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Abstract 
Infrastructure-as-code enables cloud architects to 

automate IT service delivery by specifying IT services 

through machine-readable definition files. To allow for 

a reusability of the infrastructure-as-code 

specifications, cloud architects specify IT services as 

compositions of sub-processes. As the AI planning 

agents for automated IT service composition proposed 

by prior research fall short in the infrastructure-as-code 

context, we design a search-based problem-solving 

agent named YUMA according to a design science 

research process to fill this research gap. YUMA holds 

a search tree reflecting the state space and transition 

model. It includes an algorithm for building the search 

tree and two algorithms for determining the minimum 

composition plan. The underlying IT service 

composition problem is explicated for the 

infrastructure-as-code context and formulated as a 

search problem. The results of the demonstration and 

evaluation show that YUMA fulfills the requirements 

necessary to solve this problem and digitizes an 

important task of cloud architects. 

 

Keywords: IT service, Service composition, 

Infrastructure-as-code, Artificial intelligence. 

1. Introduction  

Cloud infrastructures are becoming more and more 

popular for enterprises, but the diversity of IT services 

that can be delivered to cloud environments requires 

automated yet individual compositions. In this regard, 

infrastructure-as-code (IaC) is promoted referring to a 

paradigm that argues for the specification of IT services, 

which must be delivered to manage IT infrastructures, 

through machine-readable definition files (i.e., code) 

(Sandobalín et al., 2020). By specifying IT services 

according to IaC, the delivery of IT services to cloud 

environments can be automated (Chiari et al., 2022). 

Hence, cloud architects use IaC tools, such as Ansible, 

Puppet, and Chef, to compose IT services from 

imperative IaC specifications (Kumara et al., 2021). 

The current state has however some inefficiencies 

that hinder enterprises to fully exploit the potential of IT 

service composition. Cloud architects must know which 

sub-processes have to be executed in which order to 

compose an IT service. However, when specifying sub-

processes using IaC tools, cloud architects must specify 

and update the dependencies between them manually. In 

enterprises, the sub-processes are stored in repositories 

that are updated regularly, i.e., new sub-process 

specifications are added and existing ones are altered. 

To compose an IT service, cloud architects must first 

scan the repositories to discover relevant sub-processes 

and examine their IaC specifications to determine valid 

execution orders. This makes the manual composition 

of IT services from IaC specifications a time-consuming 

activity for cloud architects. It ranges from a few 

minutes to several hours depending on the number of 

sub-processes maintained in the enterprise, number of 

repositories the sub-processes are stored in, complexity 

of the IaC specifications, and expertise of the cloud 

architect in reading and writing IaC specifications. The 

higher this effort is expected by cloud architects, the 

higher is the risk of cloud architects re-specifying 

already specified sub-processes. However, this would 

be a violation of IaC best practices (Kumara et al., 

2021), as it would result in redundant work, which can 

sum up to several days or even a few weeks of redundant 

effort in an enterprise (reported by anecdotal evidence 

since no empirical studies are available). 

A commonly accepted way to overcome these 

inefficiencies is the automation of the IT service 

composition (Rao & Su, 2005). Prior research has 

proposed different artificial intelligence (AI) planning 

agents for automated IT service composition (Jula et al., 

2014). However, in the IaC context, these agents have 

two major shortcomings. First, the agents solve IT 

service composition problems formulated specifically 

for the domains of automated web and cloud service 

composition. Hence, the problem formulations consider 

the specific characteristics of these domains (Jula et al., 

2014; Zou et al., 2014), but not those specific to the IaC 

domain. Second, because of these problem definitions, 
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these agents are designed in a way so that they interact 

with known environments, but not unknown 

environments as required in the IaC context (Hatzi et al., 

2015; Kuzu & Cicekli, 2012). To close this research 

gap, we define the following research question: What is 

the design of an AI planning agent supporting cloud 

architects at automatically composing IT services based 

on IaC specifications? 

We address this research question by designing a 

search-based problem-solving agent named (y)et 

another (u)nique (m)achine (a)gent (YUMA). The 

design knowledge that is contributed to the 𝜆 knowledge 

base must be categorized as invention and exaptation 

(Gregor & Hevner, 2013). We are first in formulating 

the IT service composition problem for the IaC context. 

We also draw from algorithm design and analysis 

techniques and apply them to the design of YUMA. The 

requirements agents must fulfill to solve the IT service 

composition problem in the IaC context and the 

algorithms implemented by YUMA in pseudocode are 

described. Next to these level 2 artifacts, we contribute 

to research an instantiation of YUMA. 

The article is organized as follows: In Section 2 we 

provide an overview on the theoretical background 

including the conceptual aspects with regard to IT 

services and AI planning agents as well as related work. 

Our research method is then described in Section 3. 

Following the research method, Section 4 provides the 

problem explication while the requirements are 

presented in Section 5. We then describe the design of 

YUMA in Section 6 with a demonstration in Section 7. 

The evaluation is presented in Section 8. We discuss our 

approach and conclude the article in Section 9. 

2. Theoretical Background 

2.1. IT Services 

This study is rooted in service operations research 

(Sampson, 2012; Sampson & Froehle, 2006). 

Accordingly, we define a service as a “[…] type of 

process, and ‘services’ are multiple service processes” 

(Sampson, 2012, p. 183). A service represents a 

sequence of actions, whose execution allows the 

production of a desired outcome (Yalley & Sekhon, 

2014). In line with this definition, a service can be 

formalized as a directed graph (Becker et al., 2009). 

We can describe a service by a vector of attributes 

𝑆 = (𝐴, 𝑃, 𝐹) (Baer & Leyer, 2016). The set of actions, 

which are included in the sub-processes of the service, 

is denoted as 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, with 𝑛 ∈ ℕ. The sub-

processes, which are included in the service, are defined 

by the set 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}, with 𝑚 ∈ ℕ. Each 𝑝𝑖, 

∀𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚, is a subset of 𝐴: 𝑝𝑖 ⊂ 𝐴, with 𝑝1 ∪

𝑝2 ∪ … ∪ 𝑝𝑚 = 𝐴. The control-flow 𝑓𝑖 ⊆ 𝑝𝑖 × 𝑝𝑖 , 𝑓𝑖 ∈
𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} of a sub-process 𝑝𝑖 describes the 

execution order of actions included in the sub-process 

𝑝𝑖 through constructors permitting flow of execution 

control (e.g., sequence, condition, and parallelism) (van 

der Aalst et al., 2003). Each element (𝑎𝑗 , 𝑎𝑘) ∈ 𝑓𝑖 is a 

constructor 𝜔𝑎𝑗 ,𝑎𝑘
, ∀𝑗, 𝑘 ∈ ℕ,∀𝑎𝑗 , 𝑎𝑘 ∈ 𝑝𝑖 , which 

represents a propositional formula. If 𝜔𝑎𝑗,𝑎𝑘
= 1, the 

execution of action 𝑎𝑘  follows the execution of 𝑎𝑗. 

