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Abstract

Agent-Based Models (ABMs) have long served
to study self-adaptive systems and the emergence of
population-wide patterns from simple rules applied to
individuals. Recently, the rules for each agent have been
expressed using a Fuzzy Cognitive Map (FCM), which
is elicited from a subject-matter expert. This provides a
transparent and participatory process to externalize the
‘mental model’ of an expert and directly embed it into
agents. However, software technology has been lacking
to support such hybrid ABM/FCM models at scale,
which has drastically limited the scope of applications
and the ability of researchers to study emergent
phenomena over large populations. In this paper, we
designed and implemented the first open-source library
that automatically accelerates ABM/FCM models by
leveraging the CUDA cores available in a Graphical
Processing Unit. We demonstrate the correctness and
scaling of our library on a case study as well as across
different networks representing agent interactions.

1. Introduction

Agent-Based Modeling (ABM) is one of the
most valuable techniques to develop self-adaptive
systems (SAS) as they support key aspects such as
dynamics and decentralized control, emergence and
self-organization [Krupitzer et al., 2015]. Studies have
applied ABM to SAS for decades, with examples
illustrating how ABM can support runtime adaptation
in software systems [Qureshi and Perini, 2008]
or how SAS could be achieved at a massive
scale [Cambier et al., 2002]. The ABM approach
uses individual entities (agents) that act autonomously
and can interact with other agents (e.g., to coordinate
and collaborate) and the environment. The simple
rules enacted at the individual level allow to observe
emergence in population-wide patterns, as illustrated
over the many cells of an organism or the population of
an entire country [Barde and Van Der Hoog, 2017,

Li and Giabbanelli, 2021]. A large number
of Agent-Based Model toolkits are
available [Abar et al., 2017] and some are able to
operate with large-scale populations (e.g., Repast).

Although manually crafting and adjusting the
rules governing the behaviors of agents based on
theories and data has enjoyed many successes and
remains a common approach, there are several
potential drawbacks. First, transparently explaining
and refining the rules with subject-matter experts can
be a challenge [Voinov et al., 2018], particularly for
interdisciplinary problems. Second, there can be issues
of replicability, as the model-building heuristics of
a team [Freund and Giabbanelli, 2021] may only be
implicit or driven by experiences more than data and
theories. Third, agents created through this process
may adequately produce the emergent properties used
for validation in a given application domain, but their
individual-level rules may be partly disconnected
from reality. In reaction to these limitations, a
framework was previously proposed to transparently
elicit the rules governing an agent from subject-matter
experts. That is, the ‘mental model’ of an expert is
elicited and represented as a Fuzzy Cognitive Map
(Figure 1), then embedded into an agent to govern its
decision-making processes [Giabbanelli et al., 2017,
Mkhitaryan and Giabbanelli, 2021]. Such ABM/FCM
hybrid models (Figure 2) have been employed in several
participatory modeling studies to transparently create a
holistic picture of agents with heterogeneous behavior
rules influencing each other [Davis et al., 2019].
However, hybrid ABM/FCM models have thus far been
limited to simulating small populations. Despite the
existence of frameworks to achieve scaling by running
an ABM in parallel [Abar et al., 2017] or executing
FCMs in parallel [Lavin and Giabbanelli, 2017],
the complexity of hybrid ABM/FCM models
has resulted in software that run simulations
serially [Giabbanelli et al., 2019] and hence cannot
cope with the large-scale population sizes required in
many studies (Table 1).
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Figure 1: A Fuzzy Cognitive Map (FCM) represents
concepts as nodes and their causal impact as directed,
weighted edges (that may form loops). Node values are
iteratively updated until key concepts stabilize.

Figure 2: In a hybrid ABM/FCM model, each agent
has its own FCM, with a potentially different structure.
FCM concepts correspond to an agent’s attributes. A
simulation repeatedly gets agents to interact (thus giving
an impetus to parts of their FCMs) and reflect (thus
independently updating their FCMs).

