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Abstract 
The use of machine learning in digitized 

production increases potentials for production 

automation. A milestone on the path to autonomous 

production is real-time anomaly detection. However, 

increasing complexity of production makes 

autonomous decisions difficult to understand for 

humans as central stakeholders. In this paper, a 

dashboard is created that incorporates elements from 

knowledge-based systems, requirements for real-time 

anomaly detection, and design guidelines for 

dashboards. Using design science research, the 

dashboard is designed, implemented and 

comprehensively evaluated with 98 participants. After 

the second design science iteration, the dashboard is 

approved in terms of usefulness and ease of use. This 

research primarily contributes to practice, as the 

implementation constitutes a starting point for 

designing the interface between humans and 

autonomous production. The paper also contributes to 

academia as the dashboard is an instantiation in the 

research field of interface design for knowledge-based 

systems, which can be further developed in future 

research.  

 

Keywords: Dashboard, Smart manufacturing, Real-

time analytics, Expert systems. 

1. Introduction  

The ongoing digitalization is revolutionizing the 

way manufacturing companies operate (Buer et al., 

2021). Worldwide, this modernization process has 

given rise to various terms and initiatives (Bueno et 

al., 2020). Leading examples are "Industrial Internet" 

in the USA, "Intelligent Manufacturing" in China and 

“Industrie 4.0” in Germany. All initiatives have in 

common the automation of production for the flexible 

fulfillment of individual customer needs. Self-x 

competencies are at the heart of production 

automation. They are implemented to transfer 

operational and planning responsibilities from humans 

to machines (Cohen & Singer, 2021). This means that 

production machines should be able to produce 

autonomously according to plan and react to changes 

in production programs and conditions. Self-diagnosis 

and self-repair competencies pursue the goal to reduce 

anomalies and maintain efficient, reliable production. 

Self-diagnosis refers to the ability to analyze real-time 

data for potential or existing anomalies. Self-repair 

capabilities aim to either prevent anomalies in an 

automated prescriptive manner or to eliminate them 

after they have occurred. 

Knowledge-based expert systems (KBES) define 

by continuous processing and representation of 

knowledge. They represent a promising approach to 

implementing self-diagnosis and self-repair. In 

general, KBES are intended to support the goal-

oriented and systematic application of expert 

knowledge (Beierle & Kern-Isberner, 2019). They can 

be applied in the production context to fulfill context-

based, knowledge-intensive tasks, e.g. regarding 

anomaly diagnosis and machine repair (Leo Kumar, 

2019). Expert knowledge from experience may be 

used to systematically eliminate anomalies or to 

prevent them before occurrence. An essential 

characteristic of KBES is that the information used 

and the decisions made are traceable and 

comprehensible at all times (Beierle & Kern-Isberner, 

2019). In addition, the expansion of human-machine 

interaction and thus the involvement of humans in 

production processes is another core component of the 

industrial vision of the future (Kagermann et al., 

2013). 

However, due to flexible machine configurations, 

parallel sensor data streams and decision-making 

processes, human decision-makers face the challenge 

of understanding automated production processes 

(Schütze et al., 2018). Consequently, dashboards that 

take the role as human-understandable interfaces are 

required for KBES to depict complex production and 

decision-making processes in real-time. This leads to 

the following research question: 

How can a real-time dashboard of knowledge-

based expert systems used for anomaly handling in 

production be designed and implemented? 
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The remainder of this paper structures as follows. 

Section 2 contains related work on dashboard design 

and KBES. Section 3 shows the applied design science 

methodology. Section 4 introduces requirements 

identified from literature. Section 5 covers the 

presentation of the implemented dashboard before it is 

evaluated in section 6. Finally, sections 7 and 8 present 

limitations and future research as well as a conclusion. 

2. Related Work 

This section aims to put this paper in context with 

state-of-the-art literature on dashboard design and 

expert systems for real-time anomaly detection. 