Exemplary IT services composed by cloud 

architects are platform services, such as Kubernetes. For 

instance, a single node Kubernetes cluster can be 

specified as a composition of a set of sub-processes 

setting up the required virtual machines (VMs), control 

plane and node components, container runtime (e.g., 

Docker), and a container network fabric (e.g., Flannel). 

2.2. AI Planning Agents 

We draw from the notion that AI is the study of 

rational agents (Russell & Norvig, 2016; Sutton & 

Barto, 2018). An agent is an entity, which perceives its 

environment and acts upon that environment. It will be 

rational, if it performs only those actions, which are 

expected to support it achieving its goals, based on its 

perceptions of the environment and its knowledge about 

the environment. Therefore, an important part of AI is 

planning, i.e., “[…] devising a plan of action to achieve 

one’s goals […]” (Russell & Norvig, 2016, p. 366). 

There are different types of AI planning agents, such as 

search-based problem-solving agents and hybrid 

propositional logical agents, depending on the 

formulation of the problem to be solved. 

An agent can be characterized along three 

dimensions according to the model-inference-learning 

paradigm (Liang & Sadigh, 2019): 

• Model: A formal description of the environment, 

with which the agent interacts. It can be an accurate 

or approximate representation of (parts of) the 

environment. It reflects the agent’s knowledge about 

the environment. 

• Learning: Adjustment (i.e., update of the parameters 

of the model) of an incomplete model over time 

based on feedback perceived from the environment. 

• Inference: Solving a problem based on one or more 

algorithms with respect to the model. 

The environment, with which an agent interacts, 

can be characterized along a set of continuums (Russell 

& Norvig, 2016). Exemplary continuums are described 

in Table 1. 
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Table 1. Properties of agent environments. 

Fully observable Unobservable 

The agent perceives the 

complete state of the 

environment at any time. 

The agent does not perceive the 

environment at all. 

Deterministic Stochastic 

The successor state is only 

determined by the current state 

and performed action. 

An action performed at a 

specific state can result in 

different successor states with 

different probabilities. 

Episodic Continuing 

An interaction between the 

agent and environment ends in 

a terminal state, which is 

followed by a reset of the 
environment. 

The interaction between the 

agent and environment goes on 

infinitely. 

Static Dynamic 

The environment cannot 

change during the interactions 

with the agent. 

The environment can change 

during the interactions with the 

agent. 

Known Unknown 

The agent has a complete and 

accurate model of the 

environment. 

The agent must first explore the 

environment and build a model 

of it. 

2.3. Related Work 

AI planning has been well studied in the fields of 

automated web and cloud service composition (Jula et 

al., 2014; Rao & Su, 2005). There exist several literature 

reviews about these topics and well known and 

commonly integrated AI planners (Masdari et al., 2021; 

Razian et al., 2022). Table 2 summarizes the AI planners 

integrated by most of the related AI planning agents. 

 
Table 2. Summary of related AI planning agents. 

Agent Characteristics 

SHOP2 Model: 

Hierarchical task network (HTN) 

Learning: 

Knowledge base containing operators and methods 
Inference: 

SHOP2 search algorithm 

OWLS-

XPlan 

Model: 

Connectivity graph and relaxed planning graph 

Learning: 

BuildRelaxedPlanningGraph 

Inference: 

Enforced hill-climbing 

(Kuzu & 

Cicekli, 
2012) 

(Simplan

ner) 

Model: 

Search tree and Relaxed planning graph 
Learning: 

Graphplan extension and action selection process 

Inference: 

(Real-time) Depth-first search with backjumping 

(Zou et 
al., 2014) 

(Metric-

FF and 

SATPlan

) 

Model: 

Relaxed planning graph and conjunctive normal 

form (CNF) sentences 

Learning: 

Relaxed Graphplan and Knowledge base (i.e., a set 

of CNF sentences) 
Inference: 

Enforced hill-climbing and SATPlan 

The related AI planning agents are designed in a 

way so that they require a repository of composite IT 

services described by ontologies (e.g., web ontology 

language for web services (OWL-S) or web services 

description language (WSDL)) or tree-based structures 

(Eshuis & Mehandjiev, n.d.; Hatzi et al., 2015). The 

composition requests are performed against these 

repositories. Due to this design, the agents require users 

to know about and specify the dependencies (i.e., 

preconditions) of the relevant processes as part of the 

composite service specifications. This works for the 

agents, because they divide users into service providers 

and requesters (Kuzu & Cicekli, 2012; Zou et al., 2014). 

Only the service providers contribute specifications of 

composite IT services to the repositories. Therefore, the 

agents interact with known environments and do not 

have to deal with model learning. However, in the IaC 

context, there cannot be made such a differentiation of 

users. Each cloud architect represents a sub-process 

contributor while also being a service requester. Cloud 

architects understand the dependencies between those 

sub-processes specified by themselves. But, they do not 

know about the dependencies of sub-processes specified 

by others before exploring and analyzing the related IaC 

specifications. That is why, in the IaC context, AI 

planning agents must interact with unknown 

environments. With YUMA, we close this research gap. 

3. Research Method 

To address our research question, we design a 

search-based problem-solving agent named YUMA. As 

the agent represents an artifact, we apply a design 

science research (DSR) approach to its design. We 

follow the method framework for DSR (Johannesson & 

Perjons, 2014), as it is well accepted in the information 

systems engineering field (Jouck & Depaire, 2018). Our 

research process is shown in Figure 1. 

 

  
Figure 1. The adopted research process. 

To explicate the problem, we define the IT service 

composition problem for the IaC context. For this 

research, we formulate the IT service composition 
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problem. These requirements are defined based on 

informed arguments drawing from the authors’ 

expertise and experience in the application domain. 

