants, starting from an exploit template or model. 
Instead of generating random attacks, examining 
attacks observed “in the wild” allows researchers to 
test new variants of popular attacks. For our 
evolutionary algorithm, we defined the exploit 
schema, attack features, and success criteria based on 
attacker behavior observed in different datasets. 
Recent research at NPS has collected several corpora 
of different attacks against ICS honeypots deployed in 
a commercial cloud environment (Washofsky, 2021). 

3. Attacks on Our ICS Honeypot 

3.1. Log4j Attacks 

On December 10, 2021 when the Apache Log4j 
vulnerability was first announced, our honeypot 
experienced a large increase in HTTP requests with 
Log4j commands embedded in their headers. As the 
vulnerability fixes evolved, we saw different 
variations of the exploit. Due to the significance of the 
vulnerability and many ICS vendors reporting 
exposure (Kovacs, 2022), we decided to further study 
the related exploits.  

Log4j configuration files contain important data 
about the system runtime environment which, if 
exploited, attackers can use to weaponize an attack. 
Log4j’s lookup mechanism allows applications to 
insert values of configuration variables into log-
destination strings. The syntax is “${variable}” where 
the variable is replaced with its current value in the 
configuration file. By observing the looked up 
variables, we can deduce the attacker’s tactics. To 
enrich log details, Log4j can also refer to system and 
environment variables (The Apache Software 
Foundation, 2022). Lookups are triggered with the 
syntax “prefix:attribute” or “prefix:attribute:-default”. 
As an example, the string “${docker:containerId}” 
logs the Docker container’s identification. The symbol 
“:-” establishes a default value if the requested 
attribute cannot be mapped to the prefix. Lookups can 
be recursive which allows for more complex variable 
representations and mappings. To thwart intrusion-
detection systems, attackers can recursively embed 
IOA lookups to create complex variations of Log4j 
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exploits that avoid known signatures (National Cyber 
Security Centrum, 2021). 

 Log4j exploits target the Java Naming and 
Directory Interface (JNDI), an interface for Java 
programs to retrieve objects from servers (Oracle, 
n.d.). JNDI resolves objects using various naming and 
directory services like the Lightweight Directory 
Access Protocol (LDAP) service. JNDI uses these 
services to query, resolve, and download objects from 
servers. It can also retrieve compiled Java files and 
execute them, a known vulnerability (Muñoz & 
Mirosh, 2016). Furthermore, Java applications with 
Log4j logging can use JNDI in the form of a JNDI 
lookup. This allows attackers to put JNDI command 
injections into protocol fields, like HTTP headers, that 
Java applications are likely to log. 

Based on the Log4j exploit strings we collected 
on our honeypot, we explored exploits which use 
LDAP servers as the attack vector, the most frequently 
exploited service. The LDAP specification defines 
client-server interactions on X.500 data and services 
(Sermersheim, 2006). If an LDAP server lacks a 
requested object, it can refer to another server that 
might have it. This way the JNDI lookup can request 
compiled Java classes from other servers like HTTP 
servers (Muñoz & Mirosh, 2016).  

Log4j exploits have a specific syntax. An exploit 
string is surrounded by the property substitution 
symbols,“${“and “}”. Inside the curly brackets is a 
JNDI lookup in the form 
“jndi:service://server/Object”, where the “jndi” is the 
prefix, “service” is the name of the service, “server” is 
either the IP address or domain name of the server and 
a port number, and “Object” is the malicious Java 
binary. As an example, 
“${jndi:ldap://192.168.1.1:1389/Exploit}” looks up 
the directory service LDAP  for the object “Exploit” 
found at 192.168.1.1 using port number 1389. The 
LDAP server then redirects the JNDI lookup to 
another attacker-controlled server. If it were an HTTP 
server, the JNDI server would then send an HTTP 
GET request for “Exploit.class”, receive it in the 
HTTP response, and immediately execute it.   

3.2. IEC 104 Attacks 

In April 2022, Ukrainian ICSs using IEC 104 
were attacked. The malware used in this attack was a 
modified variant of those used in the CrashOverride 
campaign (Kapellmann et al., 2022). In 2016 the 
original malware, called Industroyer, targeted 
different ICS protocols, including IEC 104. The 
Industroyer malware was a Windows executable and, 
once installed on the victim system, established 
command-and-control connections, exploited the 

vulnerabilities of the chosen ICS protocol, and finally 
wiped the machine’s data (Cherepanov, 2017). The 
IEC 104 part of Industroyer would try to end the 
original IEC 104 processes and manipulate the states 
of the discovered devices.  