2.1 Dashboard Design 

Dashboards have the goal of displaying relevant 

information in a way that is easy to understand, so that 

users can obtain information about the current status 

of systems and processes (Eckerson, 2011). Above all, 

dashboards are intended to provide a basis for 

decision-making. For dashboard conceptualization, 

two essential perspectives must be considered, namely 

the functional and the visual perspective (Few, 2006). 

There are no uniform guidelines for the design of both 

perspectives in literature and practice. This is due to 

the dependency on the application domain, the 

addressed user group as well as the intended use of the 

dashboard. There are three categories that are relevant 

for dashboard conceptualization, namely functionality 

as well as scope and presentation of information 

(O'Donnell & David, 2000; Yigitbasioglu & Velcu, 

2012). 

The functionality of a dashboard should be 

aligned with the application goal. It should contain 

only relevant functions for information retrieval and 

decision support. Extended functionality beyond the 

intended use could lead to user irritation or distraction.  

As with functionality, the scope of information 

should only include information that is appropriate to 

the goal. Users should receive relevant information for 

the fulfillment of targeted tasks, but not be overloaded 

or distracted by it. An inadequate amount of 

information can lead to wrong decisions and reduce 

the acceptance of the dashboard in the long-term. 

The element of presentation of information 

covers the challenge of designing information in such 

a way that users can grasp and understand it as quickly 

as possible. I.e., different from scope of information, 

the selection from information display option is 

relevant. Not only the distribution of information on 

several pages of the dashboard is relevant, but also 

their arrangement. In addition, the color scheme and 

form of the design, such as tables or graphics, have a 

significant influence on the perception of the content. 

Above all, the way in which information is presented 

is contingent on context and users. 

2.2 Knowledge-based expert systems for real-

time anomaly detection 

KBES are information systems with knowledge as 

their core that is used to solve a defined problem. The 

essential knowledge as well as its further development 

is stems from domain experts. By continuous 

knowledge representation and processing, KBES 

support finding domain-specific solutions. In the area 

of industrial production, there already are several 

applications of KBES (Leo Kumar, 2019). In essence, 

KBES should generally make or support decisions in 

the production process on the basis of expert 

knowledge. The underlying knowledge, decision-

making processes and conclusions must be presented 

to users in a transparent and comprehensible manner. 

KBES can be divided into six interrelated 

components (Beierle & Kern-Isberner, 2019). The 

authors emphasize that storage and processing of 

knowledge must be strictly separated from the 

representation of knowledge. Figure 1 shows an 

overview of the interrelated elements, they have been 

considered for the design of the prototypical 

dashboard. 

Figure 1. Generic architecture of a knowledge-
based expert system (Beierle & Kern-Isberner, 

2019). 

Expert and user interfaces are used to represent 

or access the expert system. Both types of interfaces 

differ regarding the addressees and their specific tasks 

for which they make use of the KBES. The dialog 

system is used by both experts and users to interact 

with the KBES. Experts use the dialog system for 

development and maintenance; whereas users aim for 

application-oriented use. The explanation system 
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serves to explain contents and especially decisions and 

conclusions to the user. It has to be designed in such a 

way that decisions are comprehensive for every user. 

Knowledge directly accessible to the user is case-

based. This means that knowledge that relates 

specifically to a case under consideration is stored to 

make currently valid facts usable. Rule-base 

knowledge, on the other hand, is only accessible to 

experts. Here, generally applicable rules are usually 

stored in the form of if-then(-else) conditions. Rules 

can be generic, but can also refer specifically to 

repetitive applications. The knowledge acquisition 

system serves for the continuous extension of the 

knowledge base. Ultimately, the knowledge 

processing system is internal, so experts and users can 

only influence it indirectly. It is used for the processing 

of rule-based and case-based knowledge, which takes 

place separately from the storage or organization of 

these two types of knowledge.  

3. Methodology 

Design and implementation of the dashboard 

follow a design science research approach (Peffers et 

al., 2007). In this approach, the dashboard as artifact 

that provides an answer to the research question is 

designed, implemented and evaluated. Figure 2 shows 

the phases used in the approach. 