YUMA implements three algorithms to fulfill the 

defined requirements. To come up with these 

algorithms, we applied algorithm design and analysis 

techniques drawn from the rigor cycle. A backtracking 

algorithm is performed to build the required search tree 

based on a given set of sub-processes. In the first 

iteration of the design and rigor cycle, YUMA applied a 

dynamic programming (DP) algorithm to determine the 

required sub-processes and their execution order for 

composing a specific IT service. However, because of 

its quadratic worst-case running time, in the second 

design and rigor iteration, the DP algorithm is replaced 

by a Uniform Cost Search (UCS). A formatting 

algorithm is applied to derive the execution order of the 

sub-processes from the UCS results. 

YUMA is implemented in the programming 

language Go to demonstrate its feasibility.1 As a first 

output to the relevance cycle, the YUMA instantiation 

is simulated on two example cases inspired by real-

world cases experienced by one of the authors during his 

work as cloud architect. First, the installation of 

WordPress and phpBB on an Amazon Web Services 

(AWS) Elastic Compute Cloud (EC2) instance. Second, 

the setup of a single node Kubernetes cluster on an AWS 

EC2 instance. For both example cases, distinct sets of 

Ansible roles were developed by the authors.2 

According to the framework for evaluation in DSR 

(FEDS), our evaluation represents an ex post evaluation 

in an artificial setting (Venable et al., 2012). We 

evaluate YUMA by proving the correctness of the 

algorithms applied by it. The correctness of the 

backtracking algorithm is proven by induction. The 

correctness of the formatting algorithm is proven by a 

loop invariant. 

4. Problem Explication 

4.1. IT Service Composition Problem 

The IT service composition problem for the IaC 

context can be defined as the following. Given a set of 

sub-processes 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}, the set of actions 

𝐴 = {𝑎1 , 𝑎2 , … , 𝑎𝑛} included in the sub-processes, the 

corresponding control-flows 𝑓𝑖 ⊆ 𝑝𝑖 × 𝑝𝑖 , 𝑓𝑖 ∈ 𝐹 =
{𝑓1, 𝑓2, … , 𝑓𝑚}, ∀𝑚, 𝑛, 𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑚, and a specific 

𝑝∗ ∈ 𝑃, determine the minimal execution order (MEO) 

of 𝑆∗ = (𝐴∗ , 𝑃∗ , 𝐹∗). 

 
1 The source code of YUMA can be found on GitHub: 

https://github.com/Floble/go-

utils/blob/ucs/algorithms/artificialintelligence/search/yuma.go. 

To determine the MEO of 𝑆∗, a total order → on 𝑃 

must be determined first. The characteristics of this 

total order are described in Table 3. 

Let 𝒫𝑝∗(𝑃) ⊆ 𝒫(𝑃) be the set of all subsets of 𝑃, 

in which 𝑝∗ is the last executable sub-process, i.e. 𝑝𝑖 →
𝑝∗, with 𝑝∗ ∈ P′, ∀𝑝𝑖 ∈ 𝑃′, ∀𝑃′ ∈ 𝒫𝑝∗(𝑃). 

Furthermore, we define 𝑃∗ = arg min
𝑃′∈ 𝒫𝑝∗(𝑃)

|𝑃′|, with ties 

broken arbitrarily, as the minimal execution set (MES) 

including only those sub-processes, which must be 

executed before 𝑝∗ can be executed. Let 𝐴∗ ⊆ 𝐴 be the 

set of actions, which are included in the sub-processes 

included in 𝑃∗ and let 𝐹∗ ⊆ 𝐹 be the set of control-flows 

of the sub-processes included in 𝑃∗. Then, → is a total 

order on 𝑃∗, the MES, and therefore it is the MEO (of 

𝑆∗) to be determined. 

 
Table 3. Characteristics of a total order on 𝑷. 

Characteristic Description 

𝑝𝑖 → 𝑝𝑖, ∀𝑝𝑖 ∈ 𝑃 → is reflexive, i.e., once 𝑝𝑖 has ben 
executed, it can be executed again in the 

future 

If 𝑝𝑘 → 𝑝𝑗 and 𝑝𝑗 →

𝑝𝑖, then 𝑝𝑘 → 𝑝𝑖, 

∀𝑝𝑖 , 𝑝𝑗, 𝑝𝑘 ∈ 𝑃 

→ is transitive, i.e., if 𝑝𝑗 can only be 

executed after 𝑝𝑘 has been executed and 

𝑝𝑖 can only be executed after 𝑝𝑗 has 

been executed, then 𝑝𝑖 also can only be 

executed after 𝑝𝑘 has been executed 

If 𝑝𝑖 → 𝑝𝑗 and 𝑝𝑗 →

𝑝𝑖, then 𝑝𝑖 = 𝑝𝑗, 

∀𝑝𝑖 , 𝑝𝑗 ∈ 𝑃 

→ is antisymmetric, i.e., if 𝑝𝑖 can only 

be executed after 𝑝𝑗 has been executed 

and 𝑝𝑗 can only be executed after 𝑝𝑖 has 

been executed, then both 𝑝𝑖 and 𝑝𝑗 are 

the same sub-process 

Either 𝑝𝑖 → 𝑝𝑗 or 

𝑝𝑗 → 𝑝𝑖, ∀𝑝𝑖 , 𝑝𝑗 ∈ 𝑃 

→ is a total order on 𝑃, i.e., any pair of 

sub-processes is comparable regarding 
the execution order 

 

While 𝑝∗ represents the composition request, the 

MEO represents the minimum composition plan and 

therefore the optimal composition solution to the 

defined IT service composition problem (Zou et al., 

2010, 2014). 

4.2. Search Problem 

For this research, we formulate the IT service 

composition problem as a search problem. Therefore, 

we define 𝑐𝑖 ∈ 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, ∀𝑝𝑖 ∈ 𝑃, as 𝑐𝑖 =
2𝑖 − 1 being the binary representation of 𝑝𝑖. Let 𝑐∗ ≙
𝑝∗ and 𝐶∗ ≙ 𝑃∗ be the binary representation of 𝑝∗ and 

the MES, respectively. 

