
YUMA – An AI Planning Agent for composing IT Services from

Infrastructure-as-Code Specifications

Florian Baer

Accenture

Philipps University of Marburg

baer.florian@gmail.com

Michael Leyer

Philipps University of Marburg

Queensland University of Technology

michael.leyer@wiwi.uni-marburg.de

Abstract
Infrastructure-as-code enables cloud architects to

automate IT service delivery by specifying IT services

through machine-readable definition files. To allow for

a reusability of the infrastructure-as-code

specifications, cloud architects specify IT services as

compositions of sub-processes. As the AI planning

agents for automated IT service composition proposed

by prior research fall short in the infrastructure-as-code

context, we design a search-based problem-solving

agent named YUMA according to a design science

research process to fill this research gap. YUMA holds

a search tree reflecting the state space and transition

model. It includes an algorithm for building the search

tree and two algorithms for determining the minimum

composition plan. The underlying IT service

composition problem is explicated for the

infrastructure-as-code context and formulated as a

search problem. The results of the demonstration and

evaluation show that YUMA fulfills the requirements

necessary to solve this problem and digitizes an

important task of cloud architects.

Keywords: IT service, Service composition,

Infrastructure-as-code, Artificial intelligence.

1. Introduction

Cloud infrastructures are becoming more and more

popular for enterprises, but the diversity of IT services

that can be delivered to cloud environments requires

automated yet individual compositions. In this regard,

infrastructure-as-code (IaC) is promoted referring to a

paradigm that argues for the specification of IT services,

which must be delivered to manage IT infrastructures,

through machine-readable definition files (i.e., code)

(Sandobalín et al., 2020). By specifying IT services

according to IaC, the delivery of IT services to cloud

environments can be automated (Chiari et al., 2022).

Hence, cloud architects use IaC tools, such as Ansible,

Puppet, and Chef, to compose IT services from

imperative IaC specifications (Kumara et al., 2021).

The current state has however some inefficiencies

that hinder enterprises to fully exploit the potential of IT

service composition. Cloud architects must know which

sub-processes have to be executed in which order to

compose an IT service. However, when specifying sub-

processes using IaC tools, cloud architects must specify

and update the dependencies between them manually. In

enterprises, the sub-processes are stored in repositories

that are updated regularly, i.e., new sub-process

specifications are added and existing ones are altered.

To compose an IT service, cloud architects must first

scan the repositories to discover relevant sub-processes

and examine their IaC specifications to determine valid

execution orders. This makes the manual composition

of IT services from IaC specifications a time-consuming

activity for cloud architects. It ranges from a few

minutes to several hours depending on the number of

sub-processes maintained in the enterprise, number of

repositories the sub-processes are stored in, complexity

of the IaC specifications, and expertise of the cloud

architect in reading and writing IaC specifications. The

higher this effort is expected by cloud architects, the

higher is the risk of cloud architects re-specifying

already specified sub-processes. However, this would

be a violation of IaC best practices (Kumara et al.,

2021), as it would result in redundant work, which can

sum up to several days or even a few weeks of redundant

effort in an enterprise (reported by anecdotal evidence

since no empirical studies are available).

A commonly accepted way to overcome these

inefficiencies is the automation of the IT service

composition (Rao & Su, 2005). Prior research has

proposed different artificial intelligence (AI) planning

agents for automated IT service composition (Jula et al.,

2014). However, in the IaC context, these agents have

two major shortcomings. First, the agents solve IT

service composition problems formulated specifically

for the domains of automated web and cloud service

composition. Hence, the problem formulations consider

the specific characteristics of these domains (Jula et al.,

2014; Zou et al., 2014), but not those specific to the IaC

domain. Second, because of these problem definitions,

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 1053
URI: https://hdl.handle.net/10125/102759
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

these agents are designed in a way so that they interact

with known environments, but not unknown

environments as required in the IaC context (Hatzi et al.,

2015; Kuzu & Cicekli, 2012). To close this research

gap, we define the following research question: What is

the design of an AI planning agent supporting cloud

architects at automatically composing IT services based

on IaC specifications?

We address this research question by designing a

search-based problem-solving agent named (y)et

another (u)nique (m)achine (a)gent (YUMA). The

design knowledge that is contributed to the 𝜆 knowledge

base must be categorized as invention and exaptation

(Gregor & Hevner, 2013). We are first in formulating

the IT service composition problem for the IaC context.

We also draw from algorithm design and analysis

techniques and apply them to the design of YUMA. The

requirements agents must fulfill to solve the IT service

composition problem in the IaC context and the

algorithms implemented by YUMA in pseudocode are

described. Next to these level 2 artifacts, we contribute

to research an instantiation of YUMA.

The article is organized as follows: In Section 2 we

provide an overview on the theoretical background

including the conceptual aspects with regard to IT

services and AI planning agents as well as related work.

Our research method is then described in Section 3.

Following the research method, Section 4 provides the

problem explication while the requirements are

presented in Section 5. We then describe the design of

YUMA in Section 6 with a demonstration in Section 7.

The evaluation is presented in Section 8. We discuss our

approach and conclude the article in Section 9.

2. Theoretical Background

2.1. IT Services

This study is rooted in service operations research

(Sampson, 2012; Sampson & Froehle, 2006).

Accordingly, we define a service as a “[…] type of

process, and ‘services’ are multiple service processes”

(Sampson, 2012, p. 183). A service represents a

sequence of actions, whose execution allows the

production of a desired outcome (Yalley & Sekhon,

2014). In line with this definition, a service can be

formalized as a directed graph (Becker et al., 2009).

We can describe a service by a vector of attributes

𝑆 = (𝐴, 𝑃, 𝐹) (Baer & Leyer, 2016). The set of actions,

which are included in the sub-processes of the service,

is denoted as 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, with 𝑛 ∈ ℕ. The sub-

processes, which are included in the service, are defined

by the set 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}, with 𝑚 ∈ ℕ. Each 𝑝𝑖,

∀𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚, is a subset of 𝐴: 𝑝𝑖 ⊂ 𝐴, with 𝑝1 ∪

𝑝2 ∪ … ∪ 𝑝𝑚 = 𝐴. The control-flow 𝑓𝑖 ⊆ 𝑝𝑖 × 𝑝𝑖 , 𝑓𝑖 ∈
𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} of a sub-process 𝑝𝑖 describes the

execution order of actions included in the sub-process

𝑝𝑖 through constructors permitting flow of execution

control (e.g., sequence, condition, and parallelism) (van

der Aalst et al., 2003). Each element (𝑎𝑗 , 𝑎𝑘) ∈ 𝑓𝑖 is a

constructor 𝜔𝑎𝑗 ,𝑎𝑘
, ∀𝑗, 𝑘 ∈ ℕ,∀𝑎𝑗 , 𝑎𝑘 ∈ 𝑝𝑖 , which

represents a propositional formula. If 𝜔𝑎𝑗,𝑎𝑘
= 1, the

execution of action 𝑎𝑘 follows the execution of 𝑎𝑗.