 
Figure 2: Design science research approach. 

The motivation for the study is outlined in the first 

section. A structured literature review builds the basis 

for the motivation (Vom Brocke et al., 2015). 

Contributions in the databases Google Scholar, IEEE 

Xplore, Scopus, Science Direct, Springer Link and 

Web of Science were searched. These databases were 

chosen as they cover a variety of sources that host 

publications with high impact in practice and science. 

The following search strings were used: “expert 

system” AND OR(“dashboard”, “interface”, “control 

panel”) AND OR(“anomaly detection”, “outlier 

detection”, “real-time analytics”, “sensor data 

analysis”, “stream processing”, “streaming analytics”) 

AND OR(“industrie 4.0”, “industry 4.0”, “intelligent 

manufacturing”, “smart factory”, “smart 

manufacturing”, “industrial internet reference 

architecture”, “intelligent manufacturing system 

architecture”). The search terms regarding anomaly 

detection and industry 4.0 were added in an iterative 

process when encountering these terms in potentially 

relevant contributions. The search was not restricted to 

a publication date. 28 contributions resulted from 

scanning titles and abstracts.  

In the second phase, 13 requirements identified in 

the literature review were used for the targeted artifact 

(Stahmann & Rieger, 2021). Additionally, 

requirements that follow from expert system 

conceptualization and dashboard design presented in 

section two were considered. The requirements also 

resulted from the structured literature review. In the 

third phase, the design science artifact was 

implemented in the programming language R in an 

iterative process with two researchers. In the fourth 

phase, the implemented dashboard was evaluated 

using a survey that contained quantitative and 

qualitative questions and statements. After the first 

evaluation with 55 participants, the artifact was 

adjusted. The second evaluation included 43 

participants.  

4. Requirements  

Specific requirements were used to adapt the 

KBES elements from section 2.2 to real-time anomaly 

detection in production. Stahmann and Rieger (2021) 

conducted a structured literature review on 

requirements for real-time anomaly detection in 

production. The analysis of 44 relevant publications 

revealed 16 specific requirements in the areas data, 

infrastructure and analysis. The result was evaluated 

by means of qualitative interviews with experts from 

industry. Table 1 shows these requirements.  

In the following, the requirements relevant to this 

paper will be further detailed and related to the KBES 

elements from section 2.2. Requirements that are 
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irrelevant for the research purpose will be excluded 

explicitly.  

There are five specific requirements associated 

with data, namely sensors, domain knowledge, 

historical data, simulation, and data composition. 

Sensors have become indispensable in digitized 

production environments as they developed from 

purely mechanical sensors with a specific field of 

application and time-delayed data transmission to 

internet-enabled multi-sensory devices that 

communicate data in real-time (Schütze et al., 2018). 

Sensors are seen as enablers of comprehensive real-

time data analysis and presentation. They enable the 

acquisition of data from products, machines and entire 

production environments without time delay. 

Furthermore, literature shows the necessity that data 

measured by sensors should at least consist of 

timestamp and measured value (data composition). 
Area Requirement 

Data 

Sensors 

Domain knowledge 

Historical data 

Simulation 

Data composition 

Infrastructure 

Latency 

Reconfigurability 

Evaluation 

Notification 

Communication 

Scalability 

Security 

Analysis 

Supervised and/ or 

unsupervised analysis 

Threshold 

Analysis supervision 

Data preparation  

Data processing mode 

Table 1. Requirements identified by Stahmann 
and Rieger (2021). 

For KBES, sensors mean permanent data input for 

decision-making (Schütze et al., 2018). Domain 

knowledge as well as experience of experts are 

sources used for data analysis and decision making 

(Stahmann & Rieger, 2022). Historical data and 

analysis results can also serve as a basis for assessing 

anomalies in real-time. In particular, results from 

predictive simulations can also be used to concretize 

expectations of upcoming production runs and identify 

deviations in real production data. In KBES, these data 

serve to acquire knowledge that may be used as basis 

for rules and cases (Beierle & Kern-Isberner, 2019; 

Stahmann & Rieger, 2022). Furthermore, explanations 

for anomalies and their elimination or prevention can 

be given, especially by using empirical knowledge. 