𝐶 enables the representation of all possible states 

𝑠𝑟 ∈ 𝒮𝑆 = {𝑠0 , 𝑠1, . . . , 𝑠2𝑚−1}, ∀𝑟 ∈ ℕ, 0 ≤ 𝑟 ≤ 2𝑚 − 1 

2 The Ansible roles can be found on GitHub: 

https://github.com/Floble/ansible-utils. 
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resulting from the execution of any sub-process 𝑝𝑖 ∈ 𝑃. 

Because each sub-process 𝑝𝑖 ∈ 𝑃 has a binary 

representation 𝑐𝑖 ∈ 𝐶, each 𝑠𝑟 ∈ 𝒮𝑆 is also represented 

as a binary value. The execution of sub-processes 𝑝𝑖 ∈
𝑃 at specific states 𝑠𝑟 ∈ 𝒮𝑆 can be described in the form 

of state-sub-process pairs (𝑠𝑟 , 𝑐𝑖), ∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶. 

Therefore, the successor states resulting from (𝑠𝑟 , 𝑐𝑖)-

pairs can be determined by applying logical (Boolean) 

operators to each (𝑠𝑟 , 𝑐𝑖)-pair. We define the functions 

𝑜𝑟: 𝒮𝑆 , 𝐶 → ℕ+, 𝑎𝑛𝑑: 𝒮𝑆 , 𝐶 → ℕ+, and 𝑥𝑎𝑛𝑑: 𝒮𝑆 , 𝐶 →
ℕ+ to describe the application of the logical operators 

OR, AND, and XAND on specific (𝑠𝑟 , 𝑐𝑖)-pairs, 

respectively. In general, following the MEO of 𝑆∗ will 

result in a sequence of (𝑠𝑟 , 𝑐𝑖)-pairs, which represents 

the shortest path from the initial state (i.e., 𝑠𝑠𝑡𝑎𝑟𝑡) of the 

search tree to a target state, i.e., a state at which 𝑝∗ has 

been executed. This shortest path is denoted as 𝑃𝑎𝑡ℎ∗ =

((𝑠𝑟 , 𝑐𝑖)𝑑)𝑑=0
𝑑∗

, with 𝑑∗ ∈ ℕ+, 0 ≤ 𝑑∗ ≤ 𝑚. 

The IT service composition problem is formulated 

as a search problem as described in Table 4 (Russell & 

Norvig, 2016). 

 
Table 4. Formulation of the search problem. 

Component Description 

States: 

𝑠𝑟 ∈ 𝒮𝑆 = {𝑠0, 𝑠1, . . . , 𝑠2𝑚−1}, ∀𝑟 ∈ ℕ, 

0 ≤ 𝑟 ≤ 2𝑚 − 1 

A state 𝑠𝑟 reflects the 

state of the 

environment, on 

which all or a subset 

of the sub-processes 

𝑝𝑖 ∈ 𝑃 have been 

executed. Each 𝑠𝑟 ∈
𝒮𝑆  conveys all 

required information 

to make decisions 

about which sub-

process 𝑝𝑖 ∈ 𝑃 to 

execute next without 

the need to consider 
how the current state 

was reached. 

Initial state: 

𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝒮𝑆  and 𝑠𝑠𝑡𝑎𝑟𝑡 = 0 
End state: 

𝑠𝑒𝑛𝑑 ∈ 𝒮𝑆  and 𝑠𝑒𝑛𝑑 = 2𝑚 − 1 

The initial state is 

always 0, i.e., none of 

the sub-processes 𝑝𝑖 ∈
𝑃 has been executed 

from the start. The 

ending state is always 

2𝑚 − 1, i.e., all sub-

processes 𝑝𝑖 ∈ 𝑃 has 
been executed in the 

end. 

Actions: 

𝒜(𝑠𝑟) = ⋃ 𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑟 , 𝑐𝑖)𝑐𝑖 ∈ 𝐶 , 

∀𝑠𝑟 ∈ 𝒮𝑆  

 

𝑎𝑐𝑡𝑖𝑜𝑛(𝑠𝑟, 𝑐𝑖)

= {
{}, 𝑎𝑛𝑑(𝑠𝑟 , 𝑐𝑖) ≠ 0

{𝑐𝑖}, otherwise
 

All the sub-processes 

𝑝𝑖 ∈ 𝑃, which have 

not been executed yet, 

can be executed at 

state 𝑠𝑟 ∈ 𝒮𝑆 . 

Transition model: 

Let ℳ be a 2𝑚 − 1 × 𝑚 matrix, which 

represents the model (i.e., the search 

tree) of YUMA, ℳ𝑟,𝑖 represents the 

Whether or not 𝑝𝑖 can 

be executed at 𝑠𝑟 must 

be explored when 

interacting with the 

successor state reached when executing 

𝑐𝑖 at 𝑠𝑟 . 
 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) = ℳ𝑟,𝑖 =

{ 
𝑜𝑟(𝑠𝑟, 𝑐𝑖), if 𝑝𝑖  can be executed at 𝑠𝑟

𝑠𝑟, otherwise
, 

∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶 

environment, i.e., 𝑝𝑖 is 

performed at 𝑠𝑟 and 

the result of this 

execution must be 
observed. This result 

is represented in the 

search tree ℳ that 

must be built. Hence, 
any successor state 

can be determined by 

a lookup in ℳ. 

Goal test: 

𝑖𝑠𝐸𝑛𝑑(𝑠𝑟) = {
𝑡𝑟𝑢𝑒, if 𝑠𝑟 = 𝑠𝑒𝑛𝑑

𝑓𝑎𝑙𝑠𝑒, otherwise
 

 

𝑖𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑠𝑟 , 𝑐∗)

= {
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑎𝑛𝑑(𝑠𝑟 , 𝑐∗) ≠ 0

𝑓𝑎𝑙𝑠𝑒, otherwise
 

If all sub-processes 

𝑝𝑖 ∈ 𝑃 have been 

executed, the end state 

will be 2𝑚 − 1 

representing a state, at 

which all sub-

processes 𝑝𝑖 ∈ 𝑃 have 

been executed. A state 

𝑠𝑟 will be a target 

state, if it holds that 𝑝∗ 

already has been 

executed. 

Path cost: 

𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖) = 1, ∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶 

The cost of executing 

a sub-process 𝑝𝑖 ∈ 𝑃 

at state 𝑠𝑟 ∈ 𝒮𝑆  is 
always 1. 

5. Requirements 

Cloud architects interact with cloud environments 

(e.g., AWS and Microsoft Azure). In the light of the 

circumstances that cloud architects must deal with when 

composing IT services based on IaC specifications (see 

section 1), cloud environments must be characterized as 

described in Table 5. 

