
Circuit Testing Based on Fuzzy Sampling with BDD Bases

Elena Pinilla Sediles
Universidad Nacional de
Educacion a Distancia,

Madrid Spain
epinilla23@alumno.uned.es

David Fernandez-Amoros
Universidad Nacional de
Educacion a Distancia,

Madrid Spain
david@issi.uned.es

Ruben Heradio
Universidad Nacional de
Educacion a Distancia,

Madrid Spain
rheradio@issi.uned.es

Abstract

Fuzzy testing of integrated circuits is an
established technique. Current approaches generate
an approximately uniform random sample from a
translation of the circuit to Boolean logic. These
approaches have serious scalability issues, which
become more pressing with the ever-increasing size of
circuits. We propose using a base of binary decision
diagrams to sample the translations as a soft computing
approach. Uniformity is guaranteed by design and
scalability is greatly improved. We test our approach
against five other state-of-the-art tools and find our tool
to outperform all of them, both in terms of performance
and scalability.

Keywords: SAT-sampling, Fuzzy Sampling,
Integrated Circuits, Random Sampling, Binary Decision
Diagrams.

1. Introduction

Testing is the most costly and time-consuming stage
of integrated circuits (ICs) development. This is mainly
caused by the complexity and the integration scale of the
common ICs, which consist of millions of transistors.
Accordingly, testing is a key phase for detecting defects
and eliminating their causes, which guarantees the
reliability and quality of the designed circuits, as well
as compliance with their specifications.

There are many different testing techniques. The one
covered in this paper is fuzzy testing (also known as
fuzzing), which provides random inputs, or samples, to
the ICs in order to evaluate their reliability. Fuzzing has
a lot of advantages as it is almost completely automated,
conceptually simple, does not require any knowledge
about the system behaviour (black-box testing), and

does not generate false positives. Additionally, it is
a broadly used complementary testing technique, as it
finds errors that other tools cannot Takanen (2009).

A number of tools to perform sampling of circuits
encoded in Conjunctive Normal Form (CNF) have been
developed in Achlioptas et al. (2018), Chakraborty and
Meel (2019), Dutra et al. (2018), Oh et al. (2019),
and Sharma et al. (2018). A sampling tool is said to
be uniform if each value can be generated with the
same probability (i.e., all the values are equally likely
to appear in a sample). These tools claim to achieve
a high degree of uniformity; some even claim to be
perfectly uniform by design. Independent evaluation
found these claims to be overly optimistic Heradio et al.
(2022). Uniformity is also hard to achieve because of the
underlying problem of counting the number of solutions
of a CNF, known as #SAT or model counting.

In any case, computing time rapidly increases with
the size of the circuits, resulting in scalability issues.

In this paper, we propose using a base of Binary
Decision Diagrams (BDDs) to produce random values
for ICs. Each gate is represented by a BDD, which helps
alleviate the problems of building big BDDs. In contrast
to generating a single BDD for the whole problem, this
approach scales very well. The resulting BDD base is
then used to produce random samples of the IC in a very
efficient fashion. Using several BDDs instead of one
generally means that uniformity is lost, which would not
be a problem in fuzzy testing as it is a soft computing
approach. Instead, we will show that our sampling
algorithm is uniform by design in the particular case
of IC sampling. The different approaches are then
compared in a benchmark of sequential circuits that has
been translated to CNF.

The rest of the paper is structured as follows: Section
2 presents related work to this topic. Section 3 explains

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 1551
URI: https://hdl.handle.net/10125/102824
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

the translation of the circuits to logic. Section 4
discusses how the sampling is performed. Section 5
shows the experimental results obtained, and lastly,
section 6 gathers the conclusions and future work.

2. Related work

Translating circuits to logic for testing is an
established technique, as most random samplers expect
inputs to be in CNF. This is not an ideal solution for
sequential circuits (i.e., circuits with memory) because
CNF is stateless. Nevertheless, the general availability
of analysis tools that use CNF as input has favored its
adoption as a standard for random sampling of circuits.