The area infrastructure includes the specific 

requirements latency, reconfigurability, evaluation, 

notification, communication, scalability and security. 

Latency refers to the time period between a 

measurable event and the display of the sensor data 

measurement (Trinks, 2018). Appropriate latency 

must be verifiable to ensure real-time capability. In 

terms of KBES, different latencies can have an impact 

on decisions to be made (Zalhan et al., 2020). The 

requirement reconfigurability refers to the possibility 

to flexibly configure machines for the production of 

customer-specific requirements (Berry et al., 2017). In 

addition, production systems must be designed in such 

a way that reconfiguration can be changed in the event 

of anomalies that cannot be directly prevented or 

eliminated. For KBES, this means that knowledge for 

diverse possible machine configurations shall be 

available for decision-making. In addition, the 

explanation system should also be able to guarantee 

traceability (Beierle & Kern-Isberner, 2019). 

Evaluation refers to the permanent assessment of data 

streams to determine whether anomalies are present 

and, if so, how serious they are (Berry et al., 2017). 

For this purpose, algorithms can be used that provide 

real-time indications as to whether values correspond 

to expectations. Analysis results and decisions should 

be presented to users in production as notifications 

(Han et al., 2018). Literature shows the use of alarms 

or text messages directed to employees that are 

affected by potential anomalies. Communication is 

the basic requirement of a dashboard through the 

adequate presentation of relevant information as 

explained in chapter 2.1 (Carvajal Soto et al., 2019). 

Accordingly, each element of the dashboard to be 

created serves to fulfill the requirements for 

communication. Scalability and security are not 

considered in detail in this paper, as they are not 

directly related to KBES components and therefore do 

not appear in the dashboard to be developed. 

The last area refers to requirements for the 

analysis of data streams in real-time. The identifiable 

requirements are data preparation, data processing 

mode, analysis methodology, thresholds and analysis 

supervision. The analysis methodology refers to the 

type of algorithmic data analysis used for anomaly 

detection. Unlike unsupervised algorithms, 

supervised algorithms require training data and 

learning phases. Type and functionality of algorithms 

can affect decision-making capabilities in KBES 

(Lavin & Ahmad, 2015). Thresholds are upper and 

lower limits of the data. If data exceed these limits, 

they are always considered anomalies. In their 

qualitative survey, Stahmann and Rieger (2022) 

identified thresholds as one of the most important 

means to detect anomalies in practice. Threshold 
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values are set based on expert knowledge, historical 

data, or simulations. In KBES, they can be used to 

design rules and cases (Beierle & Kern-Isberner, 

2019). Similar to the communication requirement, the 

dashboard is generally used for analysis supervision, 

as detailed in chapter two. Data preparation and data 

processing mode are not requirements that are 

implemented as part of the design of a dashboard for 

KBES for anomaly handling. 

5. Dashboard Design  

For the dashboard design, the elements of KBES 

(cf. Figure 1), the requirements from literature (cf. 

Table 1) and the dashboard design elements (cf. 

Section 2.1) were considered. In addition, the 

guidelines of DIN 9241 were taken into account. The 

dashboard was designed in an iterative process with 

two researchers. The implementation can be accessed 

openly at: https://bit.ly/391oZkb. 