 
Table 5. Cloud environments in the IaC context. 

ID Property Explanation 

P1 Fully 
observable 

IaC tools, such as Ansible, can gather facts 
about the current state of the cloud 

environment (e.g., an AWS EC2 instance). 

P2 Deter-

ministic 

The execution of an IaC-based sub-process 

is either successful (i.e., the result is a new 

state) or unsuccessful (i.e., no state change). 

P3 Dynamic IaC-based sub-processes are stored in 

repositories that are regularly updated (i.e., 

sub-processes are added and altered). 

P4 Unknown In large enterprises, many cloud architects 

specify IaC-based sub-processes. A single 
cloud architect does not know all the 

dependencies between the sub-processes 

but must first explore or analyze them. 

 

To solve the search problem formulated in section 

4.2., a search-based problem-solving agent must interact 

with such cloud environments and therefore must fulfill 

the requirements, which are listed in Table 6, along its 

three dimensions. 
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Table 6. Requirements for an AI planning agent. 

ID Dimension Description 

R1 Model Because of P1 and P2, the agent must hold a 

search tree reflecting the state space and the 

transition model (i.e., the dependencies 
between the sub-processes). 

R2 Learning Because of P3 and P4, the agent must 

regularly explore the transition model by 

executing the IaC-based sub-processes in the 

cloud environment and build the search tree 
accordingly. The interactions with the cloud 

environment can be episodic and continuing. 

R3 Inference Because of R1, the agent must identify the 

shortest path from the initial state to a target 

state in the search tree in acceptable time. 

6. Design 

According to the model-inference-learning 

paradigm, the design of YUMA can be characterized 

within the following dimensions: 

• Model: Search tree (see the description of the 

transition model in Table 4). 

• Learning: BuildSearchTree (see section 6.1.) 

• Inference: DetermineExecutionOrder (see section 

6.2.); FormatExecutionOrder (see section 6.3.) 

YUMA holds a search tree that is built by episodic 

interactions with the cloud environment. With the 

episodic interactions, YUMA performs the algorithm 

BuildSearchTree. The MEO is determined as the 

shortest path from the initial state to a target state in the 

built search tree. Towards that end, YUMA performs the 

algorithms DetermineExecutionOrder (i.e., an UCS) 

and FormatExecutionOrder. 

6.1. Build Search Tree Algorithm 

The algorithm BuildSearchTree is described by 

Table 7. We define 𝜎 ∈ ℕ\{0}
+  as the error acceptance 

rate. It is included in BuildSearchTree, because 

sometimes although the execution of a sub-process 𝑝𝑖 at 

a state 𝑠𝑟  should be successful, the execution still fails 

due to some temporary technical issues (e.g., a short 

outage of the internet connection). To overcome this 

issue, we recommend defining 𝜎 > 1. The parameter 

𝑑 ∈ ℕ+ represents the current depth in the search tree. 

BuildSearchTree is initiated with 𝑑 = 0, i.e., the depth 

of the initial state. 

To simplify the time complexity analysis, we define 

the lines 5, 6, 7, 8, 10, 11, 13, and 17 to take constant 

time. If 𝑃𝑎𝑡ℎ is implemented as a stack, lines 19 and 21 

will represent the push and pop operations, respectively. 

Both operations take 𝛰(1) time. 

 

Table 7. The backtracking algorithm. 

BuildSearchTree(𝝈, 𝒔𝒓, 𝒅, 𝑷𝒂𝒕𝒉) 

Parameters: 

         𝜎 ∈ ℕ\{0}
+ , 𝑠𝑟 ∈ 𝒮𝑆 , 𝑑 ∈ ℕ+, 𝑃𝑎𝑡ℎ: ℕ≤𝑚

+ → 𝒮𝑆 × 𝐶 

Initialization: 

 ℳ𝑟,𝑖 = 0, ∀𝑟, 𝑖 ∈ ℕ, 1 ≤ 𝑟 ≤ 2𝑚 − 1, 1 ≤ 𝑖 ≤ 𝑚 

 𝑃𝑎𝑡ℎ = ()  

Algorithm: 

1 if 𝑖𝑠𝐸𝑛𝑑(𝑠𝑟) 

2      return ℳ 
3 for each 𝑐𝑖 ∈ 𝒜(𝑠𝑟) 

4      for 𝑙 = 1 to 𝜎 

5           create new VM in the cloud environment 
6           execute each (𝑠𝑟, 𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ on the VM 

7           if ∃(𝑠𝑟, 𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑠𝑟, 𝑐𝑖) 𝑓𝑎𝑖𝑙𝑒𝑑) 
8                delete the VM in the cloud environment 

9                continue 

10           execute 𝑐𝑖 on the VM 
11           if execution of 𝑐𝑖 is successful 

12                ℳ𝑟,𝑖 = 𝑜𝑟(𝑠𝑟, 𝑐𝑖) 

13                delete the VM in the cloud environment 

14                break 

15           else 

16                ℳ𝑟,𝑖 = 𝑠𝑟 

17                delete the VM in the cloud environment 

18      if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) is equal to 𝑜𝑟(𝑠𝑟, 𝑐𝑖) 
19           𝑃𝑎𝑡ℎ = 𝑃𝑎𝑡ℎ ⨄

𝑎𝑠𝑐
(𝑠𝑟, 𝑐𝑖) 

20           BuildSearchTree(𝜎, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖), 𝑑 + 1, 

𝑃𝑎𝑡ℎ) 

21           𝑃𝑎𝑡ℎ = 𝑃𝑎𝑡ℎ\(𝑠𝑟 , 𝑐𝑖)𝑑 

22 return ℳ 

 

The base case, when 𝑚 = 0, takes constant time: 

𝑇(0) = Θ(1). The recursive case, when 𝑚 > 0, takes 

the following time: 𝑇(𝑚) = 𝑚𝑇(𝑚 − 1) + Θ(𝑚). 

Thus, the asymptotic tight bound of the worst-case 

running time of BuildSearchTree is Θ(𝑚!). 