In this paper, we develop a new library that modelers
can use to create large-scale self-adaptive systems
under the ABM/FCM approach. Specifically, we
accelerate ABM/FCM simulations by parallelizing them
automatically for modelers using a General-Purpose
Graphics Processing Unit (GPGPU) via Nvidia’s
proprietary CUDA library. On a distributed architecture
such as GPGPU, subsets of independent agents can
be simulated simultaneously, causing the simulation
to run quicker overall [Tang and Bennett, 2011]. By
playing to the strengths of the GPGPU’s highly
parallel computing environment, which allows us to
run more threads than a traditional Central Processing
Unit (CPU), our library can significantly decrease
the clock time of a hybrid model without requiring
specialized knowledge from users. Although the
execution of ABMs on the GPU using CUDA is

Table 1: Hybrid ABM/FCM models are typically small,
that is, they support only a few thousand agents.

Sizes of Hybrid Models
Reference ABM Size
[Abdou et al., 2012] 2000
[Giabbanelli et al., 2014] ≤ 2412
[Grantham and Giabbanelli, 2020] 1800
[Mehryar et al., 2019] 154
[Stula et al., 2010] 4

not new [Richmond et al., 2010, Hesam et al., 2021],
our work is the first that uses CUDA to accelerate
ABM/FCM hybrid models, in contrast to previous
platforms that had a strictly serial execution and relied
exclusively on the CPU [Giabbanelli et al., 2017].

To facilitate its deployment, our cuda-hybrid
library is hosted on the Python Package Index (https:
//pypi.org/project/cuda-hybrid/) and its
documentation (including tutorials) is accessible at
https://cuda-hybrid.github.io/.

Our overarching contribution is to propose the first
library that automatically accelerates hybrid ABM/FCM
models for modelers using CUDA. This contribution is
realized through three specific aims in this paper:

1. We introduce the design and implementation of
our library, focusing on the high-level logic that
guides modelers in executing their own projects.

2. We use a case study to show the correctness of
the library, by replicating the emerging results of
a previously published ABM/FCM model running
in the traditional serial manner.

3. We demonstrate that massive scalability is
achieved via the library, but that the exact runtime
of a scaled simulation can be affected by the
structure of the interactions between agents.

The remainder of this paper is organized as follows.
In Section 2, we succinctly cover the creation and
acceleration of traditional ABMs then briefly summarize
the principles of hybrid ABM/FCM models. We
introduce our library in Section 3. A case study is
presented in Section 4 with accompanying results in
Section 5 to demonstrate the correctness and scalability
of the library. The significance of these results
are discussed along with the current limitations in
Section 6. Lastly, we summarize our work and detail
the importance of running a large population on hybrid
models on the GPU in Section 7.
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2. Background

2.1. Creating and accelerating an ABM

An ABM is composed of agents (type, attributes,
actions), an environment, and a set of rules. These rules
control individuals and help replicate behaviors, actions,
and measures that resemble real-world phenomena at
a larger unit (e.g., group or population-wide). For
example, the Schelling Segregation Model defines
each agent as an ethnic or social group/area and
sets rules on how agents relocate based on their
neighbors [Grantham and Giabbanelli, 2020]; racial
clusters may form as a result of individual preferences.

Interactions between agents can be modeled via
a network, where a node represents an agent and
an edge represents a connection between two agents.
Networks may possess certain properties. Scale-free
networks are characterized by a power-law degree
distribution, which means that a minority of agents
have many peers, and newer agents are likely to
further grow the social capital of these highly social
agents. Small-world networks have groups of agents
(creating a high global clustering coefficient) and a
few agents from different groups interact, leading to
‘shortcuts’ across the network (yielding a low average
path length). Generators can create networks with these
target properties [Amblard et al., 2015].

Large scale parallel and distributed simulations
are commonplace for ABMs [Taylor, 2019]. The
problem is often studied as a matter of partitioning
a population of agents within a population of servers
(which broadly include threads or compute nodes
depending on the level of parallelism), while
ensuring a similar workload across servers (so
that a handful of servers are not delaying the
simulation while others are idle) and minimizing
communication costs between them. This problem is
NP-Complete [Lui and Chan, 2002] hence there is a
large number of heuristics. Historically, the design of
these heuristics has tended to cover three categories.
A graph-based approach pre-processes the agents as a
graph, dividing the population into smaller graphs that
are each processed by one server. This is the approach
used in this paper. Examples of such graph partitioning
systems include ParHIP [Predari et al., 2021]
and Corder [Chen and Chung, 2021];
see [Schwartz, 2022, Buluç et al., 2016] for
comprehensive surveys.