Figure 1. BDD of a circuit, whose nodes are

annotated with their probabilities

1

G13 0 G13 1

G2 0.5

G12 0G12 1

G7 0.5

G1 0.5

G15 1

G16 1

G9 0

G5 1

G11 0

G5 0

G11 1

G17 0.5

G10 0

G0 0

G14 1

G7 1

G1 0.67

G15 0

G3 1

G7 0

G1 0

G15 0.25

G3 0

G16 0.43

G15 1

G3 1

G16 1

G9 0.88 G9 1

G5 0.53

G11 0

G17 1

G9 0

G5 0

G11 1

G17 0

G10 0.94

G0 1

G14 0

G8 0.5

G17 0.94

G10 0

G0 0

G14 0.5

G8 0

G6 0.5

Figure 2. Snippet of bench language

4 inputs
1 outputs
3 D-type flipflops
2 inverters
8 gates (1 ANDs + 1 NANDs + 2 ORs +
4 NORs)

INPUT(G0)
INPUT(G1)
INPUT(G2)
INPUT(G3)

OUTPUT(G17)

G5 = DFF(G10)
G6 = DFF(G11)
G7 = DFF(G13)

G14 = NOT(G0)
G17 = NOT(G11)

G8 = AND(G14, G6)
G15 = OR(G12, G8)
G16 = OR(G3, G8)
G9 = NAND(G16, G15)
G10 = NOR(G14, G11)
G11 = NOR(G5, G9)
G12 = NOR(G1, G7)
G13 = NOR(G2, G12)

In general, random samplers can be classified
into two families: those that use graph structures like
BDDs and generalizations thereof, like deterministic
Decomposable Negation Normal Form (d-DNNF), and
those relying on search trees, typically improvements
over Davis-Putnam-Logemann-Loveland (DPLL)
algorithms Davis et al. (1962) used as model counters.

On the one hand, a BDD Bryant (1986) is a top-down
rooted acyclic graph, which represents logic values as
an alternative to logical formulae. To do so, variables
are ordered, each node has an associated variable and
two children: the low child, connected with a dotted
line, corresponds to setting the variable to false, and the
high child, connected via a straight line, corresponds to
setting the variable to true. The variable associated with
the parent precedes those of the children. It is similar to
a binary decision tree, using a graph instead of a tree to
reduce the number of nodes by merging any isomorphic
subgraphs into one. Also, the parent is omitted when
both children are the same. The input formula to build
a BDD is not required to be in any logical form, which
is an advantage over DPLL methods that dictate the use
of CNF. Nevertheless, the number of nodes in a BDD is
very sensitive to the variable ordering. Figure 1 shows
an example BDD expressing the translation of the circuit
in Figure 2 with node 0 and the paths leading to it
omitted for clarity. Heuristic reordering of the variables
has reduced the number of nodes from 145 to 49.

Page 1552

On the other hand, DPLL Davis et al. (1962) is based
on partially building and traversing a binary search tree,
and is the foundation of many SAT solvers and model
counters.

Algorithm 1 Knuth’s node annotation algorithm
1: function ANNOTATE(bdd)
2: for t ∈ ReverseTopologicalOrder(bdd) do
3: if t = 0 then
4: count(t)← 0
5: else if t = 1 then
6: count(t)← 1
7: else
8: thenCount ←

count(t.high)2level(t.high)−level(t)

9: elseCount ←
count(t.low)2level(t.low)−level(t)

10: count(t)← thenCount+ elseCount
11: Pr(t)← thenCount/count(t)

12: return bdd

The first Uniform Random Sampling (URS)
algorithm for logical formulae was presented in Knuth
(2009). This algorithm uses a BDD as input, although
some properties of the BDD are computed before
the generation takes place: We reproduce this step as
pseudocode in Algorithm 1. The nodes in the BDD
are traversed in reverse topological order, that is,
from bottom to top, and for each node, the number of
valid derived solutions is computed using that same
information from its children. This information is then
used to decorate each node with the probability of
reaching node 1 through the high child. Figure 1 shows
such an annotated BDD. Once the BDD is annotated,
the generation step is performed using Algorithm 2: The
graph is traversed from the root by generating random
numbers and comparing them to the node probability to
decide whether the low or high child are visited next,
which decides the value of the corresponding variable,
until node 1 is reached.