6.2. Determine Execution Order Algorithm 

The algorithm DetermineExecutionOrder is 

described in Table 8. DetermineExecutionOrder 

determines the target state, between which and 𝑠𝑠𝑡𝑎𝑟𝑡 

there is the minimal number of (𝑠𝑟 , 𝑐𝑖)-pairs (i.e., the 

shortest path 𝑃𝑎𝑡ℎ∗, with 𝑐𝑜𝑠𝑡∗ = 𝑑∗). To keep track of 

the order, in which the states must be produced, the hash 

table 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 is used. 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 stores for 

each 𝑠𝑟 , including the target state, the state from which 

𝑠𝑟  must be produced along the shortest path 𝑃𝑎𝑡ℎ∗. 

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 is a min-priority queue. Thus, lines 1 and 13 

represent the insert operation. In line 3, the state 𝑠𝑟  with 

the minimum accumulated path cost from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑟  is 

extracted from 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟. In line 12, 𝑠𝑟
′  is removed from 

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟. If 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 is implemented as a linked list, 

line 4 inserts 𝑠𝑟  at the end of the list. 
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Table 8.The UCS for determining the MEO. 

DetermineExecutionOrder(𝒄∗) 

Parameters: 

         𝑐∗ ∈ 𝐶  

Initialization: 

 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟: ℕ≤2𝑚−1
+ → 𝒮𝑆 , 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = ()  

 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑: ℕ≤2𝑚−1
+ → 𝒮𝑆 , 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = () 

 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
= 𝑠𝑠𝑡𝑎𝑟𝑡, ∀𝑠𝑟 ∈ 𝒮𝑆  

Algorithm: 

1 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ⨄
𝑝𝑟𝑖𝑜

𝑠𝑠𝑡𝑎𝑟𝑡  

2 while |𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟| > 0 

3      𝑠𝑟 = 𝑚𝑖𝑛
𝑝𝑟𝑖𝑜

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 

4      𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 = 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ⨄
𝑎𝑠𝑐

𝑠𝑟 

5      if 𝑖𝑠𝑇𝑎𝑟𝑔𝑒𝑡(𝑠𝑟, 𝑐∗) 

6           return FormatExecutionOrder(𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟) 

7      for each 𝑐𝑖 ∈ 𝒜(𝑠𝑟) 

8           if ∃𝑠𝑟
′ ∈

𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) 𝐢𝐬 𝐞𝐪𝐮𝐚𝐥 𝐭𝐨 𝑠𝑟
′ ) 

9                continue 

10           𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟,𝑐𝑖) = 𝑠𝑟 

11           if ∃𝑠𝑟
′ ∈

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟 , 𝑐𝑖) 𝐢𝐬 𝐞𝐪𝐮𝐚𝐥 𝐭𝐨 𝑠𝑟
′ ) 

12                𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟\𝑠𝑟
′ 

13           𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 = 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ⨄
𝑝𝑟𝑖𝑜

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠𝑟, 𝑐𝑖) 

14 return FormatExecutionOrder(𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑, 

𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟) 

 

The asymptotic upper bound of the worst-case 

running time of UCS is 𝑂 (𝑏
1+⌊

𝑐𝑜𝑠𝑡∗

𝜀
⌋
), with 𝑏 =

|𝒜(𝑠𝑟)|, 𝑐𝑜𝑠𝑡∗ = ∑ 𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖)(𝑠𝑟,𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ∗(ℕ≤𝑑∗
+ ) , and 

𝜀 = min
(𝑠𝑟,𝑐𝑖) ∈ 𝑃𝑎𝑡ℎ∗(ℕ≤𝑑∗

+ )
𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖). We define 𝑏 = 𝑚, 

because |𝒜(𝑠𝑟)| ≤ 𝑚, ∀𝑠𝑟 ∈ 𝒮𝑆. Also, we define 𝜀 = 1, 

because 𝑐𝑜𝑠𝑡(𝑠𝑟 , 𝑐𝑖) = 1, ∀𝑠𝑟 ∈ 𝒮𝑆 , 𝑐𝑖 ∈ 𝐶. Thus, the 

asymptotic upper bound of the worst-case running time 

of DetermineExecutionOrder is 𝑂(𝑚1+𝑑∗
). 

6.3. Format Execution Order Algorithm 

The algorithm FormatExecutionOrder is described 

in Table 9. The analysis of the time complexity of 

FormatExecutionOrder is straightforward. The 

determining factor is the for-loop in line 4. It iterates 

over the total number of states that are explored by 

DetermineExecutionOrder. In the worst-case, the upper 

bound of this total number of states is equal to the space 

complexity of DetermineExecutionOrder: 𝑂(𝑚1+𝑑∗
). 

 

 
3 The logical architecture can be found on GitHub: 

https://github.com/Floble/go-

utils/tree/ucs/algorithms/artificialintelligence/search. 

Table 9. The formatting of the UCS results. 

FormatExecutionOrder(𝑬𝒙𝒑𝒍𝒐𝒓𝒆𝒅, 𝑷𝒓𝒆𝒅𝒆𝒄𝒆𝒔𝒔𝒐𝒓) 

Parameters: 

         𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑: ℕ≤2𝑚−1
+ → 𝒮𝑆   

Initialization: 

 𝑃𝑎𝑡ℎ∗: ℕ≤𝑑∗
+ → 𝒮𝑆 × 𝐶, 𝑃𝑎𝑡ℎ∗ = () 

Algorithm: 

1 𝑠𝑟 = 𝑠|𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑| ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑(ℕ≤2𝑚−1
+ )  

2 𝑃𝑎𝑡ℎ∗ =

𝑃𝑎𝑡ℎ∗ ⨄
𝑑𝑒𝑠𝑐

(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

))  

3 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
  

4 for 𝑙 = |𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑| − 1 to 1 

5      𝑠𝑟 = 𝑠𝑙 ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑(ℕ≤2𝑚−1
+ ) 

6      if 𝑠𝑟 is equal to 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 & 𝑠𝑟 is not 𝑠𝑠𝑡𝑎𝑟𝑡 

7           𝑃𝑎𝑡ℎ∗ =

𝑃𝑎𝑡ℎ∗ ⨄
𝑑𝑒𝑠𝑐

(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

)) 

8           𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
 

9 𝑐𝑜𝑠𝑡∗ = 𝑑∗ = |𝑃𝑎𝑡ℎ∗|  
10 return 𝑐𝑜𝑠𝑡∗, 𝑃𝑎𝑡ℎ∗ 

7. Demonstration 

To demonstrate the fulfillment of the defined 

requirements for two exemplary cases, we implemented 

YUMA in the programming language Go.3 

In the demonstration, YUMA is represented by a 

binary file that can be executed by cloud architects on 

their local machines (e.g., by using a shell). The cloud 

environment, which the implementation interacts with, 

is AWS. It uses the AWS software development kit 

(SDK) to dynamically create and delete EC2 instances. 