Industroyer was ineffective due to improper 
implementation of its ICS protocols (Slowik, 2019) 
that caused communications with IEC 104 devices to 
be rejected due to their failure to follow protocol 
standards. Industroyer2 appears to derive from the 
same codebase as Industroyer but only used the IEC 
104 protocol (Tsaraias & Speziale, 2022). Its most 
notable improvements were sending test data using U-
format frames prior starting a data transfer and using a 
configuration file to customize the attacks. 

Industroyer2 sent single commands or double 
commands, based on the behavior of the victim ICS, 
to damage the IEC 104 devices. While running, 
Industroyer scanned every IOA of an IEC 104 device 
with general interrogation commands. Industroyer 
then iterated through the IOAs and turned them off and 
on repeatedly. Initial analyses indicated that the IOAs 
corresponded to ABB Distribution Recloser Relays, 
and that the attackers were trying to disrupt critical 
overcurrent protections (Kapellmann et al., 2022).  

Our honeypot data did not include attack behavior 
like Industroyer2; the observed behavior was limited 
to scanning. Of the valid IEC 104 payloads, most 
attackers only sent general interrogation commands. 
IEC devices respond to general interrogation 
commands with every IOAs reachable on that IEC 
device. Furthermore, attackers did not perform follow-
up actions after getting every device address, likely 
due to their limited understanding of IEC 104.  

4. Generation of Synthetic Attacks 

We used evolutionary algorithms to generate 
variations of existing attacks for testing our honeypots. 
To recreate the attacks, we sought exploitable attack 
patterns in the HTTP and ICS payloads of the 
honeypot’s captured network traffic and sampled 
Industroyer2 packet captures. The HTTP and IEC 104 
algorithms needed different syntax for setting 
machine-learning features. 

Our process for generating and testing exploits 
(Figure 1) started with creating an initial population of 
a size set by a hyperparameter called population size. 
The initial population for Log4j comprised exploits 
with one random mutation of the base exploit string 
“jndi:ldap://”. We did not seed SAGO with our 
collected Log4j exploits because our dataset had many 
duplicates and lacked variety. Also, crossover 
operations can construct a child's features by 
combining selected features of two parents. Our 
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fitness function used the observed response by our 
honeypot to determine degree of success. We stored 
these success values in a random forest to predict if a 
new attack variant would succeed. 

 
Figure 1. SAGO’s process to create exploits 

4.1. Log4j Attack Analysis 

Our honeypot collected data from November 30, 
2021 to January 17, 2022. Since the Log4j 
vulnerability was disclosed on December 10, 2021, we 
captured some of the first Log4j exploit variants. We 
observed 102 packets with Log4j exploits in HTTP 
request headers. The HTTP request methods were 98 
GET commands and 4 POST commands. This activity 
originated from 30 unique sources and represented 
0.1% of the honeypot’s overall traffic.  

To exploit vulnerable hosts, attackers embedded 
their Log4j exploits in the header fields they believed 
were the most likely to get logged. The user-agent 
header was the most popular and was used in 57 HTTP 
requests. Among these were 21 requests with the user-
agent header as the only location with the Log4j 
exploit. Using only one header field for the exploit was 
common since it happened 48% of the times. On the 
other hand, 60% of the HTTP requests only had one 
variant of the exploit string in the headers, which 
means that the attackers wanted to increase their 
chances of the exploit getting logged. 

In total, 205 exploits were found in the 102 HTTP 
header fields (Table 1). Most exploits tried to call an 
LDAP server and that accounted for 187 sample Log4j 
strings. The other 18 occurrences had DNS as their 
callback server. To obfuscate their exploit, attackers 
used lookups. 

 
Table 1. Embedded Log4j Exploits 

Callback 
Server 

Strings 
without 
Lookups 

Strings 
with 

Lookups 
Total 

LDAP 104 83 187 
DNS 2 16 18 
Total 106 99 205 
 
Four unique variations of the LDAP exploit used 

different combinations of lookups (lower case, 
environment variable, and empty string) to obfuscate 
the string. The DNS variations originated from two 

scanners: scanworld and securityscan. Scanworld 
simply used “jndi:dns://” while securityscan used 
“${::-j}ndi://dns://”. This was identifiable because 
they included their name in a substring of the URI. 

Although many attackers redundantly encoded 
their Log4j exploits into multiple HTTP header fields, 
they typically copied the same exploit in every header 
so if one exploit failed, all would fail. 