Exemplary IT services composed by cloud

architects are platform services, such as Kubernetes. For

instance, a single node Kubernetes cluster can be

specified as a composition of a set of sub-processes

setting up the required virtual machines (VMs), control

plane and node components, container runtime (e.g.,

Docker), and a container network fabric (e.g., Flannel).

2.2. AI Planning Agents

We draw from the notion that AI is the study of

rational agents (Russell & Norvig, 2016; Sutton &

Barto, 2018). An agent is an entity, which perceives its

environment and acts upon that environment. It will be

rational, if it performs only those actions, which are

expected to support it achieving its goals, based on its

perceptions of the environment and its knowledge about

the environment. Therefore, an important part of AI is

planning, i.e., “[…] devising a plan of action to achieve

one’s goals […]” (Russell & Norvig, 2016, p. 366).

There are different types of AI planning agents, such as

search-based problem-solving agents and hybrid

propositional logical agents, depending on the

formulation of the problem to be solved.

An agent can be characterized along three

dimensions according to the model-inference-learning

paradigm (Liang & Sadigh, 2019):

• Model: A formal description of the environment,

with which the agent interacts. It can be an accurate

or approximate representation of (parts of) the

environment. It reflects the agent’s knowledge about

the environment.

• Learning: Adjustment (i.e., update of the parameters

of the model) of an incomplete model over time

based on feedback perceived from the environment.

• Inference: Solving a problem based on one or more

algorithms with respect to the model.

The environment, with which an agent interacts,

can be characterized along a set of continuums (Russell

& Norvig, 2016). Exemplary continuums are described

in Table 1.

Page 1054

Table 1. Properties of agent environments.

Fully observable Unobservable

The agent perceives the

complete state of the

environment at any time.

The agent does not perceive the

environment at all.

Deterministic Stochastic

The successor state is only

determined by the current state

and performed action.

An action performed at a

specific state can result in

different successor states with

different probabilities.

Episodic Continuing

An interaction between the

agent and environment ends in

a terminal state, which is

followed by a reset of the
environment.

The interaction between the

agent and environment goes on

infinitely.

Static Dynamic

The environment cannot

change during the interactions

with the agent.

The environment can change

during the interactions with the

agent.

Known Unknown

The agent has a complete and

accurate model of the

environment.

The agent must first explore the

environment and build a model

of it.

2.3. Related Work

AI planning has been well studied in the fields of

automated web and cloud service composition (Jula et

al., 2014; Rao & Su, 2005). There exist several literature

reviews about these topics and well known and

commonly integrated AI planners (Masdari et al., 2021;

Razian et al., 2022). Table 2 summarizes the AI planners

integrated by most of the related AI planning agents.

Table 2. Summary of related AI planning agents.

Agent Characteristics

SHOP2 Model:

Hierarchical task network (HTN)

Learning:

Knowledge base containing operators and methods
Inference:

SHOP2 search algorithm

OWLS-

XPlan

Model:

Connectivity graph and relaxed planning graph

Learning:

BuildRelaxedPlanningGraph

Inference:

Enforced hill-climbing

(Kuzu &

Cicekli,
2012)

(Simplan

ner)

Model:

Search tree and Relaxed planning graph
Learning:

Graphplan extension and action selection process

Inference:

(Real-time) Depth-first search with backjumping

(Zou et
al., 2014)

(Metric-

FF and

SATPlan

)

Model:

Relaxed planning graph and conjunctive normal

form (CNF) sentences

Learning:

Relaxed Graphplan and Knowledge base (i.e., a set

of CNF sentences)
Inference:

Enforced hill-climbing and SATPlan

The related AI planning agents are designed in a

way so that they require a repository of composite IT

services described by ontologies (e.g., web ontology

language for web services (OWL-S) or web services

description language (WSDL)) or tree-based structures

(Eshuis & Mehandjiev, n.d.; Hatzi et al., 2015). The

composition requests are performed against these

repositories. Due to this design, the agents require users

to know about and specify the dependencies (i.e.,

preconditions) of the relevant processes as part of the

composite service specifications. This works for the

agents, because they divide users into service providers

and requesters (Kuzu & Cicekli, 2012; Zou et al., 2014).

Only the service providers contribute specifications of

composite IT services to the repositories. Therefore, the

agents interact with known environments and do not

have to deal with model learning. However, in the IaC

context, there cannot be made such a differentiation of

users. Each cloud architect represents a sub-process

contributor while also being a service requester. Cloud

architects understand the dependencies between those

sub-processes specified by themselves. But, they do not

know about the dependencies of sub-processes specified

by others before exploring and analyzing the related IaC

specifications. That is why, in the IaC context, AI

planning agents must interact with unknown

environments. With YUMA, we close this research gap.

3. Research Method

To address our research question, we design a

search-based problem-solving agent named YUMA. As

the agent represents an artifact, we apply a design

science research (DSR) approach to its design. We

follow the method framework for DSR (Johannesson &

Perjons, 2014), as it is well accepted in the information

systems engineering field (Jouck & Depaire, 2018). Our

research process is shown in Figure 1.

Figure 1. The adopted research process.

To explicate the problem, we define the IT service

composition problem for the IaC context. For this

research, we formulate the IT service composition

problem as a search problem.

As input from the relevance cycle, we define a set

of requirements, which must be fulfilled by any agent

tackling the formulated IT service composition

Proof Strategies,

Problem Characteristics

Explicate

Problem

Design and

Develop

Artefact
Demon-

strate

Artefact

Define

Require-

ments

Evaluate

Artefact

Research Strategies and Methods, Creative Methods

Formal Problem Definition Informed Argument Brainstorming,

Peer Reviews

Related Work,

Algorithms and Datastructures

Expert Knowledge

and Experience

Algorithm Design and

Analysis Techniques

Simulation

Prototyping

Formal Proof

Explicated

Problem

Require-

ments

Artefact
Demon-

strated

Artefact

Initial

Problem

Evaluated

Artefact

Knowledge Base

Page 1055

problem. These requirements are defined based on

informed arguments drawing from the authors’

expertise and experience in the application domain.

YUMA implements three algorithms to fulfill the

defined requirements. To come up with these

algorithms, we applied algorithm design and analysis

techniques drawn from the rigor cycle. A backtracking

algorithm is performed to build the required search tree

based on a given set of sub-processes. In the first

iteration of the design and rigor cycle, YUMA applied a

dynamic programming (DP) algorithm to determine the

required sub-processes and their execution order for

composing a specific IT service. However, because of

its quadratic worst-case running time, in the second

design and rigor iteration, the DP algorithm is replaced

by a Uniform Cost Search (UCS). A formatting

algorithm is applied to derive the execution order of the

sub-processes from the UCS results.