Another approach is a region-based partitioning.
This applies when the simulation represents a physical
space, which can be decomposed into subspaces
from top-down approaches (e.g., QuadTree in 2D

or KD-Tree in 3D) or bottom-up approaches (e.g.,
RegionGrowth [Steed and Abou-Haidar, 2003]). This is
applicable to situations such as simulating mobility, for
instance pedestrian movements in a city and other forms
of crowd management [Löhner et al., 2018]. Indeed,
pedestrian movements are driven by spatial information
(e.g., cannot go through a wall) and agents in the
near-vicinity (e.g., to avoid bumping into people). This
is not applicable to our work, as our agents do not
necessarily map to physical space. Finally, there is a
process-based partitioning approach, which examines
the influence of existing processes onto the workload
and then (re)distributes them. For instance, solutions
might ‘migrate’ agents to under-utilized servers, hence
several of these solutions are migration-based adaptive
heuristic algorithms [Ibrahim et al., 2020].

Since agents are updated according to the same
rules, simulations can end up running the same set of
instructions over multiple blocks of memory. General
Purpose Graphics Processing Units (GPGPUs) are
often utilized for programs that contain operations
that can be performed across multiple units of
data. Modern GPUs are many-core processors with
hundreds of processing elements, general-purpose
instruction sets, and support for double-precision
arithmetic [Che et al., 2008]. GPUs have been used
in conjunction with traditional processing elements for
many applications of ABMs, such as epidemiological
simulations [Rao, 2014]. In practice, GPUs tend
to accelerate data parallel tasks by about two
orders of magnitude when compared to multiple core
CPUs [Xiao et al., 2019]. This a direct result of the
difference of architecture between the CPU and GPU.

Nvidia’s Compute Unified Device Architecture
(previous designation), or CUDA, is an adapter that
gives users the ability to utilize the Nvidia GPUs’
instruction set and launch compute kernels. Three
technical aspects are important when using CUDA.
First, the communication overhead should be carefully
watched and minimized, otherwise the associated
overhead of transferring data (over interconnect)
may outweigh the benefits of parallelism. Hence
local computations are preferred to communication.
Second, unnecessary and expensive method calls
should be minimized to reduce kernel context
switching, which flushes cached data. Third, the
number of threads per block should be carefully
tuned to minimize cache misses because one block
requesting too many resources can decrease the
number of blocks concurrently supported by the
GPU [Kosiachenko et al., 2019]. Many past frameworks
have used CUDA as they would any ordinary parallel
processing framework, hence violating these three
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points [Kosiachenko et al., 2019]. Eliminating these
inefficiencies has improved performances in ABM
simulations.

2.2. Hybrid ABM/FCM models

An FCM serves to transfer the ‘mental model’
of a real-world individual into the decision-making
module of a simulated agent. The knowledge elicitation
process to obtain an FCM from a participant has been
applied over several decades [Felix et al., 2017] and
usually consists of a facilitation session to identify
relevant weights and interrelationships, ending with an
assessment of causal weights. An FCM represents
this knowledge in the form of a labeled, directed,
weighted graph (Figure 1). Edge weights encode
causation by using a positive weight when an increase
in a factor causes an increase in another (e.g., food

intake
+0.24−−−→ obesity) and a negative weight when an

increase in a factor leads to a decrease in another (e.g.,

stress
-0.32−−→ food intake). Most importantly, an FCM

is a simulation model: it synchronously updates the
values of the nodes over discrete steps (t = 0 and t = 1
are shown in Figure 1) by taking into account the current
value of each node, the value of its neighbors, and
the strengths of their connections. The update process
ends when values for a subset of nodes (i.e., the output
nodes for which the FCM was created) have stabilized.
Similarly to the mental model held internally by an
individual, an FCM serves to examine how a person
would reflect on a given situation and ultimately arrive
at a conclusion [Mkhitaryan and Giabbanelli, 2021].