4.2. Log4j Exploit Generation 

The Log4j samples we studied used different 
lookup names and variations of recursive lookups. 
Therefore, the features we could vary were the number 
of lookups per character and the number of unique 
lookup names. Other features like string length, the 
malicious directory, and the naming-service type were 
not useful to vary in the evolutionary algorithm. Two 
constraints were to start and end with the property 
substitution symbols “${” and “{”, and include the 
JNDI lookup; changing any of these characters would 
break the exploit. However, if we appended certain 
lookup operators to characters in the Log4j exploit 
string, we could get a mutated string that would still be 
parsed correctly by Log4j. An example exploit string 
is in Figure 2. 

Though we could mutate every character in the 
exploit, we only explored transforming the substring 
“jndi:ldap://”. This avoided complications with 
disrupting the IP address and instance identifier.  
Given the substring “${lower:j}ndi:ldap://”, an 
example mutation would insert “$lower:” after the 
colon. The mutated string would then be 
“${lower:$lower:j}ndi:ldap://”. In mutating 
characters, if a randomly generated number between 0 
and 1 exceeded a threshold probability established by 
the mutation rate hyperparameter, the character was 
mutated by applying a lookup to it. All lookup names 
were equally likely. The mutation-magnitude 
hyperparameter determined how many successive 
lookups were applied. For example, if the character “j” 
was selected for mutation and the mutation magnitude 
was 2, a possible outcome could be “${env::-${env::-
j}}” with two lookups. 

 

 
 

Figure 2. Log4j exploit schema 
 
Besides mutations, we also used crossovers to 

find possible exploits. Our crossover operation 

Page 1688



exchanged lookups between the Log4j exploit 
characters. For example, given two parent Log4j 
exploit strings, “${{env::-j}ndi:ldap://}” and 
“${jndi:${sys::-l}dap://}”, with the “j” and “l” 
characters selected to cross, the result would be 
“${{env::-j}ndi:${sys::-l}dap://}”. The number of 
lookups swapped between parents was controlled by 
the number of crossings hyperparameter while the 
location of lookups to be swapped was random.  

Generated exploits were sent to the victim server 
one at a time. We then trained a random-forest 
classifier based on the exploits’ features and the 
successes or failures as labels. For our research, 
successful exploits are those which cause Log4j to 
send unintended outbound requests to servers of our 
choosing. Failed exploits will get logged by Log4j but 
would not trigger any network traffic.  

We sampled 75 percent of the generated Log4j 
exploits to train a random-forest classifier. We used 
the Python Scikit-Learn implementation of a random 
forest and their library function train_test_split, which 
defaults to sampling 75 percent of the input data, to get 
our training and test sets (Géron, 2019). The 
probability predicted by the random forest classifier is 
the likelihood of being a successful exploit. The next 
population was based on the exploits with highest 
probabilities of success, as predicted by the random 
forest, and was created by selecting the top k exploits, 
where k is the parent population size hyperparameter. 

Once trained, the classifier estimated the 
probability of each successful exploit and used the 
exploits with the highest probabilities to generate the 
next population.  

4.3. IEC 104 Attack Analysis 

Since our honeypot runs on a Linux operating 
system, we could not natively run the Industroyer2 
malware to assess its effects on our simulated power 
grid. Instead we used three packet captures from 
(Hjelmvik, 2022) who executed Industroyer2 in their 
isolated environment. We used these samples because 
most of our honeypot’s IEC 104 traffic was either 
malformed or sent out of order. The valid IEC 104 
payloads only used general interrogation commands 
and no further commands were sent to the IOAs 
returned by our honeypot. This could indicate a lack 
of understanding of the IEC 104 protocol. 

Compared to our collected IEC 104 data, the 
Industroyer2 traffic is more complex. Industoyer2 sets 
up the IEC 104 data transfer, interrogates to find all 
addressable IOAs, and then sends commands to each 
IOA depending on the data type each IOA supports. 
After probing all IOAs, Industroyer2 ends the 
connection.  

4.4. IEC 104 Exploit Generation 

Industroyer2 sent single and double commands to 
query a simulated industrial process. We chose to 
generate double commands because our honeypot 
does not process single commands.  The specification 
for double commands is in Figure 3. 

 

 
Figure 3. IEC 104 double command specification  

 
Besides varying the double command bits, we 

kept the rest of the frame the same as Industroyer2. 
Since we only manipulated eight bits of the command 
field, fewer variants were possible for the IEC 104 
attacks than for Log4j exploits. For our IEC 104 
evolutionary operations, crossover operations 
randomly selected bits and swapped their 
corresponding values while mutation toggled the value 
of one random bit in the command, making the 
mutation-magnitude hyperparameter irrelevant. 