Unigen algorithms resulted from later iterations
of a tool presented by Chakraborty et al. (2015),
Chakraborty et al. (2013, 2014), called UniWit, that
used universal hashing functions to partition the search
space into roughly equivalent cells. Once a cell
has been decided upon, the CryptoMiniSAT1 solver is
applied. Further running time improvements, such as
allowing partial solution extraction and intelligent reuse
of solutions, were implemented in Unigen2 and Unigen3
Soos et al. (2020). These algorithms hinge on the
concept of independent support: A subset of variables

1https://www.msoos.org/cryptominisat2

Algorithm 2 Knuth’s random sampling algorithm
1: function GENERATE(bdd)
2: state← sequence of size level(1) initialized to false
3: pos← 0
4: trav ← root(bdd)
5: if trav = 0 then ▷ bdd represents false
6: return state
7: while trav ̸= 1 do
8: while pos < level(trav) do ▷ Level jump
9: ▷ Equally likely

10: state[pos]← randomBoolean()
11: pos← pos+ 1

12: ▷ 0 ≤ random() ≤ 1
13: if random() ≤ Pr(trav) then
14: trav ← trav.high
15: state[pos]← true
16: else
17: trav ← trav.low
18: pos = pos+ 1

19: while pos < level(1) do ▷ Level jump
20: state[pos]← randomBoolean()
21: pos← pos+ 1

22: return state

such that the rest of the variables are a function of
these. The independent support set corresponds to the
inputs to the circuit, meaning that only the independent
variables need to be sampled first, and then the rest of the
values simply have to be computed. The algorithms are
supposed to perform very well if an independent support
set is provided, and very poorly if it is not.

Oh et al. (2017) used counting BDDs, to generate
random samples to guide the search for near-optimal
configurations. The variable set size was considered
a limiting experimental factor to build the BDDs.
Afterwards, in Oh et al. (2019), the tool named
SMARCH was proposed, which is built on top of the
#SAT solver sharpSAT Thurley (2006). Specifically,
the number of solutions is counted with this tool, and
then a random number is generated to select one of
those solutions. Then, a binary search is applied to
get the solution in question by determining the value
of each variable successively with the aid of more calls
to the solver. The algorithm is quite straightforward,
but does not include any optimizations, so performance
is expected to be poor. Scalability depends on what
sharpSAT can handle.

Page 1553

Table 1. Key characteristics of the compared tools

Characteristics Smarch Unigen3 Quick SPUR KUS Genrandom
Sampler

Based on graphs • •
Based on DPLL • • • •
Independent support • •
Limited input set size •
SAT solver used sharpSAT CryptoMiniSAT MAX-SAT sharpSAT

QuickSampler is another sampling tool conceived
by Dutra et al. (2018). It works by first generating
a candidate solution randomly, and then applying a
MAX-SAT solver to find a solution similar to the
candidate. From there, a series of mutations are
applied (i.e., flipping variables values) to generate
more candidates in following calls to the solver.
QuickSampler was designed to be used for fuzzy testing,
so it does not matter if some candidates are not real
solutions to the constraints. This tool also benefits
greatly from using an independent support set. Without
it, the performance of the tool is expected to degrade
considerably.

Achlioptas et al. (2018) developed SPUR, a
modification of sharpSAT. SPUR performs a DPLL
counting search like sharpSAT, catching components for
efficiency. It also stores partial solutions to produce
combined solutions to the global problem, a technique
called reservoir sampling.

The last sampling tool in this review, named KUS,
was presented by Sharma et al. (2018). KUS uses a
generalization of BDDs, called d-DNNF, which is a
strict superset of BDDs, to perform URS. A d-DNNF
is a graph consisting of AND nodes and OR nodes.
Knuth’s algorithms are generalized for this structure.
The OR nodes represent disjunctions over disjoint
variables, so the probabilities of the children can be
added after some adjustment to get the probability of
the parent. AND nodes also feature disjoint variable
sets, so probabilities can be computed by multiplying
the adjusted probabilities of the children. KUS relies on
d4, a d-DNNF compiler. An advantage of KUS is that
the whole sample is generated with a single traversal of
the graph. KUS evaluation showed it was faster than
SPUR and Unigen3. It is a very fast algorithm, provided
building the d-DNNF is viable.