YUMA is implemented in the programming

language Go to demonstrate its feasibility.1 As a first

output to the relevance cycle, the YUMA instantiation

is simulated on two example cases inspired by real-

world cases experienced by one of the authors during his

work as cloud architect. First, the installation of

WordPress and phpBB on an Amazon Web Services

(AWS) Elastic Compute Cloud (EC2) instance. Second,

the setup of a single node Kubernetes cluster on an AWS

EC2 instance. For both example cases, distinct sets of

Ansible roles were developed by the authors.2

According to the framework for evaluation in DSR

(FEDS), our evaluation represents an ex post evaluation

in an artificial setting (Venable et al., 2012). We

evaluate YUMA by proving the correctness of the

algorithms applied by it. The correctness of the

backtracking algorithm is proven by induction. The

correctness of the formatting algorithm is proven by a

loop invariant.

4. Problem Explication

4.1. IT Service Composition Problem

The IT service composition problem for the IaC

context can be defined as the following. Given a set of

sub-processes 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}, the set of actions

𝐴 = {𝑎1 , 𝑎2 , … , 𝑎𝑛} included in the sub-processes, the

corresponding control-flows 𝑓𝑖 ⊆ 𝑝𝑖 × 𝑝𝑖 , 𝑓𝑖 ∈ 𝐹 =
{𝑓1, 𝑓2, … , 𝑓𝑚}, ∀𝑚, 𝑛, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚, and a specific

𝑝∗ ∈ 𝑃, determine the minimal execution order (MEO)

of 𝑆∗ = (𝐴∗ , 𝑃∗ , 𝐹∗).

1 The source code of YUMA can be found on GitHub:

https://github.com/Floble/go-

utils/blob/ucs/algorithms/artificialintelligence/search/yuma.go.

To determine the MEO of 𝑆∗, a total order → on 𝑃

must be determined first. The characteristics of this

total order are described in Table 3.

Let 𝒫𝑝∗(𝑃) ⊆ 𝒫(𝑃) be the set of all subsets of 𝑃,

in which 𝑝∗ is the last executable sub-process, i.e. 𝑝𝑖 →
𝑝∗, with 𝑝∗ ∈ P′, ∀𝑝𝑖 ∈ 𝑃′, ∀𝑃′ ∈ 𝒫𝑝∗(𝑃).

Furthermore, we define 𝑃∗ = arg min
𝑃′∈ 𝒫𝑝∗(𝑃)

|𝑃′|, with ties

broken arbitrarily, as the minimal execution set (MES)

including only those sub-processes, which must be

executed before 𝑝∗ can be executed. Let 𝐴∗ ⊆ 𝐴 be the

set of actions, which are included in the sub-processes

included in 𝑃∗ and let 𝐹∗ ⊆ 𝐹 be the set of control-flows

of the sub-processes included in 𝑃∗. Then, → is a total

order on 𝑃∗, the MES, and therefore it is the MEO (of

𝑆∗) to be determined.

Table 3. Characteristics of a total order on 𝑷.

Characteristic Description

𝑝𝑖 → 𝑝𝑖, ∀𝑝𝑖 ∈ 𝑃 → is reflexive, i.e., once 𝑝𝑖 has ben
executed, it can be executed again in the

future

If 𝑝𝑘 → 𝑝𝑗 and 𝑝𝑗 →

𝑝𝑖, then 𝑝𝑘 → 𝑝𝑖,

∀𝑝𝑖 , 𝑝𝑗, 𝑝𝑘 ∈ 𝑃

→ is transitive, i.e., if 𝑝𝑗 can only be

executed after 𝑝𝑘 has been executed and

𝑝𝑖 can only be executed after 𝑝𝑗 has

been executed, then 𝑝𝑖 also can only be

executed after 𝑝𝑘 has been executed

If 𝑝𝑖 → 𝑝𝑗 and 𝑝𝑗 →

𝑝𝑖, then 𝑝𝑖 = 𝑝𝑗,

∀𝑝𝑖 , 𝑝𝑗 ∈ 𝑃

→ is antisymmetric, i.e., if 𝑝𝑖 can only

be executed after 𝑝𝑗 has been executed

and 𝑝𝑗 can only be executed after 𝑝𝑖 has

been executed, then both 𝑝𝑖 and 𝑝𝑗 are

the same sub-process

Either 𝑝𝑖 → 𝑝𝑗 or

𝑝𝑗 → 𝑝𝑖, ∀𝑝𝑖 , 𝑝𝑗 ∈ 𝑃

→ is a total order on 𝑃, i.e., any pair of

sub-processes is comparable regarding
the execution order

While 𝑝∗ represents the composition request, the

MEO represents the minimum composition plan and

therefore the optimal composition solution to the

defined IT service composition problem (Zou et al.,

2010, 2014).

4.2. Search Problem

For this research, we formulate the IT service

composition problem as a search problem. Therefore,

we define 𝑐𝑖 ∈ 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, ∀𝑝𝑖 ∈ 𝑃, as 𝑐𝑖 =
2𝑖 − 1 being the binary representation of 𝑝𝑖. Let 𝑐∗ ≙
𝑝∗ and 𝐶∗ ≙ 𝑃∗ be the binary representation of 𝑝∗ and

the MES, respectively.

𝐶 enables the representation of all possible states

𝑠𝑟 ∈ 𝒮𝑆 = {𝑠0 , 𝑠1, . . . , 𝑠2𝑚−1}, ∀𝑟 ∈ ℕ, 0 ≤ 𝑟 ≤ 2𝑚 − 1

2 The Ansible roles can be found on GitHub:

https://github.com/Floble/ansible-utils.

Page 1056

resulting from the execution of any sub-process 𝑝𝑖 ∈ 𝑃.

Because each sub-process 𝑝𝑖 ∈ 𝑃 has a binary

representation 𝑐𝑖 ∈ 𝐶, each 𝑠𝑟 ∈ 𝒮𝑆 is also represented

as a binary value. The execution of sub-processes 𝑝𝑖 ∈
𝑃 at specific states 𝑠𝑟 ∈ 𝒮𝑆 can be described in the form

of state-sub-process pairs (𝑠𝑟 , 𝑐𝑖), ∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶.