In an ABM/FCM model, the FCM serves as the
‘virtual brain’ of each agent. Interactions between
agents do not directly happen between their brains,
hence only parts of an agent’s FCM may be externalized
via its actions and thus observed by others, leading to
changes in their own FCMs. A hybrid ABM/FCM is
thus composed of two networks (Figure 2): a social
network (each agent is a node, each interaction is an
edge) at the population level, and an FCM (each concept
is a node, edges denote causality) within each agent.
Each simulation step proceeds in two phases. First,
agents interact via their social ties; for instance, one
agent may be told about healthy eating habits by a
peer. This information is registered by their FCM as
an initial change in the level of ‘awareness of healthy
practices’. In the next stage, each agent independently
reflects on their interactions by simulating their FCM
until stabilization. Other factors in the agent’s FCM
act as a mediating context, hence an initial impetus
(e.g., awareness of healthy eating habits) may lead to

a change that gets amplified, or may be counter-acted by
the agent’s context. For instance, an agent may be told
that running is healthy, but the agent’s elevated level of
obesity prevents running (e.g., due to knee pain).

Since their recent
introduction [Giabbanelli et al., 2017], hybrid
ABM/FCM models have been employed in dozens
of studies [Davis et al., 2019]. These studies often
focus on socio-environmental problems and involve
interdisciplinary teams, hence each subject-matter
expert can contribute an FCM and examine how agents
equipped with this FCM behave in the simulation.
Since FCMs have been used in over 20,000 scientific
papers [Kininmonth et al., 2021], the abundance of
existing FCMs supports modelers who are interested
in creating ABMs where the behavior of each agent
is directly informed by a human expert and can be
transparently observed. The main drawback has been
the limited software for ABM/FCM, as they cannot
more than a few thousand agents, which is far from
the large populations often used in ABMs to study
emerging phenomena.

3. Methods

3.1. Overall Structure

Our new Python library, cuda-hybrid, easily
allows users to simulate an ABM/FCM hybrid model.
The model can be simulated in serial (as is the case
with all prior work) or switched to parallel, in which
case we automatically leverage the capacities of the
user’s GPU to accelerate the computations. Note that
offering both serial and parallel implementations within
a single library is necessary to perform benchmarks
(Section 4), that is, evaluate the effect of the parallel
acceleration. To run an ABM/FCM simulation, the user
specifies: the number of agents, the social network of
their interactions (e.g., by using a network generator),
the FCMs to use (given as files containing edge lists)
and the set of concept nodes that must stabilize as well
as a stabilization threshold, the number of simulation
steps, and the number of repeats. As detailed in the
next section, users can also choose which community
algorithm they wish to use when executing their model
on the GPU, in case they have specific insight into the
structure of the social network.

3.2. Running FCMs in parallel via CUDA

Object oriented programming has
long been a common approach to
build ABMs [Gilbert and Terna, 2000]
and it remains the most prominent
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paradigm [Cardoso and Ferrando, 2021]. However,
the situation is different when building a framework
for simulation acceleration. In particular, classes
cannot be used within a CUDA-compiled function,
and key libraries used in accelerating Python
code [Li et al., 2021] (e.g., numba) impose a further
limitation as they only compile ‘a restricted subset of
Python code into CUDA kernels’1. As a result, the
internal routines of our library are not built with object
but rather rely on matrices, supported by the numpy
library. Unlike classes, dictionaries, and other Python
features, numba supports sending numpy matrices to the
GPU. An overall adjacency matrix represents the social
network of agents, and each agent has an adjacency
matrix for the edge weights of its FCM.

An FCM often consists of only a few dozen
concepts, hence its adjacency matrix easily fits within
the footprint of CUDA cores. In contrast, the
adjacency matrix of a very large number of interacting
agents would exceed the memory storage available to
many GPUs. It is thus necessary to decompose the
overall social network into smaller subparts, similarly
to the notion of partitioning discussed in section
2.1. However, the matter is not as trivial as (i)
arbitrarily slicing the network into parts and (ii) running
computations independently on each one. Indeed,
section 2.1 emphasized that the network should be
decomposed to ensure a similar workload, so it
would be undesirable to have massive subparts and
small ones. Additionally, these parts are not strictly
independent: some agents will necessarily have peers
in other partitions so we need to accurately compute
the influences that they receive across these partitions
(Figure 3). We thus (i) use community detection
algorithms to decompose the network and (ii) proceed
in two substeps by handling each community in parallel
and then reconciling cases with ties across communities.
Step (ii) is akin to the parallel processing approach
of handling boundary nodes by assigning them ‘ghost
neighbors’ [Riley et al., 2004].