Table 1 summarises the key characteristics to
distinguish the aforementioned tools.

The original benchmark circuits are generally not
available, often mainly due to intellectual property
issues. Therefore, reverse-engineering methods have

been applied to try to recover the original files, although
there is always some information loss when encoding a
circuit to CNF. Li (2000) presents an effort to extract
equivalences. Simple AND and OR gates matches were
found in Ostrowski et al. (2002). Roy et al. were the
first to extract logic gates from CNF using a generic
graph matcher Roy et al. (2004). Later, Fu and Malik
(2007) not only extracted logic gates but also guaranteed
to extract the biggest acyclic circuit possible using an
SAT solver. This approach is based on a gate library
that describes the gates to extract, which makes it more
flexible but less efficient than pattern matching.

Seltner (2014) and Biere developed a program called
cnf2aig2 that can reconstruct circuits from CNFs and
outputs them as and-inverter graphs. It consists of
algorithms for detecting the most common hardware
gates in CNF. It also implemented a solution for the
partial MAX-SAT problem that guarantees that the
reconstructed circuit is maximal with respect to the gates
it detects.

In Section 5, we will perform our own comparison
of Unigen3, SMARCH, Quicksampler, SPUR and KUS
to asses their scalability against our proposed tool
genrandom. These tools have been chosen among others
for being state-of-the-art. SMARCH is useful mainly as
a baseline. Unigen3 and QuickSampler are supposed to
perform very well with a support set. SPUR will show
the limits of optimized DPLL search and we will push
the ability of the d4 compiler, which KUS depends upon,
to obtain the d-DNNF graphs.

3. Translating circuits to logic

The benchmark used in this paper to test the different
random samplers comes from the IEEE International
Symposium on Circuits and Systems (ISCAS) in 1989.
It is composed of the models shown in Table 2 with
their corresponding characteristics. Whereas most
benchmarks solely include the CNF representation of
the circuits, ISCAS’89 data set provides the complete

2http://fmv.jku.at/cnf2aig/

Page 1554

original circuits, which are the inputs our algorithm
requires.

Table 2. Tested circuits

Model #Variables #Support #Clauses

s344 184 9 429
s499 175 1 491
s635 320 2 762
s938 512 34 1,233
s967 439 16 1,157
s991 603 65 1,337
s1196 561 14 1,538
s1269 624 18 1,616
s1512 866 29 2,044
s3271 1,714 26 4,269
s3330 1,961 40 4,605
s3384 1,911 43 4,440
s4863 2,495 49 6,434
s6669 3,402 83 8,423

Accordingly, the original circuits are encoded in
bench, which is a hierarchical description language
widely used in the benchmark circuit description, such
as ISCAS’85, ISCAS’89, and ISCAS’99. This type of
language provides a mechanism to define a system and
to reuse the system to build another one. The different
elements incorporated are the system’s name, the ports
(inputs, outputs, or bidirectional inputs), the function,
and an instantiation of a system in another one. An
example of its contents is shown in Figure 2.

The translation of logic gates to propositional logic
is relatively straightforward. D-type flip-flops are circuit
elements that delay the change of state of its output
signal until the next rising edge of a clock timing input
signal. They are used as storage in sequential circuits.
If we take, for instance, A = DFF(B), A takes its value
from B before it is evaluated, which, in principle, could
have any value. Usually, B will have a definition later
on which corresponds to the value after evaluation. Our
translation will pick A as an input variable, and B’s
definition is translated as is. That way, the value of the
D flip flop before B’s evaluation goes to A, and the value
after evaluation goes to B.

The grammar and semantic actions for the
translation can be seen in Table 3. A sequence of
input variables is compiled, together with a sequence
with the rest of the variables and another sequence of
Boolean logic expressions. This information can be
stored in a file or be translated further into CNF. We
also order the variables in such a way that the variables
used in a gate definition precede it.