The dashboard consists of three pages with the 

titles “Overview”, “Sensors” and “Rules/Cases”. The 

presentation is based on a fictional production 

scenario, which was created iteratively in 

correspondence with two practitioners with three and 

eight years of experience in production. In the fictional 

scenario, four sensors are attached to three CPS. The 

assignment of the design elements (DEs) to the KBES 

is detailed in the evaluation chapter. Figure 3 shows 

the “Overview” page, which consists of four DEs. DEs 

1.1 and 1.2 show graphs that give a first visual 

impression of the current sensor data and the currently 

present anomalies with respect to a categorization of 

their criticality. The categorization is done from 

historical data, expert knowledge and previous 

simulation (Stahmann & Rieger, 2022). The two DEs 

meet the infrastructural requirements of real-time 

notification and evaluation on anomalies. The latency 

requirement is also met, so that the user can assess 

adherence to real-time requirements. Additionally, the 

DEs meet the requirement of analysis supervision due 

to the availability of analysis results and progress. DE 

1.3 presents a table that allows detailed insights into 

the anomalies. In addition to ID and time, the table 

contains information on criticality and the reason for 

the anomaly. Furthermore, there is a column for 

specifying the automated solution attempts using rule-

based or case-based knowledge. Another column 

details whether the automated solution attempt was 

successful, i.e. whether the anomaly could be 

eliminated before or after occurrence. Users and 

experts have the opportunity to comment each line. DE 

1.3 compensates the visual information from DEs 1.1 

and 1.2. Consequently, the requirements of real-time 

notification, evaluation and analysis supervision are 

addressed. DE 1.3 also considers the requirement to 

take into account historical data. In addition, DE 1.4 is 

a button to download all current and historical data as 

CSV file. 

 
Figure 3: Page "Overview" incl. demarcation of 

DEs. 

 
Figure 4: Page "Sensors" incl. demarcation of 

DEs. 

 
Figure 5: Page "Rules/Cases" incl. demarcation of 

DEs. 

Figure 4 shows the page “Sensors”, which is used 

to display anomalies and information for algorithmic 

real-time data analysis per sensor. The page consists 

of six DEs. DEs 2.1 and 2.2 are dropdown menus that 

allow the selection of sensors and anomaly detection 
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algorithms as different algorithms output different 

anomaly detection results (Wolpert & Macready, 

1997). They address the requirement to differentiate 

data per sensor and analysis results per supervised or 

unsupervised anomaly detection algorithm. DE 2.3 

extends the implementation of the latter requirement 

and shows metrics for evaluating the algorithms per 

sensor. DEs 2.4 and 2.6 represent content per sensor 

and algorithm. For each sensor and algorithm 

combination, the DEs address the same requirements 

as DEs 1.1 and 1.3. DE 2.5 shows according to the 

selection how many anomalies were tolerated, 

prevented and solved. Thus, DE 2.5 meets analysis 

evaluation and supervision requirements. 

Figure 5 shows the “Rules/Cases” page, which 

consists of three tables. The first two tables (DEs 3.1 

and 3.3) detail applicable rules and cases and thus 

represent the knowledge base. The tables show 

prioritization, involved CPSs and a description of the 

rules and cases. The table also indicates the success 

rate of rules and cases as well as currently valid 

thresholds for sensor measurements. Furthermore, the 

source from which the rule or case was originally 

proposed is mentioned. Finally, there is also the 

possibility for experts to comment lines via buttons 

(DEs 3.2 and 3.4). The DEs therefore meet the 

requirements of domain knowledge integration and 

threshold clarification. DE 3.5 gives an overview of 

the currently valid configuration, i.e. CPS and sensors 

are put into relation to address the corresponding 

infrastructural requirement. Additionally, all elements 

of all three pages have explanations of the elements in 

mouseover tooltips. 

6. Demonstration and evaluation 

The implemented dashboard was demonstrated 

and evaluated using a survey. Participants were 

acquired in university courses that relate to decision 

support systems, information systems and business 

administration. Students were essentially chosen as 

participants because, as digital natives, they are 

considered tech-savvy (Hernandez-de-Menendez et 

al., 2020). As potential future users of KBES 

dashboards in production, students are a key 

stakeholder group. Additionally, practitioners from the 

fields of production were invited via e-mail. In the first 

iteration, there were 55 participants, among these were 

50 students, eight of them had relevant practical 

experience in production. From the five practitioners, 

four worked in production and one in software 

development and evaluation. In the second iteration, 

there were 43 student participants, among these six 

had relevant practical experience.  