Therefore, the successor states resulting from (𝑠𝑟 , 𝑐𝑖)-

pairs can be determined by applying logical (Boolean)

operators to each (𝑠𝑟 , 𝑐𝑖)-pair. We define the functions

𝑜𝑟: 𝒮𝑆 , 𝐶 → ℕ+, 𝑎𝑛𝑑: 𝒮𝑆 , 𝐶 → ℕ+, and 𝑥𝑎𝑛𝑑: 𝒮𝑆 , 𝐶 →
ℕ+ to describe the application of the logical operators

OR, AND, and XAND on specific (𝑠𝑟 , 𝑐𝑖)-pairs,

respectively. In general, following the MEO of 𝑆∗ will

result in a sequence of (𝑠𝑟 , 𝑐𝑖)-pairs, which represents

the shortest path from the initial state (i.e., 𝑠𝑠𝑡𝑎𝑟𝑡) of the

search tree to a target state, i.e., a state at which 𝑝∗ has

been executed. This shortest path is denoted as 𝑃𝑎𝑡ℎ∗ =

((𝑠𝑟 , 𝑐𝑖)𝑑)𝑑=0
𝑑∗

, with 𝑑∗ ∈ ℕ+, 0 ≤ 𝑑∗ ≤ 𝑚.

The IT service composition problem is formulated

as a search problem as described in Table 4 (Russell &

Norvig, 2016).

Table 4. Formulation of the search problem.

Component Description

States:

𝑠𝑟 ∈ 𝒮𝑆 = {𝑠0, 𝑠1, . . . , 𝑠2𝑚−1}, ∀𝑟 ∈ ℕ,

0 ≤ 𝑟 ≤ 2𝑚 − 1

A state 𝑠𝑟 reflects the

state of the

environment, on

which all or a subset

of the sub-processes

𝑝𝑖 ∈ 𝑃 have been

executed. Each 𝑠𝑟 ∈
𝒮𝑆 conveys all

required information

to make decisions

about which sub-

process 𝑝𝑖 ∈ 𝑃 to

execute next without

the need to consider
how the current state

was reached.

Initial state:

𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝒮𝑆 and 𝑠𝑠𝑡𝑎𝑟𝑡 = 0
End state:

𝑠𝑒𝑛𝑑 ∈ 𝒮𝑆 and 𝑠𝑒𝑛𝑑 = 2𝑚 − 1

The initial state is

always 0, i.e., none of

the sub-processes 𝑝𝑖 ∈
𝑃 has been executed

from the start. The

ending state is always

2𝑚 − 1, i.e., all sub-

processes 𝑝𝑖 ∈ 𝑃 has
been executed in the

end.

Actions:

𝒜(𝑠𝑟) = ⋃ 𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑟 , 𝑐𝑖)𝑐𝑖 ∈ 𝐶 ,

∀𝑠𝑟 ∈ 𝒮𝑆

𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑟, 𝑐𝑖)

= {
{}, 𝑎𝑛𝑑(𝑠𝑟 , 𝑐𝑖) ≠ 0

{𝑐𝑖}, otherwise

All the sub-processes

𝑝𝑖 ∈ 𝑃, which have

not been executed yet,

can be executed at

state 𝑠𝑟 ∈ 𝒮𝑆 .

Transition model:

Let ℳ be a 2𝑚 − 1 × 𝑚 matrix, which

represents the model (i.e., the search

tree) of YUMA, ℳ𝑟,𝑖 represents the

Whether or not 𝑝𝑖 can

be executed at 𝑠𝑟 must

be explored when

interacting with the

successor state reached when executing

𝑐𝑖 at 𝑠𝑟 .

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) = ℳ𝑟,𝑖 =

{
𝑜𝑟(𝑠𝑟, 𝑐𝑖), if 𝑝𝑖 can be executed at 𝑠𝑟

𝑠𝑟, otherwise
,

∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶

environment, i.e., 𝑝𝑖 is

performed at 𝑠𝑟 and

the result of this

execution must be
observed. This result

is represented in the

search tree ℳ that

must be built. Hence,
any successor state

can be determined by

a lookup in ℳ.

Goal test:

𝑖𝑠𝐸𝑛𝑑(𝑠𝑟) = {
𝑡𝑟𝑢𝑒, if 𝑠𝑟 = 𝑠𝑒𝑛𝑑

𝑓𝑎𝑙𝑠𝑒, otherwise

𝑖𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑠𝑟 , 𝑐∗)

= {
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑎𝑛𝑑(𝑠𝑟 , 𝑐∗) ≠ 0

𝑓𝑎𝑙𝑠𝑒, otherwise

If all sub-processes

𝑝𝑖 ∈ 𝑃 have been

executed, the end state

will be 2𝑚 − 1

representing a state, at

which all sub-

processes 𝑝𝑖 ∈ 𝑃 have

been executed. A state

𝑠𝑟 will be a target

state, if it holds that 𝑝∗

already has been

executed.

Path cost:

𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖) = 1, ∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶

The cost of executing

a sub-process 𝑝𝑖 ∈ 𝑃

at state 𝑠𝑟 ∈ 𝒮𝑆 is
always 1.

5. Requirements

Cloud architects interact with cloud environments

(e.g., AWS and Microsoft Azure). In the light of the

circumstances that cloud architects must deal with when

composing IT services based on IaC specifications (see

section 1), cloud environments must be characterized as

described in Table 5.

Table 5. Cloud environments in the IaC context.

ID Property Explanation

P1 Fully
observable

IaC tools, such as Ansible, can gather facts
about the current state of the cloud

environment (e.g., an AWS EC2 instance).

P2 Deter-

ministic

The execution of an IaC-based sub-process

is either successful (i.e., the result is a new

state) or unsuccessful (i.e., no state change).

P3 Dynamic IaC-based sub-processes are stored in

repositories that are regularly updated (i.e.,

sub-processes are added and altered).

P4 Unknown In large enterprises, many cloud architects

specify IaC-based sub-processes. A single
cloud architect does not know all the

dependencies between the sub-processes

but must first explore or analyze them.

To solve the search problem formulated in section

4.2., a search-based problem-solving agent must interact

with such cloud environments and therefore must fulfill

the requirements, which are listed in Table 6, along its

three dimensions.

Page 1057

Table 6. Requirements for an AI planning agent.

ID Dimension Description

R1 Model Because of P1 and P2, the agent must hold a

search tree reflecting the state space and the

transition model (i.e., the dependencies
between the sub-processes).

R2 Learning Because of P3 and P4, the agent must

regularly explore the transition model by

executing the IaC-based sub-processes in the

cloud environment and build the search tree
accordingly. The interactions with the cloud

environment can be episodic and continuing.

R3 Inference Because of R1, the agent must identify the

shortest path from the initial state to a target

state in the search tree in acceptable time.

6. Design

According to the model-inference-learning

paradigm, the design of YUMA can be characterized

within the following dimensions:

• Model: Search tree (see the description of the

transition model in Table 4).

• Learning: BuildSearchTree (see section 6.1.)

• Inference: DetermineExecutionOrder (see section

6.2.); FormatExecutionOrder (see section 6.3.)

YUMA holds a search tree that is built by episodic

interactions with the cloud environment. With the

episodic interactions, YUMA performs the algorithm

BuildSearchTree. The MEO is determined as the

shortest path from the initial state to a target state in the

built search tree. Towards that end, YUMA performs the

algorithms DetermineExecutionOrder (i.e., an UCS)

and FormatExecutionOrder.