To check the success of the generated IEC 104 
attack, ideally our exploits would cause the honeypot’s 
IEC 104 server to change our simulated power grid’s 
state. However, our honeypot’s implementation only 
allowed read-only requests. Instead, we relied on the 
log produced by our honeypot to determine the success 
of the generated exploits. Some commands that used 
non-implemented or undefined bits caused our 
honeypot to end the connection without writing to its 
log. Hence, we could tell that a command succeeded if 
a log entry for the command was created. We 
considered the exploit succeeded if a generated IEC 
104 attack was accepted by a simulated ICS device, 
which in a real system could result in the disruption of 
the power grid. This is like the objective of 
Industroyer2 which used various commands to disrupt 
power-grid operation (Kapellmann et al., 2022). 

5. Testing of Potential Exploits 

We used two Debian Linux virtual machines on 
the DigitalOcean cloud platform for the attacker and 
victim systems (Figure 4). The victim machine was an 
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instance of the GridPot honeypot used in past NPS 
research (Washofsky, 2021). It ran T-Pot (Telekom 
Security, 2016), which manages honeypots running as 
Docker containers. Our honeypot was one of them. It 
uses GridLab-D to simulate a power distribution 
system (Chassin et al., 2008). GridPot also 
encapsulates the HTTP and IEC 104 honeypot Conpot.  

 

 
Figure 4. Experiment Design 

 
We changed the honeypot from (Washofsky, 

2021) to make it vulnerable to Log4j exploits. In our 
honeypot we sent HTTP logs produced by Conpot to a 
custom Java application, called the Conpot Log4j 
Handler, that logged HTTP user-agent strings with 
Log4j. If any user-agent string triggered the Log4j 
exploit, the victim machine tried to resolve the 
malicious server’s IP address with DigitalOcean’s 
DNS resolver. SAGO used Tcpdump’s output to get 
feedback for its Log4j evolutionary algorithm. No 
changes to (Washofsky, 2021) were necessary for IEC 
104. We used SSH to pull the IEC 104 server’s log file 
and correlated successful attacks based on its entries.  

5.1. Log4j Experiments 

We ran Log4j exploits generated on our honeypot. 
Typically, developers use Log4j in their servers to log 
headers of HTTP requests. Since our implementation 
of T-Pot does not use Log4j, we had to simulate a 
vulnerable server. Since Conpot’s HTTP server logs 
all the HTTP request headers, our solution was to send 
the Linux tail command on the Conpot log as input to 
the Conpot Log4j Handler. 

On the victim machine, we installed a vulnerable 
version of Java and Log4j. Our custom Java 
application read from standard input, matched for a 
user-agent string, and if one were found, logged it 
using Log4j.  A successful exploit sent to our honeypot 
server would trigger the JNDI lookup and result in a 

DNS query. SAGO used these queries to correlate 
success labels to the exploits.   

SAGO initialized a population of artificial Logj4 
exploits of count determined by the target population 
size. Each exploit was a base Log4j exploit string 
“jndi:ldap://” with one random lookup applied. SAGO 
then sent an SSH command to start Tcpdump on the 
victim machine with Tcpdump’s standard terminal 
output directed to a DNS log file. Next, it sent Log4j 
exploit strings in the user-agent header fields of HTTP 
requests to the Conpot HTTP server using the Python 
3 Requests library (Reitz, 2022). It also sent another 
SSH command to stop Tcpdump and retrieve the DNS 
log. The retrieved DNS log recorded every successful 
exploit. SAGO could correlate success in the DNS log 
to the Log4j exploits using the instance identifiers 
(Figure 2). Our evolutionary algorithm for Log4j 
exploits used the hyperparameters in Table 2.  

 
Table 2. Hyperparameter combinations for 

generating Log4j exploits 

 

5.2. IEC 104 Experiments 

We adapted SAGO to send double commands to 
the target IEC 104 server. Using Scapy, we simulated 
an Industroyer2 data setup using U-format start 
frames. We only sent one command per data transfer 
to determine if it was accepted by the honeypot. To 
end the connection, we sent a U-format stop frame. We 
used the hyperparameters in Table 3 for testing the 
IEC 104 attack creation. 