4. Circuit sampling

Knuth’s sampling algorithm for BDDs is very fast.
However, the size of a BDD may grow exponentially
with the number of variables. Sadly, this worst-case
scenario is very close to common practice. To avoid
this problem, we propose using an ensemble or base of
BDDs, which is essentially a sequence of several BDDs,
with the particularity that nodes may be shared between
BDDs. One BDD is created for the translation of each
gate. Individual BDDs are easy to compute because
there are usually only a few variables involved.

The translation obtained in section 3 is used to build
a BDD base: All the variables, with the exception of
input variables, have a definition, which is preceded by
a comment with the name of the variable being defined
to mark the beginning of a gate translation. We build
a BDD for each variable definition. The variables are
ordered in such a way that the variables in a definition
are either input variables or have already been defined.
Figure 3 shows a BDD base of the example circuit
annotated with probabilities. The roots are colored in
orange and the other non-terminal nodes in cyan. We
have omitted the probabilities in read-only nodes and the
paths leading to node 0.

Our approach to sampling is based on Knuth’s URS
algorithm for BDDs Knuth (2009). It consists of a
two-step strategy: The first step is to annotate the nodes
using Algorithm 1. The difference is that this time we
apply it to a BDD base instead of a single BDD.

In the second step, we generate as many random
states as needed. For that, we use Algorithm 3. It is
very similar to Knuth’s GENERATE algorithm 2 except
it is performed in sequence, once for each BDD: First,
the inputs are assigned random values (their BDDs point
to 1). Then each non-input variable is assigned a value
by traversing its BDD from the root: The variables
appearing in the definition already have a value, so the
next nodes to traverse are selected according to that
value. Finally, the variable being defined is assigned
a value according to the node probability. After this,
node 1 must have been reached, another difference
with Knuth’s algorithm which may keep on assigning
variables.

Following the algorithm and Figure 3, we see that to
get a random value for G14, we assign the value opposite
to G0. After that, we can get a value for G8: If G6 is
false, so is G8, otherwise, the value for G8 is the same
as the value for G14, and so on.

Page 1555

Table 3. Circuit syntax and associated semantic actions for translation
non-terminal production semantic action
file ϵ
file line
file file line
line INPUT (NAME) addInput(NAME)
line OUTPUT (NAME) addOutput(NAME)
line output = type (inputs) addVar(output)

addExp(Comment(output)
switch(type)

case or : addExp(NAME→ OR(inputs))
addExp(OR(inputs)→ NAME)
break;

case nor : addExp(NAME→ NOT(OR(inputs)))
addExp(NOT(OR(inputs))→ NAME)
break;

case not : addExp(NAME→ NOT(inputs))
addExp(NOT(inputs)→ NAME)
break;

case and : addExp(NAME→ AND(inputs))
addExp(AND(inputs)→ NAME)
break;

case nand : addExp(NAME→ NOT(AND(inputs)))
addExp(NOT(AND(inputs))→ NAME)
break;

case nor : addExp(NAME→ NOT(OR(inputs)))
addExp(NOT(OR(inputs))→ NAME)
break;

case dff : addInput(inputs)
inputs NAME return NAME)
inputs1 inputs2 , NAME return concat(inputs2, NAME)

Figure 3. Annotated BDD base of a circuit

1

G14 0 G14 1

G0

G8 1G8 0

G14

G6

G16 1 G16 0

G8

G3

G12 0 G12 1

G7

G1

G13 0 G13 1

G12

G2

G15 1 G15 0

G12

G8

G9 0G9 1

G15

G16

G11 0 G11 1

G9

G5

G17 0 G17 1

G11

G10 0 G10 1

G11

G14

Page 1556

Algorithm 3 Random sampling over a BDD base
1: function SAMPLE(forest, heads)
2: ▷ heads is a sequence of the position of the defined
3: ▷ variable for each gate definition
4: state← Boolean sequence initialized to false
5: for i← 0 to size(heads)− 1 do
6: trav ← roots(forest)[i]
7: pos← heads[i]
8: ▷ Read previous gate values
9: while level(trav) < pos do

10: if state[level(trav)] then
11: trav ← high(trav)
12: else
13: trav ← low(trav)

14: ▷ Compute gate value
15: if trav = 1 then ▷ Input
16: state← randomBool()
17: else ▷ Not input
18: if Pr(trav) = 1 then
19: state[pos] = true
20: trav ← high(trav)
21: else
22: trav ← low(trav)

23: return state

The sampling is uniform, because:

• The input variables (i.e., the independent support)
can have any value, so they are chosen uniformly.