As noted in Section 2.1, one of the important
technical aspects when using CUDA is to carefully tune
the number of threads per block. In our library, these
numbers are automatically selected based on the size of
the data needing processed as well as the limitations of
the GPU being used.

3.3. User workflow

All of the mechanisms to accelerate the simulation
(Section 3.2) happen automatically for the users. Users

1See Overview at http://numba.pydata.org/
numba-doc/latest/cuda/overview.html

Figure 3: Five agents (A, G, B, E, H) have social ties
outside their partition. After all ties within the partitions
have been executed, we finish updating these two nodes
based on ties outside the partition.

can thus focus on their expertise, by providing the
specification for the model that they have designed.
To start using our library, a user would provide an
FCM as a file; samples for such files are provided in
our tutorials at https://cuda-hybrid.github.
io/. The library reads in the concept nodes, directed
edges, edge weights, and maximum number of iterations
for the FCM provided. In addition, we allow the user
to specify a target concept in the FCM, so that the
update stops if this concept stabilizes (Section 2.2). The
user would create a social network, typically by calling
upon a generator from the NetworkX library; our next
section experimentally shows the impact of the specific
generator used and the targeted network properties. The
user has the possibility of initializing the attributes of
each agents, that is, the node values for their FCM.
These values are randomized by default.

Most of the code written by the user serves to specify
how two FCMs influence one another via a social tie
(pink dotted line in Figure 2). Consider two agents A
and B, where A influences B. In line with previous
software [Giabbanelli et al., 2019], the user designates
a subset of FCM factors in B that are influenced, and
a (possibly distinct) subset of factors in A that are
influencing. Then, the user writes the exact nature
of this influence. For example, consider that A has
diabetes type-II and B does not. B cannot directly get
diabetes from A, as it is not contagious. However, B’s
now has a heightened awareness of diabetes. The user
may program that B’s awareness of diabetes goes up
exponentially for each peer with diabetes. This does not
need to be programmed for every single pair of agent; it
is entered only once and applied for every interaction.

Page 6867



The example above shows a relative influence, as the
next level of B’s awareness increases from its current
level. FCM nodes modified by relative influences
can accumulate several such sources of influence; for
instance, B’s awareness would go up even more if a peer
got amputated for diabetes, hence several influencing
factors (diabetes, amputation) can be applied jointly.
Users can also specify an absolute influence, whereby
the value of a concept is replaced irrespectively of its
previous level. For instance, in a simplified model
of obesity, if most of B’s peers are obese then B
becomes obese [Bahr et al., 2009]. The user should
not attempt to change a factor with both relative and
absolute influences (e.g., the value should go up by 5%
and at the same time by replaced by 0.25), because
the order in which these influences are executed would
matter and hence violate the principle of independence
that underpins parallelism. However, the library is not
responsible for a user’s erroneous model specifications.

4. Case Study on Nutrition

The objectives of our case study are twofold: (i)
demonstrate that the library is correctly implemented,
by its ability at replicating results obtained in
previous (serial) software; and (ii) demonstrate that
the library does lead to scalability, by running a
much larger population of agents than previously
possible by the serial approach. The latter is achieved
through the workflow in Figure 4. The FCM
used comes from a case study related to obesity in
Canada [Giabbanelli et al., 2014], and it focuses on the
social transmission of knowledge regarding nutrition
(Figure 5). To closely replicate the previous study,
we followed its process to set the initial values for
FCM concepts in the agents (e.g., stratified per age and
income, generated from inverse Gaussian distributions)
and to specify the influencing equation (section 3.3).
The level of nutrition knowledge of an influenced agent
j depends on the knowledge of the influencing agent i
in a probabilistic manner, whereby there is a chance p of
accepting a good advice (increasing one’s knowledge if
the peer knows more) and a chance 1 − p of accepting
a bad advice (decreasing one’s knowledge by following
the sub-par practices of a peer).

Since scalability may be affected by the algorithm
chose to subdivide the social network and/or the
generators used to create the network, we used different
methods for these two aspects. Two different community
algorithms were used to examine the effect of
subdividing the network. Clauset-Newman-Moore
greedy modularity maximization started with
each node in a separate community, and then

Figure 4: Methods Overview.