The creation and deletion of the EC2 instances is done 

as part of the BuildSearchTree algorithm. On these EC2 

instances, the Ansible roles representing the sub-

processes are executed. The Ansible roles must be 

stored in a specific directory on the same local machine. 

Hence, cloud architects must clone the (Git) repository 

containing the required Ansible roles to this directory 

first. The composition request 𝑐∗ ≙ 𝑝∗ must be specified 

when executing the binary file as a parameter for the 

function implementing the DetermineExecutionOrder 

algorithm. The implementation specifies each MEO in 

the yet another markup language (YAML) and stores 

them in corresponding Ansible playbooks. 

For the example case 2, we implemented a set of 

Ansible roles that can be composed to a platform 

service, i.e., a single node Kubernetes cluster. These 

Ansible roles are described in Table 10. As described in 

section 2.1, the example case 2 represents an IT service 

commonly composed by cloud architects in practice. 
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Table 10. The Ansible roles in the demonstration. 

Ansible role 𝒑𝒊 

(𝒄𝒊) 

Description Dependency 

Example case 2: Setup of a single node Kubernetes cluster 

configVM 

(00001) 

Disables local 

firewall and adds 

iptables rule. 

- 

deployPod 

(00010) 

Deploys Flannel to 

the cluster. 

runKubernetes, 

installDocker 

installDocker 

(00100) 

Installs the Docker 

package. 

- 

installKubernetes 
(01000) 

Installs the 
Kubeadm, Kubelet, 

and Kubectl 

packages. 

- 

runKubernetes 

(10000) 

Initializes Kubeadm 

and creates the 
cluster config. 

installKubernetes 

 

Two kinds of Kubernetes clusters can be composed 

from the Ansible roles. A blank cluster and a cluster 

with Flannel as the container network fabric. To setup 

former, the runKubernetes role depending on the 

installKubernetes role must be executed. To setup a 

Kubernetes cluster with Flannel, the deployPod role 

must be executed. This role deploys a daemonset to an 

initialized Kubernetes cluster and therefore depends on 

the runKubernetes and installDocker roles. When 

executing the binary file, the YUMA implementation 

learns the dependencies described in Table 10 

autonomously as a result of performing the 

BuildSearchTree algorithm. To determine the MEOs for 

runKubernetes and deployPod, the binary 

representations (see Table 10) of these roles must be 

passed as parameters to the DetermineExecutionOrder 

algorithm implementation. The MEO for 𝑝∗ = 

runKubernetes is as following: installKubernetes → 

runKubernetes. The MEO for 𝑝∗ = deployPod is as 

following: installDocker → installKubernetes → 

runKubernetes → deployPod. These MEOs are stored as 

Ansible playbooks on the local machine. 

To simulate the dynamic nature of the cloud 

environment, for each simulation of the exemplary 

cases, we added or removed Ansible roles from the 

directory randomly and executed the BuildSearchTree 

and DetermineExecutionOrder algorithms again. 

Although we executed the algorithms manually, another 

option would be the implementation of a cronjob 

executing the binary file in specific time intervals. 

8. Evaluation 

YUMA has to be evaluated against the 

requirements defined in Table 6. Proving the fulfillment 

of R1 is straightforward. As described in section 6, 

YUMA holds a search tree reflecting the state space and 

transition model. Regarding the fulfillment of R2 and 

R3, a more sophisticated proof is required. We 

demonstrate in section 7 that YUMA fulfills R2 and R3 

for two simulated example cases. However, to proof that 

YUMA fulfills these two requirements for the general 

case, we must proof the correctness of the algorithms in 

the learning and inference dimensions of YUMA. 

DetermineExecutionOrder is an implementation of 

UCS. The correctness of UCS has been proven by prior 

research (Liang & Sadigh, 2019). 

8.1. Build Search Tree Evaluation 

Preconditions. All sub-processes 𝑝𝑖 ∈ 𝑃 can be 

executed (i.e., ∄𝑝𝑖 ∈ 𝑃(𝑝𝑗 → 𝑝𝑖 ∧ 𝑝𝑗 ∉ 𝑃)). 

Postconditions. The algorithm terminates and 

returns the search tree ℳ describing all possible paths 

from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 . 

Proof. By induction on |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| = |𝑃|, we 

prove that the preconditions and execution of the 

algorithm implies the postconditions. 

Base Case. Let 𝑚 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| = 0. Then, |𝒮𝑆| =
1 and 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝒮𝑆. In this case, 𝑠𝑒𝑛𝑑 = 𝑠𝑠𝑡𝑎𝑟𝑡 , because 

𝑠𝑠𝑡𝑎𝑟𝑡 = 20 − 1 = 0. Therefore, the algorithm 

terminates in line 2 and returns the initialized ℳ 

describing only the path from 𝑠𝑠𝑡𝑎𝑟𝑡 to itself (i.e., self-

loop). This satisfies the postconditions, because only 

one path can be described for 𝑚 = 0 (i.e., 0! = 1). 

Inductive Hypothesis. Let 𝑚 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| and 

assume that the postconditions hold after executing the 

algorithm for all 𝑝𝑖 ∈ 𝑃, which satisfy the preconditions. 

In the worst-case, the algorithm returns ℳ describing 

𝑚! paths from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑 . 

Inductive Step. Let 𝑚 + 1 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)|. Then, 

|𝒮𝑆| = 2 ∗ 2𝑚 and there are (𝑚 + 1)𝑚! paths to be 

described by ℳ in the worst-case. The for-each-loop in 

line 3 causes the exploration of 𝑚 + 1 states at 𝑑 = 1. 

For each 𝑠𝑟  of these states, the following holds: 

|𝒜(𝑠𝑟)| = 𝑚. Each such 𝑠𝑟  can be considered as 𝑠𝑠𝑡𝑎𝑟𝑡 

of a sub-problem with 𝑚 = |𝒜(𝑠𝑠𝑡𝑎𝑟𝑡)| at 𝑑 = 1. 