• The rest of the variables are a function of the input
variables, so the probability of a state is the same
as the probability of choosing the input variables,
namely 1

2s , where s is the input variable size.

Importantly, the reduction in the number of nodes is
noticeable even in this small example. It is down to 29
in the BDD base from 145 in the original BDD with no
heuristic variable ordering.

5. Experimental results

We have articulated this section around two research
questions:

• RQ1: How feasible and scalable are the different
approaches?

• RQ2: What degree of performance can be
achieved?

The experiments were carried out on an HP Proliant
Gen9 server with two Xeon E5-2660v4 processors with
28 cores each and 224 Gb of memory. To manage the

BDDs, we used the CUDD3 library, which has built-in
support for BDD bases.

Table 2 shows the circuits we have translated from
the ISCAS’89 conference, together with the number
of variables and clauses. It is worth pointing out
that although the BDD base for Genrandom was built
straight from the translation, the circuits had to be
further translated to CNF. There is quite a range of sizes,
which will provide the variability needed to compare
competing approaches, which are expected to show very
different behaviour. The size of the support set is also
reported because Quicksampler and Unigen3 rely on it
to achieve better performance.

KUS and our approach, Genramdom, rely on
building a d-DNNF graph and a base of BDDs,
respectively. Table 4 shows the number of nodes for
each approach, Table 5 shows the time needed to build
each of the graphs. Genrandom avoids the exponential
growth of the nodes by simplifying the problem as only
one BDD is generated for each gate definition, showing
a linear growth. KUS, however, builds one giant graph
with exponential growth. The d-DNNF graph for the
biggest system circuit, s6669, has a footprint of 34
Gigabytes and almost 75 million nodes. Meanwhile,
our BDD base only takes 336K of space with roughly 8
thousand nodes. Clearly, KUS is very close to the limits
of its scalability potential, while Genrandom scales
very nicely. The same thing can be said in terms of
time: It takes almost 3 hours to build the d-DNNF for
s6669, while Genrandom builds the BDD base in eleven
seconds.

Table 4. Sizes of BDDs and d-DNNF

Model #BDD Nodes #d-DNNF nodes

s344 430 281
s499 492 408
s635 763 369
s938 1,234 635
s967 1,158 7,179
s991 1,338 804
s1196 1,539 6,828
s1269 1,617 1,220,102
s1512 2,045 23,032
s3271 4,270 22,379
s3330 4,606 927,096
s3384 4,441 8.978
s4863 6,435 2,227,121
s6669 8,424 74,983,801

To further compare the scalability and performance
of the approaches, we designed and conducted an

3https://github.com/ivmai/cudd

Page 1557

Table 5. Time taken to build BDDs & d-DNNFs

(seconds)

Model #BDD base d-DNNF

s344 0.207 0.023
s499 0.208 0.022
s635 0.397 0.051
s938 0.683 0.077
s967 0.588 0.304
s991 0.834 0.197
s1196 0.825 0.828
s1269 0.930 118.375
s1512 1.486 2.068
s3271 3.894 8.920
s3330 4.835 80.418
s3384 4.728 1.255
s4863 7.169 1584.111
s6669 11.474 10,605.473