Table 2: Social networks of 60,000 agents obtained
by fine-tuning the parameters of four generators:
scale free graph (1 parameter), barabasi albert graph
(2 parameters), watts strogatz graph and
newman watts strogatz graph (3 parameters each).

Edge Count per Graph Generator
Graph Generator Number of Edges

barabasi albert graph 119996
scale free graph 130690

newman watts strogatz graph 120000
watts strogatz graph 120000

combined communities that increased modularity
the most. Modularity is defined as a network
property that describes the tendency of the nodes
to cluster [Gilarranz et al., 2017] [Newman, 2019,
p. 498]. The second algorithm, label propagation,
created communities by combining synchronous and
asynchronous models while simultaneously using
a semi-synchronous label propagation method. We
ensured that these algorithms did not group the nodes
into one entire community as other well-known
community algorithms (e.g. k clique communities).

For the network structure, we considered two
commonly encountered types of social networks
(scale-free and small-world; see section 2.1) and
used two generators for each one via NetworkX:
watts strogatz graph and newman watts strogatz graph
for small-world networks, scale free graph and
barabasi albert graph for scale-free networks. In
addition, we fine-tuned the generators’ parameters
to create a similar number of edges for each type
of network. This fine-tuning is necessary, otherwise
results would be reflecting the different densities of
the network rather than the ways in which the social
ties are positioned. Results from the tine-tuning are
exemplified for 60,000 agents in Table 2. Note that the
parameters of the network generators impose certain
constraints [Freund and Giabbanelli, 2022], hence it is
not always possible to obtain networks that have exactly
the same number of edges (Table 2).
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Figure 5: Obesity Fuzzy Cognitive Map.

5. Results

5.1. Experimental Setup and Correctness

To replicate the results of the previous study
running on a serial platform, we ensured that the
networks were as similar as possible to that study.
Results show that the trend from a serial execution
(Figure 6-a) resemble the trends obtained in our parallel
execution (Figure 6-b). We observe discrepancies for
the scale-free graph for parameter values p between
0.6 and 0.75, but we note that there are multiple
sources of randomness (initialization of the agents’
attributes, influence probability p, network generator)
hence the difference can be attributed to the sensitivity
of scale-free graphs to certain probabilistic events (e.g.,
if a hub in the graph adopts a certain behavior then it has
a disproportionate impact on the rest of the dynamics).

5.2. Scalability

To assess scalability, we computed the results
on a serial implementation with all four network
generators, and on a parallel implementation with all
four network generators as well as both community
detection algorithms (8 combinations). For a fair
comparison, we did not artificially burden the serial
implementation by performing a community division,
since this additional processing is only needed for
parallelism. The parallel implementation used a GPU
with 5,120 cores (NVIDIA Tesla V100 PCIe) and 16
Gb GB HBM2 memory. We ran from 1, 000 up to
60, 000 agents and each simulation was repeated 10
times. The difference in execution time (Figure 7)
shows that a parallel execution runs much faster. On our
hardware, the serial implementation is limited to 5, 000
agents whereas the parallel case handles up to 108, 000
agents. To better appreciate this difference and bring
nuance into the occasionally overlapping visuals in close
cases, Table 3 lists the average runtime for the same
population size (1, 000) and summarizes the parallel

Figure 6: Average level of obesity in the population
(y-axis) in response to the probability of influence p in
both a traditional serial execution of the model (a; top)
and via our parallel approach (b; bottom).

speed-up, which ranges from 26x to 126x depending on
the network structure and generator.

While the visible effect of network structure and
generator on serial processing time appears to be
inconsequential for parallel processing (from 0.149 to
0.191 minute), that is only because a population of
1, 000 agents is processed very quickly in parallel. At
larger population sizes, we observed that the structure
and generator also matter in parallel. In addition,
the effect of community detection algorithms also
becomes noticeable. For example, at 60, 000 agents, the
scale-free generator followed by the greedy community
detection completes in 48.064 minutes, but with the
label propagation it takes only half as long (24.609
minutes). One community detection is not always
faster than the other: a small-world network via
Watts-Strogatz takes 15.769 minutes with the greedy
approach, but in this situation label propagation is longer
(21.780 minutes).