The survey was created and revised in an iterative 

process with overall three researchers. It consisted of 

four pages, where each page covered questions for one 

dashboard page. Additionally, there was one page of 

socio-demographic questions. The survey contained 

32 quantitative statements. The statements orient 

towards the dimensions perceived usefulness and 

perceived ease of use from the technology acceptance 

model (Venkatesh & Bala, 2008). The former refers to 

the support of job relevant activities by the artifact, i.e. 

anomaly detection, elimination and prevention. 

Perceived ease of use refers to the effort required to 

use the artifact for job relevant activities. The 

participants had to assess these statements using five-

point Likert scales, ranging from 1 “strongly disagree” 

to 5 “strongly agree”. An odd number of choices was 

given on the Likert scale to make a neutral stance 

possible (option 3: “neutral”) and did not enforce a 

tendency. Additionally, eleven open questions aimed 

at yielding qualitative feedback on the dashboard’s 

pages. The evaluation of most dashboard elements 

based on the assessment of multiple related statements 

or open questions to ensure reliability (Bell et al., 

2019).  

KBES element DE 
Eval. II 

Mean Var. 

Dialog system 

1.3 3.94 2.48 

2.1 4.39 0.52 

2.2 4.07 0.78 

2.6 4.04 0.61 

3.2 3.86 0.55 

3.4 3.98 0.93 

Explanation 

system 

1.1 3.56 0.66 

1.2 3.89 0.85 

2.4 4.11 0.88 

2.5 3.99 0.79 

Explanation 

system, knowledge 

acquisition system 

2.3 3.88 0.68 

Explanation 

system, rule-based 

knowledge 

3.1, 

3.5 
4.01 0.73 

Case-based 

knowledge 
3.3 4.19 0.96 

Overall 3.99 0.88 

Table 2: Evaluations for statements on 
functionality. 

The survey was conducted in German and later 

translated to English as all participants were native 

Germans. It was pretested with four students and two 

practitioners from production. 

Table 2 shows the aggregated evaluations used to 

assess functionality of the DEs of the implemented 

dashboard from the second evaluation iteration. All 
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statements are presented in relation to the dashboard 

elements and the requirements from literature. An 

exemplary statement for the evaluation of 

functionality is “The table is useful for real-time 

monitoring of anomalies.”. All in all, the statements on 

functionality were given an average rating of 3.99 ("I 

agree"). The average variance is 0.88. Dialog system 

and explanation system cover the most DEs. Both 

were rated on average with 4.05 and 3.89 respectively. 

The combination of explanation system and rule-based 

knowledge in DEs 3.1 and 3.5 and the case-based 

knowledge in DE 3.3 received an average rating of 

4.01 and 4.19. Yet, in qualitative questions, the 

participants argued for a clearer visualization on the 

“Rules/Cases” page. Participants specifically asked 

for a presentation of thresholds that should be more 

easily recognizable. 

Table 3 covers the second iteration’s evaluation 

results concerning scope of information. An 

exemplary statement regarding the facilitation to use 

the dashboard is “The mouseover text for table and 

graphs is helpful for using the dashboard.”. Statements 

relating to the scope of information refer to the two 

interface components and the dialog and explanation 

systems. User interface and expert interface are not 

combined in the results for scope and presentation of 

information. Overall, an average of 3.99 ("I agree") is 

achieved. The variance is 1. In line with suggestions 

from qualitative answers, the third page "Rules/Cases" 

receives the lowest average rating. Regarding scope of 

information, qualitative results for this page refer to 

the fact that the information given is difficult to put 

into the context of the information on the other two 

pages.  

KBES element DE 
Eval. II 

Mean Var. 

User interface, 

expert interface 

1 4.46 0.52 

2 4.5 0.44 

3 3.14 2.12 

Explanation system 3.5 3.86 0.93 

Overall 3.99 1 

Table 3: Evaluations for statements on scope of 

information. 