6.1. Build Search Tree Algorithm

The algorithm BuildSearchTree is described by

Table 7. We define 𝜎 ∈ ℕ\{0}
+ as the error acceptance

rate. It is included in BuildSearchTree, because

sometimes although the execution of a sub-process 𝑝𝑖 at

a state 𝑠𝑟 should be successful, the execution still fails

due to some temporary technical issues (e.g., a short

outage of the internet connection). To overcome this

issue, we recommend defining 𝜎 > 1. The parameter

𝑑 ∈ ℕ+ represents the current depth in the search tree.

BuildSearchTree is initiated with 𝑑 = 0, i.e., the depth

of the initial state.

To simplify the time complexity analysis, we define

the lines 5, 6, 7, 8, 10, 11, 13, and 17 to take constant

time. If 𝑃𝑎𝑡ℎ is implemented as a stack, lines 19 and 21

will represent the push and pop operations, respectively.

Both operations take 𝛰(1) time.

Table 7. The backtracking algorithm.

BuildSearchTree(𝝈, 𝒔𝒓, 𝒅, 𝑷𝒂𝒕𝒉)

Parameters:

 𝜎 ∈ ℕ\{0}
+ , 𝑠𝑟 ∈ 𝒮𝑆 , 𝑑 ∈ ℕ+, 𝑃𝑎𝑡ℎ: ℕ≤𝑚

+ → 𝒮𝑆 × 𝐶

Initialization:

 ℳ𝑟,𝑖 = 0, ∀𝑟, 𝑖 ∈ ℕ, 1 ≤ 𝑟 ≤ 2𝑚 − 1, 1 ≤ 𝑖 ≤ 𝑚

 𝑃𝑎𝑡ℎ = ()

Algorithm:

1 if 𝑖𝑠𝐸𝑛𝑑(𝑠𝑟)

2 return ℳ
3 for each 𝑐𝑖 ∈ 𝒜(𝑠𝑟)

4 for 𝑙 = 1 to 𝜎

5 create new VM in the cloud environment
6 execute each (𝑠𝑟, 𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ on the VM

7 if ∃(𝑠𝑟, 𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑠𝑟, 𝑐𝑖) 𝑓𝑎𝑖𝑙𝑒𝑑)
8 delete the VM in the cloud environment

9 continue

10 execute 𝑐𝑖 on the VM
11 if execution of 𝑐𝑖 is successful

12 ℳ𝑟,𝑖 = 𝑜𝑟(𝑠𝑟, 𝑐𝑖)

13 delete the VM in the cloud environment

14 break

15 else

16 ℳ𝑟,𝑖 = 𝑠𝑟

17 delete the VM in the cloud environment

18 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) is equal to 𝑜𝑟(𝑠𝑟, 𝑐𝑖)
19 𝑃𝑎𝑡ℎ = 𝑃𝑎𝑡ℎ ⨄

𝑎𝑠𝑐
(𝑠𝑟, 𝑐𝑖)

20 BuildSearchTree(𝜎, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖), 𝑑 + 1,

𝑃𝑎𝑡ℎ)

21 𝑃𝑎𝑡ℎ = 𝑃𝑎𝑡ℎ\(𝑠𝑟 , 𝑐𝑖)𝑑

22 return ℳ

The base case, when 𝑚 = 0, takes constant time:

𝑇(0) = Θ(1). The recursive case, when 𝑚 > 0, takes

the following time: 𝑇(𝑚) = 𝑚𝑇(𝑚 − 1) + Θ(𝑚).

Thus, the asymptotic tight bound of the worst-case

running time of BuildSearchTree is Θ(𝑚!).

6.2. Determine Execution Order Algorithm

The algorithm DetermineExecutionOrder is

described in Table 8. DetermineExecutionOrder

determines the target state, between which and 𝑠𝑠𝑡𝑎𝑟𝑡

there is the minimal number of (𝑠𝑟 , 𝑐𝑖)-pairs (i.e., the

shortest path 𝑃𝑎𝑡ℎ∗, with 𝑐𝑜𝑠𝑡∗ = 𝑑∗). To keep track of

the order, in which the states must be produced, the hash

table 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 is used. 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 stores for

each 𝑠𝑟 , including the target state, the state from which

𝑠𝑟 must be produced along the shortest path 𝑃𝑎𝑡ℎ∗.

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 is a min-priority queue. Thus, lines 1 and 13

represent the insert operation. In line 3, the state 𝑠𝑟 with

the minimum accumulated path cost from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑟 is

extracted from 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟. In line 12, 𝑠𝑟
′ is removed from

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟. If 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 is implemented as a linked list,

line 4 inserts 𝑠𝑟 at the end of the list.

Page 1058

Table 8.The UCS for determining the MEO.

DetermineExecutionOrder(𝒄∗)

Parameters:

 𝑐∗ ∈ 𝐶

Initialization:

 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟: ℕ≤2𝑚−1
+ → 𝒮𝑆 , 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = ()

 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑: ℕ≤2𝑚−1
+ → 𝒮𝑆 , 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = ()

 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
= 𝑠𝑠𝑡𝑎𝑟𝑡, ∀𝑠𝑟 ∈ 𝒮𝑆

Algorithm:

1 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ⨄
𝑝𝑟𝑖𝑜

𝑠𝑠𝑡𝑎𝑟𝑡

2 while |𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟| > 0

3 𝑠𝑟 = 𝑚𝑖𝑛
𝑝𝑟𝑖𝑜

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟

4 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ⨄
𝑎𝑠𝑐

𝑠𝑟

5 if 𝑖𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑠𝑟, 𝑐∗)

6 return FormatExecutionOrder(𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑,

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)

7 for each 𝑐𝑖 ∈ 𝒜(𝑠𝑟)

8 if ∃𝑠𝑟
′ ∈

𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) 𝐢𝐬 𝐞𝐪𝐮𝐚𝐥 𝐭𝐨 𝑠𝑟
′)

9 continue

10 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟,𝑐𝑖) = 𝑠𝑟

11 if ∃𝑠𝑟
′ ∈

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) 𝐢𝐬 𝐞𝐪𝐮𝐚𝐥 𝐭𝐨 𝑠𝑟
′)

12 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟\𝑠𝑟
′

13 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ⨄
𝑝𝑟𝑖𝑜

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟, 𝑐𝑖)

14 return FormatExecutionOrder(𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑,

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟)

The asymptotic upper bound of the worst-case

running time of UCS is 𝑂 (𝑏
1+⌊

𝑐𝑜𝑠𝑡∗

𝜀
⌋
), with 𝑏 =

|𝒜(𝑠𝑟)|, 𝑐𝑜𝑠𝑡∗ = ∑ 𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖)(𝑠𝑟,𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ∗(ℕ≤𝑑∗
+) , and

𝜀 = min
(𝑠𝑟,𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ∗(ℕ≤𝑑∗

+)
𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖). We define 𝑏 = 𝑚,

because |𝒜(𝑠𝑟)| ≤ 𝑚, ∀𝑠𝑟 ∈ 𝒮𝑆. Also, we define 𝜀 = 1,

because 𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖) = 1, ∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶. Thus, the

asymptotic upper bound of the worst-case running time

of DetermineExecutionOrder is 𝑂(𝑚1+𝑑∗
).