 
Table 3. Hyperparameter combinations for 

generating IEC 104 exploits 

 
 

After creating the first population, SAGO sent the 
exploits to the Conpot IEC 104 server. Using SSH, 
SAGO read the Conpot log and correlated the entries 
with the attacks. If an attack was not found in the log, 
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its data transfer was prematurely ended, and this was 
considered a failed attack. The fitness evaluation and 
selection steps of the IEC 104 attack generator were 
the same as the Log4j implementation. 

6. Results and Discussions 

6.1. Log4j Results 

When testing SAGO over twenty generations, we 
noticed that the success rate flattened around ten 
generations (Figure. 5). Figure 6 shows successful 
exploits with different mutation rates. 

 

 
Figure 5. Successful Log4j Exploits over 

Generations with Population Size 20, Parent 
Population Size 10, Number of Crossings 6, 

Mutation Rate 0.50, and Mutation Magnitude 1 
 

 
Figure 6. Log4j Successful Exploits When 

Varying Mutation Rate with Population Size 20, 
Parent Population Size 10, Number of Crossings 

6, and Mutation Magnitude 1 
 
Higher population sizes caused SAGO to quickly 

find the more successful attacks. Conversely parent 
population size and crossover did not significantly 
affect the cumulative success rate. However, the 
mutation rate did affect the creation of successful 
exploits. In Figure 6 the lower mutation rates of 0.25 
and 0.50 performed the best. For mutation magnitude, 

higher values meant finding more exploits quickly, but 
in later generations such values caused too much 
variation to continually find new exploits.  

We produced over 5,200 unique strings exploiting 
the Log4j vulnerability. More variations can be 
created using other malicious directory services 
besides LDAP like DNS and Remote Method 
Invocation (RMI). The unique strings created for these 
variants can be used to strengthen firewalls and 
intrusion-detection systems.   

6.2. IEC 104 Results 

After twenty generations, the cumulative 
percentage of successful attacks was about thirty 
percent (Figure 7). Also, the rate of discovering new 
attacks had not flattened at twenty generations like the 
Log4j attack rate. We saw similar results as Log4j for 
all hyperparameters except mutation rate (Figure 8).  

 

 
Figure 7. Successful IEC 104 Attacks Discovered 

Versus Generations with Population Size 20, 
Parent Population Size 10, Number of Crossings 

4, and Mutation Rate 0.50 
 

 
Figure 8. Cumulative IEC 104 Attack Success 

Rate Versus Generations with Population Size 20, 
Parent Population Size 10, and Number of 

Crossings 4 
 
The extreme rates of zero and one still caused the 

worst performing outcomes, but generally the higher 
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mutation rates of 0.50 and 0.75 performed the best for 
all ten generations. At a mutation rate of 0.50 we saw 
our highest IEC 104 attack success at 40 percent. For 
IEC 104, SAGO found all 256 variations of the 8-bit 
double command. 

From the results of our IEC 104 attacks, we found 
a deficiency in the translation of the IEC 104 
commands to GridLab-D’s API in which our honeypot 
accepted the commands used by the exploits but did 
not change the underlying power grid’s state as 
expected. With proper translation, our honeypot could 
change its power readings based on user input. 
Attackers then could send IEC 104 double commands 
and see the resulting power readings change on the 
Web interface of our honeypot. Such interactivity 
would make our honeypot more convincing and would 
prompt more attack behavior of those trying to disrupt 
the power grid. 

7. Conclusion 

Our synthetic attack generator can generate Log4j 
exploits similar to those observed in real attacks, and 
it can generate IEC 104 attacks similar to those of the 
Industroyer2 malware. Our results suggest that the 
most influential hyperparameters were the population 
size and mutation rate; larger populations enabled 
more variations to get tested, and mutation rate 
controlled attack diversity. Mutation rates had an 
optimum value between 0 and 1. For Log4j exploit 
generation, lower mutation rates were preferable, 
while with IEC 104 exploit generation, the opposite 
was true. The most successful attacks in our tests were 
70 percent for Log4j exploits and 40 percent for IEC 
104 attacks.  

SAGO can also be improved to support other 
hyperparameter values and evolutionary operations to 
create more diverse attack variants. Our approach 
applies to other industrial protocols that use 
commands with various bitstrings to change ICS 
states, for example, IEC 61850. Since bit manipulation 
is common for these protocols, evolutionary 
algorithms can be used to generate new attack variants 
for such ICS protocols and systems. 

Continuous monitoring is a key proactive 
mitigation to defend against emergent exploits. 
Existing monitoring solutions can benefit from the 
synthetic attacks created by SAGO. 
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