6. Discussion

Although ABM/FCM hybrid models are an
increasingly popular modeling approach for
self-adaptive systems, software technologies were
limited to small population sizes that did not suffice
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Table 3: Differences in runtime (minute) between the serial and parallel executions. The speed-up is computed as the
average between the two different community algorithms that may be used for a parallel implementation.

Network structure Generator Community (parallel only) Serial
time

Parallel
time

Parallel
speed-up

scale-free
scale-free Greedy 4.236 0.165 26xLabel 0.159

Barabasi Greedy 4.394 0.191 26xLabel 0.150

small-world
Newman Greedy 11.712 0.149 74xLabel 0.165

Watts Greedy 19.354 0.152 126xLabel 0.154

Figure 7: Compute time (y-axis) depending on the
number of agents for traditional serial execution of the
model (a) and via our parallel approach (b). Note
that the two x-axes have different scales, since a serial
execution stops handling ABMs at 5,000 agents.

to study emerging phenomena. In this paper, we
developed a library that automatically leverages
CUDA cores available in GPUs to accelerate the
simulation. Our results confirm the correctness of
our implementation and the presence of a massive
parallel speed-up, from 26x to 126x at small population
sizes. For larger population sizes, there is no notion of
speedup because only the parallel implementation could
continue to perform simulations. Although we expect
the runtime to depend on the structure of the population
(e.g., small-world networks have dense communities),
we found that the choice of network generator had an
impact, as well as the choice of the community detection
algorithm used to divide the population (such that it fits
in memory). It is likely that the rules of a model also
impact runtime, which could be assessed by future work

comparing ABM/FCM of different designs, such as the
model used here (for nutrition in human) with a model
of interactions between fish in [Wang et al., 2006].

Even though we made great use of parallelism
through CUDA, there was relatively little use of CPU,
or host parallelism in our work. This application
could be greatly improved by multi-threading the
code that occurs on the host: network generation,
community detection, and running model replication.
Multithreading could be done using the Python
multiprocessing library, which would work
better with NetworkX. Future work may also explore
other libraries to access the GPU, such as the backends
provided by PyTorch.

One limitation of our library is that it does not run
on all GPUs. Because we chose to use the dominant
player on the market to develop this application (hence
making it more likely that our users can leverage
the library for their hardware), there is a degree of
vendor lock-in. Rather than writing a version of
the library for every manufacturer, future works could
explore emerging solutions that can be deployed across
accelerators (e.g., various GPUs, FPGA), such as Intel
oneAPI [Nozal and Bosque, 2021]. A second limitation
resulting from the hardware is that our number of nodes
eventually exceeded the memory available on the GPU
(Nvidia Tesla). One contributing factor to our memory
shortage was the representation we used for each graph
in the application. We preferred an adjacency matrix
over an adjacency list. This increased both processing
speed and memory consumption. However, even
with improvements in data structures, some scientific
applications require a very large memory capacity and
do not fit into a GPU [Emani et al., 2021]. In such cases,
another architecture is necessary, and the switch could
be made seamlessly when using a unified application
programming interface such as Intel oneAPI.

Another potential improvement to our work pertains
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to its limited capacity to visualize the simulation as it
occurs. Although most users may only be interested
in the end results of a simulation, subject matter
experts can sometimes identify potential mistakes in
a simulation by looking at a visualization of steps.
In addition, intermediate results may show sufficiently
clear trends that we can confidently predict the
conclusion of a simulation without needing to perform
all remaining steps [Lutz and Giabbanelli, 2022]. In
both cases, stopping a simulation earlier could be
time-saving, particularly for large populations. Since
we operate in Python, visualization of unfolding
simulation results could be performed within a Jupyter
notebook that orchestrates the deployment and analysis
of results [Savira et al., 2021].

7. Conclusion

We created the first ABM/FCM library that runs
in parallel, which opens the possibility to simulate
agent populations in the dozens of thousands within less
than an hour instead of being limited to about 5,000
agents with prior implementations. We revealed that
factors occasionally ignored (e.g., the choice of network
generator) can ultimately impact compute time, but the
optimal combination of factors remains elusive as the
effect of several parameters (e.g., community detection
algorithm, features of the ABM/FCM model) would
require a much larger comparative study.
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