6.3. Format Execution Order Algorithm

The algorithm FormatExecutionOrder is described

in Table 9. The analysis of the time complexity of

FormatExecutionOrder is straightforward. The

determining factor is the for-loop in line 4. It iterates

over the total number of states that are explored by

DetermineExecutionOrder. In the worst-case, the upper

bound of this total number of states is equal to the space

complexity of DetermineExecutionOrder: 𝑂(𝑚1+𝑑∗
).

3 The logical architecture can be found on GitHub:

https://github.com/Floble/go-

utils/tree/ucs/algorithms/artificialintelligence/search.

Table 9. The formatting of the UCS results.

FormatExecutionOrder(𝑬𝒙𝒑𝒍𝒐𝒓𝒆𝒅, 𝑷𝒓𝒆𝒅𝒆𝒄𝒆𝒔𝒔𝒐𝒓)

Parameters:

 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑: ℕ≤2𝑚−1
+ → 𝒮𝑆

Initialization:

 𝑃𝑎𝑡ℎ∗: ℕ≤𝑑∗
+ → 𝒮𝑆 × 𝐶, 𝑃𝑎𝑡ℎ∗ = ()

Algorithm:

1 𝑠𝑟 = 𝑠|𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑| ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑(ℕ≤2𝑚−1
+)

2 𝑃𝑎𝑡ℎ∗ =

𝑃𝑎𝑡ℎ∗ ⨄
𝑑𝑒𝑠𝑐

(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

))

3 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

4 for 𝑙 = |𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑| − 1 to 1

5 𝑠𝑟 = 𝑠𝑙 ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑(ℕ≤2𝑚−1
+)

6 if 𝑠𝑟 is equal to 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 & 𝑠𝑟 is not 𝑠𝑠𝑡𝑎𝑟𝑡

7 𝑃𝑎𝑡ℎ∗ =

𝑃𝑎𝑡ℎ∗ ⨄
𝑑𝑒𝑠𝑐

(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

))

8 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

9 𝑐𝑜𝑠𝑡∗ = 𝑑∗ = |𝑃𝑎𝑡ℎ∗|
10 return 𝑐𝑜𝑠𝑡∗, 𝑃𝑎𝑡ℎ∗

7. Demonstration

To demonstrate the fulfillment of the defined

requirements for two exemplary cases, we implemented

YUMA in the programming language Go.3

In the demonstration, YUMA is represented by a

binary file that can be executed by cloud architects on

their local machines (e.g., by using a shell). The cloud

environment, which the implementation interacts with,

is AWS. It uses the AWS software development kit

(SDK) to dynamically create and delete EC2 instances.

The creation and deletion of the EC2 instances is done

as part of the BuildSearchTree algorithm. On these EC2

instances, the Ansible roles representing the sub-

processes are executed. The Ansible roles must be

stored in a specific directory on the same local machine.

Hence, cloud architects must clone the (Git) repository

containing the required Ansible roles to this directory

first. The composition request 𝑐∗ ≙ 𝑝∗ must be specified

when executing the binary file as a parameter for the

function implementing the DetermineExecutionOrder

algorithm. The implementation specifies each MEO in

the yet another markup language (YAML) and stores

them in corresponding Ansible playbooks.

For the example case 2, we implemented a set of

Ansible roles that can be composed to a platform

service, i.e., a single node Kubernetes cluster. These

Ansible roles are described in Table 10. As described in

section 2.1, the example case 2 represents an IT service

commonly composed by cloud architects in practice.

Page 1059

Table 10. The Ansible roles in the demonstration.

Ansible role 𝒑𝒊

(𝒄𝒊)

Description Dependency

Example case 2: Setup of a single node Kubernetes cluster

configVM

(00001)

Disables local

firewall and adds

iptables rule.

-

deployPod

(00010)

Deploys Flannel to

the cluster.

runKubernetes,

installDocker

installDocker

(00100)

Installs the Docker

package.

-

installKubernetes
(01000)

Installs the
Kubeadm, Kubelet,

and Kubectl

packages.

-

runKubernetes

(10000)

Initializes Kubeadm

and creates the
cluster config.

installKubernetes

Two kinds of Kubernetes clusters can be composed

from the Ansible roles. A blank cluster and a cluster

with Flannel as the container network fabric. To setup

former, the runKubernetes role depending on the

installKubernetes role must be executed. To setup a

Kubernetes cluster with Flannel, the deployPod role

must be executed. This role deploys a daemonset to an

initialized Kubernetes cluster and therefore depends on

the runKubernetes and installDocker roles. When

executing the binary file, the YUMA implementation

learns the dependencies described in Table 10

autonomously as a result of performing the

BuildSearchTree algorithm. To determine the MEOs for

runKubernetes and deployPod, the binary

representations (see Table 10) of these roles must be

passed as parameters to the DetermineExecutionOrder

algorithm implementation. The MEO for 𝑝∗ =

runKubernetes is as following: installKubernetes →

runKubernetes. The MEO for 𝑝∗ = deployPod is as

following: installDocker → installKubernetes →

runKubernetes → deployPod. These MEOs are stored as

Ansible playbooks on the local machine.

To simulate the dynamic nature of the cloud

environment, for each simulation of the exemplary

cases, we added or removed Ansible roles from the

directory randomly and executed the BuildSearchTree

and DetermineExecutionOrder algorithms again.

Although we executed the algorithms manually, another

option would be the implementation of a cronjob

executing the binary file in specific time intervals.

8. Evaluation

YUMA has to be evaluated against the

requirements defined in Table 6. Proving the fulfillment

of R1 is straightforward. As described in section 6,

YUMA holds a search tree reflecting the state space and

transition model. Regarding the fulfillment of R2 and

R3, a more sophisticated proof is required. We

demonstrate in section 7 that YUMA fulfills R2 and R3

for two simulated example cases. However, to proof that

YUMA fulfills these two requirements for the general

case, we must proof the correctness of the algorithms in

the learning and inference dimensions of YUMA.

DetermineExecutionOrder is an implementation of

UCS. The correctness of UCS has been proven by prior

research (Liang & Sadigh, 2019).