Table 4 shows the second iteration’s evaluation of 

the presentation of information, an exemplary 

statement is “Overall, I find the Overview page 

visually appealing.“. For the element presentation of 

information, an average result of 3.84 ("I agree") was 

achieved with a variance of 0.79. The best result was 

achieved by the page "Sensors", the worst again by the 

page "Rules/Cases". 

 

KBES element DE 
Eval. II 

Mean Var. 

User interface, 

expert interface 

1 3.89 0.81 

2 3.96 0.6 

3 3.66 0.96 

Overall 3.84 0.79 

Table 4: Evaluations for statements on 
presentation of information. 

Table 5 shows the qualitative feedback 

aggregated for both evaluation iterations. Qualitative 

feedback was aggregated by one researcher in a 

process of two independent iterations. process 

Suggestions from the first iteration could essentially 

be implemented, so that they no longer occurred in the 

second iteration. One exception was the request for 

clearer visual demarcation of objects. Furthermore, the 

participants wished for possibilities to individualize 

the dashboard according to their needs. On the one 

hand, the user should be able to resize the objects of 

the pages as required. On the other hand, the columns 

of the tables should be selectable by the user for better 

clarity. These suggestions are starting points for future 

research. 
Cycle 

Qualitative Feedback 
I II 

X  Clearer assignment of sensors and machines. 

X X Clearer visual demarcation of objects. 

X  Clearer visualization of thresholds. 

X  Different arrangement of objects. 

X  Different color design of tables. 

X  Export option for historicized data. 

 X Option to resize objects individually 

 X Option to select table columns individually 

 X Point out origin of rules and cases 

Table 5: Qualitative feedback from both evaluation 
iterations. 

7. Limitations and Future Research 

Although the design of the prototypical dashboard 

was derived multicriterially, its implementation is still 

subject to the interpretation of the researcher. Yet, the 

iterative implementation with two researchers, pretests 

as well as the positive evaluations from students and 

practitioners support the successful development of 

the prototypical dashboard. 

The participants from the two evaluation cycles 

are mainly students, but also practitioners took part. 

All participants are from German-speaking countries. 

Future research can expand the evaluation by using a 

heterogeneous group of participants. This 
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heterogeneity may reduce e.g. cultural bias and 

position bias in the evaluation. 

While the data from the study was validated with 

experts, the data is still fictional. Future approaches 

may use real data to represent a real scenario. 

However, also in the case of real data, dashboards need 

to be customized to any specific use case to ensure 

specific decision support. For this purpose, the 

dashboard represents an evaluated prototype as basis 

for individualization.  

For future improvement, the design science 

approach can be continued with a third cycle. Potential 

for improvement is provided by both the quantitative 

and qualitative points from the evaluation.  

8. Conclusion 

The digitization of production enables machines 

to make autonomous decisions during production 

processes. A key component in promoting machine 

autonomy is the automated detection of anomalies in 

real-time. However, automated decision-making 

processes, especially in real-time, are difficult to 

understand for humans as key stakeholders of 

production. This research contributes to the handling 

of anomalies in production with a prototypical design 

and implementation of a real-time dashboard. The goal 

was achieved using design science research 

methodology. The dashboard elements were derived 

using multiple criteria. Requirements from literature 

and components of knowledge-based systems were 

used for the structural and content-related design of 

the dashboard. In addition, the criteria scope of 

information, functionality and presentation of 

information, which were identified in the literature, 

were also considered for dashboard design. The visual 

design was supported by adherence to DIN 9241. 

Each element of the dashboard was successfully 

evaluated in two cycles with a total of 98 participants 

from academia and practice. Furthermore, as a result 

of the evaluations, starting points for the further 

development and individualization of the prototypical 

dashboard were identified. 

This research contributes to both practice and 

academia. The contribution goes into the field of the 

design of the interface between humans and 

autonomous production. Practitioners can use the 

prototypical implementation as a basis for 

customization to their own specific requirements. The 

results of the evaluation provide starting points for 

own improvements. The prototypical dashboard also 

serves as a contribution to the research field of 

interface design for KBES. The research contribution 

can be expanded by continuing the design science 

cycles and by further evaluations. 
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