Hence, by the inductive hypothesis, from each such 𝑠𝑟  

there are 𝑚! paths to 𝑠𝑒𝑛𝑑  in the worst-case. Because 

there are 𝑚 + 1 such 𝑠𝑟  at 𝑑 = 1, in the worst-case, the 

total number of possible paths from 𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑠𝑒𝑛𝑑  is 

(𝑚 + 1)𝑚!. Therefore, the postconditions are satisfied 

and, by induction, the algorithm is correct. 

8.2. Format Execution Order Evaluation 

Proof. A loop invariant is proven to be satisfied at 

the beginning of every iteration of the for-loop in line 4. 

Loop Invariant. At the start of each iteration 𝑙 of 

the for-loop, 𝑃𝑎𝑡ℎ∗ describes the shortest path from 

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state determined by 

DetermineExecutionOrder. 
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Initialization. The loop invariant holds prior to the 

first iteration of the for-loop. Here, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟  is the 

preceding state of the target state as determined by 

DetermineExecutionOrder. Thus, there are no (𝑠𝑟 , 𝑐𝑖)-

pairs between 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 and the target state. In 

addition, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
) determines 𝑐𝑖 ≙ 𝑝𝑖, 

which must be executed at 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to result at the 

target state. Hence, 𝑃𝑎𝑡ℎ∗ describes the shortest path 

from 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟  to the target state. 

Maintenance. To see that each iteration maintains 

the loop invariant, suppose that 𝑃𝑎𝑡ℎ∗ describes the 

shortest path from 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state 

before the 𝑙th iteration. Then, the if-statement in line 6 

ensures 𝑠𝑟 = 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟. Afterwards, 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟  

is defined to be the preceding state of 𝑠𝑟 , as determined 

by DetermineExecutionOrder. Because there are no 

(𝑠𝑟 , 𝑐𝑖)-pairs between 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 and 𝑠𝑟 , 

(𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟
, 𝑥𝑎𝑛𝑑(𝑠𝑟 , 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠𝑟

)) describes 

the shortest path from 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to 𝑠𝑟 . By our 

assumption, the adding of this path to 𝑃𝑎𝑡ℎ∗ in line 7 

results in 𝑃𝑎𝑡ℎ∗ describing the shortest path from 

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 to the target state. Thus, incrementing 𝑙 
reestablishes the loop invariant for the next iteration. 

Termination. At termination, 𝑙 = 0 and 

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑠𝑠𝑡𝑎𝑟𝑡. By the loop invariant, 𝑃𝑎𝑡ℎ∗ 

describes the shortest path from 𝑠𝑠𝑡𝑎𝑟𝑡 to the target state. 

This is the result that we wanted (i.e., a representation 

of the MEO of 𝑆∗). 

9. Discussion and Conclusion 

This study contributes to the field of IT service 

composition in two major ways. First, we are first in 

formulating the IT service composition problem for the 

IaC context. While prior studies have formulated the 

problem for the domains of automated web and cloud 

service composition (Zou et al., 2010, 2014), our 

problem definition is inspired by the circumstances that 

cloud architects must deal with when composing IT 

services from IaC specifications. We concretize the 

problem formulation in the form of a search problem. 

This is appropriate for the IaC context, because our 

problem formulation focuses on sub-processes and 

defines them as the primitive actions. Hence, the action 

space is defined by the set of sub-processes stored in a 

repository. Subsequently, a state can be represented as 

the subset of successfully executed sub-processes and 

the state space and transition model can be reflected by 

a search tree. This makes it unnecessary to represent the 

sub-processes and states in PDDL, perform a HTN 

planning, and build a planning graph. 

Second, the related AI planning agents determine 

the service dependencies based on agent-specific and 

PDDL domains and problems, and semantic link 

networks. Therefore, the service dependencies must be 

specified by the service providers as part of the OWL-S 

and WSDL specifications provided as input to the 

agents. As the service dependencies must be known by 

the service providers, the agents interact with known 

environments. In contrast, YUMA determines the sub-

process dependencies by interacting with a cloud 

environment in an explorative way. Based on this 

exploration, it builds its model. Thus, YUMA 

implements a model learning algorithm enabling it to 

interact with unknown environments. This makes 

YUMA more autonomous compared to related agents. 

YUMA itself is also an implication for practice. It 

automates the composition of IT services from IaC 

specifications without requiring cloud architects to have 

knowledge about the dependencies between sub-

processes stored in a repository. Therefore, it frees up 

cloud architects from the burden to explore and analyze 

the IaC specifications of relevant sub-processes and 

thereby saves them a lot of time. YUMA is expected to 

reduce the time cloud architects must spend on the 

composition of an IT service from minutes or even hours 

to several seconds. Based on our argumentation in 

section 1, we expect YUMA to create most utility for 

enterprises in which many sub-processes (e.g., 

hundreds) are maintained across multiple repositories 

by not only cloud architects that are experts in IaC. 

Examples for such enterprises are IT consulting firms. 

As with any research, our work comes with 

limitations that must be addressed by future research. 

First, the BuildSearchTree algorithm that is performed 

by YUMA to determine the sub-process dependencies 

must be seen as a bottleneck to the performance. The 

search tree must be rebuilt regularly with a time 

complexity of Θ(𝑚!). Although BuildSearchTree is a 

pure exploratory algorithm and guarantees the discovery 

of the full state space and transition model, future 

research can adapt or replace BuildSearchTree to 

incorporate machine learning. Machine learning 

algorithms such as structured perceptron, LIVE, EXPO, 

and OBSERVER (Jiménez et al., 2012; Liang & Sadigh, 

2019). In addition, for subsequent research, we have 

started with reformulating the IT service composition 

problem as a reinforcement learning problem and have 

experimented with n-step temporal difference learning 

algorithms to solve it. 

Second, YUMA has been demonstrated and 

evaluated from a formal and conceptual perspective, but 

from the user perceptions in terms of utility. Future 

research should evaluate the perspective of cloud 

architects on the reasoning of the intention to use 

YUMA. For this, the established models of IS success 

(e.g., UTAUT2) should be used to conduct a 

quantitative survey study among cloud architects. 
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To conclude, YUMA is a first step towards AI-

augmented cloud architecture delivery. By automating 

the IT service composition in the IaC context, YUMA 

digitizes an important task of cloud architects. As the 

IaC paradigm has become widely adopted in practice, 

we encourage other scholars to contribute to this field. 
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