8.1. Build Search Tree Evaluation

Preconditions. All sub-processes 𝑝𝑖 ∈ 𝑃 can be

executed (i.e., ∄𝑝𝑖 ∈ 𝑃(𝑝𝑗 → 𝑝𝑖 ∧ 𝑝𝑗 ∉ 𝑃)).

Postconditions. The algorithm terminates and

returns the search tree ℳ describing all possible paths

from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 .

Proof. By induction on |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| = |𝑃|, we

prove that the preconditions and execution of the

algorithm implies the postconditions.

Base Case. Let 𝑚 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| = 0. Then, |𝒮𝑆| =
1 and 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝒮𝑆. In this case, 𝑠𝑒𝑛𝑑 = 𝑠𝑠𝑡𝑎𝑟𝑡 , because

𝑠𝑠𝑡𝑎𝑟𝑡 = 20 − 1 = 0. Therefore, the algorithm

terminates in line 2 and returns the initialized ℳ

describing only the path from 𝑠𝑠𝑡𝑎𝑟𝑡 to itself (i.e., self-

loop). This satisfies the postconditions, because only

one path can be described for 𝑚 = 0 (i.e., 0! = 1).

Inductive Hypothesis. Let 𝑚 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| and

assume that the postconditions hold after executing the

algorithm for all 𝑝𝑖 ∈ 𝑃, which satisfy the preconditions.

In the worst-case, the algorithm returns ℳ describing

𝑚! paths from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 .

Inductive Step. Let 𝑚 + 1 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)|. Then,

|𝒮𝑆| = 2 ∗ 2𝑚 and there are (𝑚 + 1)𝑚! paths to be

described by ℳ in the worst-case. The for-each-loop in

line 3 causes the exploration of 𝑚 + 1 states at 𝑑 = 1.

For each 𝑠𝑟 of these states, the following holds:

|𝒜(𝑠𝑟)| = 𝑚. Each such 𝑠𝑟 can be considered as 𝑠𝑠𝑡𝑎𝑟𝑡

of a sub-problem with 𝑚 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| at 𝑑 = 1.

Hence, by the inductive hypothesis, from each such 𝑠𝑟

there are 𝑚! paths to 𝑠𝑒𝑛𝑑 in the worst-case. Because

there are 𝑚 + 1 such 𝑠𝑟 at 𝑑 = 1, in the worst-case, the

total number of possible paths from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 is

(𝑚 + 1)𝑚!. Therefore, the postconditions are satisfied

and, by induction, the algorithm is correct.

8.2. Format Execution Order Evaluation

Proof. A loop invariant is proven to be satisfied at

the beginning of every iteration of the for-loop in line 4.

Loop Invariant. At the start of each iteration 𝑙 of

the for-loop, 𝑃𝑎𝑡ℎ∗ describes the shortest path from

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state determined by

DetermineExecutionOrder.

Page 1060

Initialization. The loop invariant holds prior to the

first iteration of the for-loop. Here, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 is the

preceding state of the target state as determined by

DetermineExecutionOrder. Thus, there are no (𝑠𝑟 , 𝑐𝑖)-

pairs between 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 and the target state. In

addition, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
) determines 𝑐𝑖 ≙ 𝑝𝑖,

which must be executed at 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to result at the

target state. Hence, 𝑃𝑎𝑡ℎ∗ describes the shortest path

from 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state.

Maintenance. To see that each iteration maintains

the loop invariant, suppose that 𝑃𝑎𝑡ℎ∗ describes the

shortest path from 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state

before the 𝑙th iteration. Then, the if-statement in line 6

ensures 𝑠𝑟 = 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟. Afterwards, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟

is defined to be the preceding state of 𝑠𝑟 , as determined

by DetermineExecutionOrder. Because there are no

(𝑠𝑟 , 𝑐𝑖)-pairs between 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 and 𝑠𝑟 ,

(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

)) describes

the shortest path from 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to 𝑠𝑟 . By our

assumption, the adding of this path to 𝑃𝑎𝑡ℎ∗ in line 7

results in 𝑃𝑎𝑡ℎ∗ describing the shortest path from

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state. Thus, incrementing 𝑙
reestablishes the loop invariant for the next iteration.

Termination. At termination, 𝑙 = 0 and

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑠𝑠𝑡𝑎𝑟𝑡. By the loop invariant, 𝑃𝑎𝑡ℎ∗

describes the shortest path from 𝑠𝑠𝑡𝑎𝑟𝑡 to the target state.

This is the result that we wanted (i.e., a representation

of the MEO of 𝑆∗).

9. Discussion and Conclusion

This study contributes to the field of IT service

composition in two major ways. First, we are first in

formulating the IT service composition problem for the

IaC context. While prior studies have formulated the

problem for the domains of automated web and cloud

service composition (Zou et al., 2010, 2014), our

problem definition is inspired by the circumstances that

cloud architects must deal with when composing IT

services from IaC specifications. We concretize the

problem formulation in the form of a search problem.

This is appropriate for the IaC context, because our

problem formulation focuses on sub-processes and

defines them as the primitive actions. Hence, the action

space is defined by the set of sub-processes stored in a

repository. Subsequently, a state can be represented as

the subset of successfully executed sub-processes and

the state space and transition model can be reflected by

a search tree. This makes it unnecessary to represent the

sub-processes and states in PDDL, perform a HTN

planning, and build a planning graph.

Second, the related AI planning agents determine

the service dependencies based on agent-specific and

PDDL domains and problems, and semantic link

networks. Therefore, the service dependencies must be

specified by the service providers as part of the OWL-S

and WSDL specifications provided as input to the

agents. As the service dependencies must be known by

the service providers, the agents interact with known

environments. In contrast, YUMA determines the sub-

process dependencies by interacting with a cloud

environment in an explorative way. Based on this

exploration, it builds its model. Thus, YUMA

implements a model learning algorithm enabling it to

interact with unknown environments. This makes

YUMA more autonomous compared to related agents.

YUMA itself is also an implication for practice. It

automates the composition of IT services from IaC

specifications without requiring cloud architects to have

knowledge about the dependencies between sub-

processes stored in a repository. Therefore, it frees up

cloud architects from the burden to explore and analyze

the IaC specifications of relevant sub-processes and

thereby saves them a lot of time. YUMA is expected to

reduce the time cloud architects must spend on the

composition of an IT service from minutes or even hours

to several seconds. Based on our argumentation in

section 1, we expect YUMA to create most utility for

enterprises in which many sub-processes (e.g.,

hundreds) are maintained across multiple repositories

by not only cloud architects that are experts in IaC.

Examples for such enterprises are IT consulting firms.

As with any research, our work comes with

limitations that must be addressed by future research.