experiment to produce a thousand samples of each
of the circuits. The results are shown in Table 6.
Starting with SMARCH, we can see that the performance
is very poor as it is the slowest sampler by several
orders of magnitude. Scalability is also rather poor
as it fails to deliver for four of the systems. The
problem is that sharpSAT is unable to count the number
of solutions, which means that DPLL model counting
cannot scale. Unigen3 and Quicksampler show very
good performance except for the two biggest circuits.
Both samplers rely heavily on independent support sets,
and when they reach a certain size, performance starts
to degrade. Even so, scalability is good insofar as all
circuits were correctly sampled. SPUR is faster than
Unigen3 and Quicksampler for the smaller circuits, but
slower for the biggest. It also fails to complete two
of the samples, which shows that scalability is not so
good. KUS shows a clear dependence on the number
of nodes of the d-DNNF: When it is small, the system
is rather fast, when it is big, the system is very slow.
The number of nodes depends on the complexity of the
circuits, more than the number of gates, which produces
unpredictable results. For this reason, KUS fails to
sample circuit s6669: The d-DNNF was built, but it
is so big that generating samples takes too long. Last
but not least, there is Genrandom. Not only does it
beat all the other samplers in terms of performance, it
does so while showing minimal delays when circuit size
grows, making it also the most scalable approach. It
takes less than one second to sample each of the systems.
Although Unigen3 and Quicksampler lag Genrandom
one order of magnitude for the bigger circuits, it is worth
mentioning that these samplers by default only sample

the independent support variables, which means that
computing the value of the rest of the variables may take
a rather longer time.

To answer RQ1, we may say that all approaches are
feasible for small to medium circuits. For large circuits,
only Quicksampler and Genrandom qualify. In terms
of scalability, the most scalable system is Genrandom,
followed by Unigen3, Quicksampler, KUS, SPUR and
SMARCH, respectively.

The answer to RQ2 is that the strongest performance
was shown by Genrandom, followed by Unigen3, which
puts the independent support set to good use. The rest of
the systems degrade quickly with the size of the input.

6. Conclusions and Future work

We have proposed a novel way of using a base of
BDDs to perform random sampling over translations of
ICs to Boolean logic in order to apply fuzzy testing
techniques. Our tool, Genrandom, is uniform by design,
while showing no penalty in performance. A collection
of 14 circuits from the ISCAS’89 conference have been
translated to Boolean logic to be used as benchmark. We
have compared it against five uniform random sampling
tools and found Genrandom to be the fastest, beating
the second-best by an order of magnitude. Moreover,
our algorithm can perform sampling of even the biggest
circuit, s6669, with ease. We conclude that our approach
is the best among the evaluated options in terms of
performance and scalability.

As future work, we will try to adapt our sampling
approach to circuits specified in CNF, instead of an
intermediate-level language, to access a wider selection
of circuits to benchmark.

Acknowledgments

This work has been supported by the Universidad
Nacional de Educacion a Distancia (projects
2022V/PUNED/007 and 2021V/-TAJOV/001).

References

Achlioptas, D., Hammoudeh, Z. S., &
Theodoropoulos, P. (2018). Fast sampling
of perfectly uniform satisfying assignments.
21st International Conference on Theory and
Applications of Satisfiability Testing (SAT),
135–147.

Bryant, R. E. (1986). Graph-based algorithms for
boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 677–691.

Page 1558

Table 6. Sampling time in seconds for one thousand states

Model Smarch Unigen3 Quick SPUR KUS Genrandom
sampler

s344 3826.574 0.160 0.353 0.990 0.311 0.065
s499 8571.137 0.010 0.536 0.813 0.362 0.055
s635 22623.871 0.010 2.335 2.499 0.532 0.129
s938 37917.224 1.600 0.797 3.271 0.903 0.135
s967 34159.838 0.630 0.991 3.149 3.027 0.120
s991 41241.301 8.130 0.896 1.960 1.277 0.144
s1196 44089.649 0.420 1.857 3.818 3.897 0.180
s1269 Error 0.580 1.511 873.440 760.700 0.182
s1512 104928.073 1.750 1.393 11.466 16.571 0.278
s3271 181816.511 1.110 2.975 111.652 2831.127 0.465
s3330 Error 1.740 7.783 Error 8630.214 0.584
s3384 361704.470 2.150 3.301 111.119 6.343 0.574
s4863 Error 2.480 453.015 376.705 2477.425 0.741
s6669 Error 7.150 329.365 Error Error 0.770

Chakraborty, S., & Meel, K. S. (2019). On testing
of uniform samplers. 33rd Conference on
Artificial Intelligence (AAAI), 7777–7784.

Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia,
S. A., & Vardi, M. Y. (2015). On parallel
scalable uniform SAT witness generation.
21st International Conference on Tools and
Algorithms for the Construction and Analysis
of Systems (TACAS), 304–319.

Chakraborty, S., Meel, K. S., & Vardi, M. Y. (2013).
A Scalable and Nearly Uniform Generator of
SAT Witnesses. 25th International Conference
on Computer Aided Verification (CAV),
608–623.

Chakraborty, S., Meel, K. S., & Vardi, M. Y.
(2014). Balancing scalability and uniformity
in sat witness generator. 51st Annual Design
Automation Conference (DAC), 1–6.

Davis, M., Logemann, G., & Loveland, D. (1962).
A machine program for theorem-proving.
Commun. ACM, 5(7), 394–397. https : / / doi .
org/10.1145/368273.368557

Dutra, R., Laeufer, K., Bachrach, J., & Sen, K.
(2018). Efficient Sampling of SAT Solutions
for Testing. 40th International Conference on
Software Engineering (ICSE), 549–559.

Fu, Z., & Malik, S. (2007). Extracting logic circuit
structure from conjunctive normal form
descriptions. 20th International Conference on
VLSI Design held jointly with 6th International
Conference on Embedded Systems (VLSID’07),
37–42. https : / / doi . org / 10 . 1109 / VLSID.
2007.81

Heradio, R., Fernandez-Amoros, D., Galindo, J.,
Benavides, D., & Batory, D. (2022). Uniform
and scalable sampling of highly configurable
systems. Empirical Software Engineering,
27(2), 44.

Knuth, D. E. (2009). The art of computer programming,
volume 4, fascicle 1: Bitwise tricks &
techniques; binary decision diagrams.
Addison-Wesley Professional.

Li, C. M. (2000). Integrating equivalency reasoning
into davis-putnam procedure. Proceedings
of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference
on Innovative Applications of Artificial
Intelligence, 291–296.

Oh, J., Batory, D., Myers, M., & Siegmund, N.
(2017). Finding Near-optimal Configurations
in Product Lines by Random Sampling. 11th
Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 61–71.

Oh, J., Batory, D. S., Heule, M. J. H., Myers, M., &
Gazzillo, P. (2019). Uniform sampling from
kconfig feature models (tech. rep. TR-19-02).
Department of Computer Science. The
University of Texas at Austin.

Ostrowski, R., Gregoire, E., Mazure, B., & Sais, L.
(2002). Recovering and exploiting structural
knowledge from cnf formulas. 2470, 185–199.
https://doi.org/10.1007/3-540-46135-3 13

Roy, J., Markov, I., & Bertacco, V. (2004). Restoring
circuit structure from sat instances. ACM/IEEE
Intl. Workshop on Logic and Synthesis,
Temecula, CA, 361–368.

Page 1559

Seltner, H. (2014). Extracting hardware circuits from
CNF formulas (Master’s thesis). Johannes
Kepler Universität Linz.

Sharma, S., Gupta, R., Roy, S., & Meel, K. S. (2018).
Knowledge Compilation meets Uniform
Sampling. 22nd International Conference on
Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), 620–636.

Soos, M., Gocht, S., & Meel, K. S. (2020). Tinted,
detached, and lazy CNF-XOR solving and
its applications to counting and sampling.
Computer aided verification (pp. 463–484).
Springer International Publishing. https://doi.
org/10.1007/978-3-030-53288-8 22

Takanen, A. (2009). Fuzzing: The past, the present and
the future. Actes du 7ème symposium sur la
sécurité des technologies de l’information et
des communications (SSTIC), 202–212.

Thurley, M. (2006). sharpSAT - Counting Models with
Advanced Component Caching and Implicit
BCP. 9th International Conference on Theory
and Applications of Satisfiability Testing (SAT),
424–429.

Page 1560