First, the BuildSearchTree algorithm that is performed

by YUMA to determine the sub-process dependencies

must be seen as a bottleneck to the performance. The

search tree must be rebuilt regularly with a time

complexity of Θ(𝑚!). Although BuildSearchTree is a

pure exploratory algorithm and guarantees the discovery

of the full state space and transition model, future

research can adapt or replace BuildSearchTree to

incorporate machine learning. Machine learning

algorithms such as structured perceptron, LIVE, EXPO,

and OBSERVER (Jiménez et al., 2012; Liang & Sadigh,

2019). In addition, for subsequent research, we have

started with reformulating the IT service composition

problem as a reinforcement learning problem and have

experimented with n-step temporal difference learning

algorithms to solve it.

Second, YUMA has been demonstrated and

evaluated from a formal and conceptual perspective, but

from the user perceptions in terms of utility. Future

research should evaluate the perspective of cloud

architects on the reasoning of the intention to use

YUMA. For this, the established models of IS success

(e.g., UTAUT2) should be used to conduct a

quantitative survey study among cloud architects.

Page 1061

To conclude, YUMA is a first step towards AI-

augmented cloud architecture delivery. By automating

the IT service composition in the IaC context, YUMA

digitizes an important task of cloud architects. As the

IaC paradigm has become widely adopted in practice,

we encourage other scholars to contribute to this field.

References

Baer, F., & Leyer, M. (2016). Towards assessing the value of

digital self-service options from a provider

perspective. AMCIS 2016 Proceedings.

Becker, J., Beverungen, D. F., & Knackstedt, R. (2009). The

challenge of conceptual modeling for product–

service systems: Status-quo and perspectives for

reference models and modeling languages.

Information Systems and E-Business Management,

8(1), 33–66.

Chiari, M., De Pascalis, M., & Pradella, M. (2022). Static

Analysis of Infrastructure as Code: A Survey. 2022

IEEE 19th International Conference on Software

Architecture Companion (ICSA-C), 218–225.

Eshuis, R., & Mehandjiev, N. (n.d.). Flexible Construction of

Executable Service Compositions from Reusable

Semantic Knowledge. ACM Transactions on the

Web, 10(1), 27.

Gregor, S., & Hevner, A. (2013). Positioning and Presenting

Design Science Research for Maximum Impact.

Management Information Systems Quarterly,

37(2), 337–355.

Hatzi, O., Nikolaidou, M., Vrakas, D., Bassiliades, N.,

Anagnostopoulos, D., & Vlahavas, I. (2015).

Semantically Aware Web Service Composition

Through AI Planning. International Journal on

Artificial Intelligence Tools, 24(01), 1450015.

Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F., &

Borrajo, D. (2012). A review of machine learning

for automated planning. The Knowledge

Engineering Review, 27(4), 433–467.

Johannesson, P., & Perjons, E. (2014). An Introduction to

Design Science (2014th ed.). Springer.

Jouck, T., & Depaire, B. (2018). Generating Artificial Data

for Empirical Analysis of Control-flow Discovery

Algorithms: A Process Tree and Log Generator.

Business & Information Systems Engineering.

Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud

computing service composition: A systematic

literature review. Expert Systems with Applications,

41(8), 3809–3824.

Kumara, I., Garriga, M., Romeu, A. U., Di Nucci, D.,

Palomba, F., Tamburri, D. A., & van den Heuvel,

W.-J. (2021). The do’s and don’ts of infrastructure

code: A systematic gray literature review.

Information and Software Technology, 137,

106593.

Kuzu, M., & Cicekli, N. K. (2012). Dynamic planning

approach to automated web service composition.

Applied Intelligence, 36(1), 1–28.

Liang, P., & Sadigh, D. (2019, Autumn - 2020). Artificial

Intelligence: Principles and Techniques [Lecture].

Course CS221, Stanford University (Online).

https://stanford-cs221.github.io/autumn2019/

Masdari, M., Nozad Bonab, M., & Ozdemir, S. (2021). QoS-

driven metaheuristic service composition schemes:

A comprehensive overview. Artificial Intelligence

Review, 54(5), 3749–3816.

Rao, J., & Su, X. (2005). A Survey of Automated Web

Service Composition Methods. In J. Cardoso & A.

Sheth (Eds.), Semantic Web Services and Web

Process Composition (Vol. 3387, pp. 43–54).

Springer Berlin Heidelberg.

Razian, M., Fathian, M., Bahsoon, R., Toosi, A. N., &

Buyya, R. (2022). Service composition in dynamic

environments: A systematic review and future

directions. Journal of Systems and Software, 188,

111290.

Russell, S., & Norvig, P. (2016). Artificial Intelligence: A

Modern Approach. Pearson.

Sampson, S. E. (2012). Visualizing Service Operations.

Journal of Service Research, 15(2), 182–198.

Sampson, S. E., & Froehle, C. M. (2006). Foundations and

Implications of a Proposed Unified Services

Theory. Production and Operations Management,

15(2), 329–343.

Sandobalín, J., Insfran, E., & Abrahão, S. (2020). On the

Effectiveness of Tools to Support Infrastructure as

Code: Model-Driven Versus Code-Centric. IEEE

Access, 8, 17734–17761.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement

Learning, second edition: An Introduction (2nd

edition). Bradford Books.

van der Aalst, W. M. P., Hofstede, A. H. M. ter,

Kiepuszewski, B., & Barros, A. P. (2003).

Workflow Patterns. Distributed and Parallel

Databases, 14(1), 5–51.

Venable, J., Pries-Heje, J., & Baskerville, R. (2012). A

Comprehensive Framework for Evaluation in

Design Science Research. Design Science Research

in Information Systems. Advances in Theory and

Practice, 423–438.

Yalley, A. A., & Sekhon, H. S. (2014). Service production

process: Implications for service productivity.

International Journal of Productivity and

Performance Management, 63(8), 1012–1030.

Zou, G., Chen, Y., Xiang, Y., Huang, R., & Xu, Y. (2010).

AI Planning and Combinatorial Optimization for

Web Service Composition in Cloud Computing.

Proceedings of the International Conference on

Cloud Computing & Virtualization 2010 CCV

2010, 28–35.

Zou, G., Gan, Y., Chen, Y., & Zhang, B. (2014). Dynamic

composition of Web services using efficient

planners in large-scale service repository.

Knowledge-Based Systems, 62, 98–112.

Page 1062

	1. Introduction
	2. Theoretical Background
	2.1. IT Services
	2.2. AI Planning Agents
	2.3. Related Work

	3. Research Method
	4. Problem Explication
	4.1. IT Service Composition Problem
	4.2. Search Problem

	5. Requirements
	6. Design
	6.1. Build Search Tree Algorithm
	6.2. Determine Execution Order Algorithm
	6.3. Format Execution Order Algorithm

	7. Demonstration
	6.3. Format Execution Order Algorithm

	7. Demonstration
	6.3. Format Execution Order Algorithm

	7. Demonstration
	6.3. Format Execution Order Algorithm

	7. Demonstration

