
Robotic Process Automation from the Design-Capital Perspective – Effects on 
Technical Debt and Digital Options 

 
 

Lauri Ruha 
Aalto University 

lauri.ruha@aalto.fi 

Tapani Rinta-Kahila 
The University of Queensland 

t.rintakahila@uq.edu.au 

Esko Penttinen 
Aalto University 

esko.penttinen@aalto.fi 
 

 
 

Abstract 
Robotic process automation (RPA) is an 

instantiation of lightweight automation that allows 
organizations to automate manual business processes 
quickly and at low cost without modifying the 
organization’s underlying deep information-systems 
structures. While RPA endows organizations with 
digital options (e.g., automation ability, cost savings), 
its implementation is bound to incur technical debt 
(i.e., accumulate unwarranted complexity in the IT 
architecture). The paper reports on an action 
research study shedding light on how RPA ties in 
with these two notions of a firm’s design capital: 
digital options and technical debt. Findings indicate 
that RPA can create digital options through 
improvements in knowledge reach, knowledge 
richness, and process richness. These benefits come 
at the cost of accumulating technical debt which 
stems from additional technical complexity and 
maintenance obligations. 

 
Keywords: Robotic Process Automation, design 
capital, technical debt, digital options, action research 

1. Introduction  

As organizations undergo digital transformation 
and with work tasks having become digitized in 
growing numbers, a need for workflow-automation 
tools to perform these tasks has arisen. These 
automation-based tools promise more efficient 
operations, cost savings, and reduction in errors by 
enabling automation of tasks that were previously 
conducted manually. One such tool that has been 
increasingly gaining attention in both scholarship and 
practice is robotic process automation (RPA). It 
functions by mimicking the actions a human worker 
would take to carry out a task. An RPA workflow 
could be configured to consist of, for example, 
interacting with elements of an application’s user 
interface that involve entering text or clicking. 
Compared to other automation tools, RPA is regarded 
as more lightweight automation technology (Bygstad, 

2016) and an easy-to-configure solution that can be 
implemented and maintained with less investment of 
resources. As RPA delivers various cost- and 
efficiency-related benefits and enables human 
workers to focus on tasks that require more abstract 
thinking, the technology can be seen as a prominent 
source of digital options – novel IT-enabled 
capabilities with transformational potential (Rolland 
et al., 2018; Sambamurthy et al., 2003).  

RPA’s main advantage over more heavyweight 
automation (such as back-end ERP automation) lies 
in its relatively simple implementation process, 
which is a result of RPA’s non-invasive nature (i.e., 
not requiring significant changes in the firm’s IT 
architecture). However, implementing RPA on top of 
the existing IT architecture (Asatiani et al., 
forthcoming) will inadvertently increase complexity 
of the organization’s IT environment.  Hence, RPA 
could contribute to the accumulation of technical debt 
– inertia caused by technical systems’ rigidity and 
increased IT maintenance obligations (Ramasubbu & 
Kemerer, 2016). Technical debt, if allowed to grow 
uncontrollably, may eventually hamper 
organization’s agility and ability to unlock the digital 
options brought by RPA. However, previous RPA 
literature has mainly focused on RPA’s benefits (e.g., 
Lacity & Willcocks, 2016), alternative RPA 
operating models (Asatiani et al., forthcoming), and 
RPA selection criteria (Asatiani & Penttinen, 2016) 
without considering its implications on digital 
options versus technical debt. In light of this and the 
growing interest in RPA, we strove to uncover how 
implementing RPA to automate a business process 
affects an organization’s digital architecture and its 
ability to exploit that architecture.  

We approach this question via the lens of design 
capital (Woodard et al., 2013), which refers to the 
cumulative stock of digital designs owned or 
controlled by a firm. Design capital incorporates both 
digital options and technical debt, suggesting that the 
balance between the two state can either allow for 

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 5442
URI: https://hdl.handle.net/10125/103298
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



greater organizational agility or present challenges to 
efforts of developing designs and commercializing 
existing ones (Woodard et al., 2013). Hence, we 
asked: “How does implementing RPA to automate a 
business process affect a company’s design capital?” 

To address this question, we conducted an 
action-research project at a Finnish engineering 
company. We tracked the evolution of the firm’s 
design capital by following and participating in an 
RPA development project. We identified option-
creating, debt-creating, and debt-mitigating effects on 
design capital that may stem from an RPA 
implementation. The findings presented below 
indicate that the resulting change in the state of 
design capital can be considered fairly complex and 
involves numerous contributing factors. We reflect 
on these effects and, additionally, the extent to which 
one can consider them unique to RPA. 

2. Background 

2.1. Robotic process automation  

RPA can be defined as a software-based solution 
configured to carry out repetitive operation-oriented 
tasks and procedures traditionally handled by 
humans. It is used to automate rules-based business 
processes that involve routine tasks, structured data, 
and deterministic outcomes, allowing employees 
focus more on higher-value work (Aguirre & 
Rodriguez, 2017). These tools typically interact with 
the user interfaces of other computer systems in the 
way a human would (van der Aalst et al., 2018) – for 
instance, automatically clicking and typing into 
Web-form fields. An RPA tool operates via mapping 
the actions needed to carry out a business process to 
the RPA tool’s language such that the software robot 
can follow the rules set. The tools apply if, then, 
and else statements to structured data, typically 
using a combination of user-interface interactions 
(Tornbohm & Dunie, 2017). 

RPA is implemented in an outside-in manner, 
where, instead of deep integration, the automation 
tool is “plugged” on top of the underlying system 
architecture. This approach differs from the classical 
inside-out method of business-process management, 
which often entails deeper integration between the 
automation tools and the organization’s information 
systems (IS). Hence, setups employing RPA leave the 
IS unchanged (van der Aalst et al., 2018): RPA tools 
operate largely with the same user interface as a 
human, reacting to events on a computer screen 
instead of communicating with a system’s application 

programming interface (API). The key difference, 
therefore, is that RPA tools typically act as front-end 
solutions while traditional automation tools act as 
back-end solutions (Asatiani & Penttinen, 2016). 
Another apparent differentiating factor is the relative 
ease and speed of RPA’s configuration. Instead of 
programming, RPA interfaces work by means of 
simple logical statements and interactive elements, 
which are dragged, dropped, and linked to represent 
steps in the process. Hence, end-users can make the 
necessary modifications to the tool’s configuration 
without having programming skills (Lacity & 
Willcocks, 2016). This, in turn, bridges the 
knowledge gap that can form when the implementers 
are more technically oriented personnel who lack 
deep understanding of the underlying process 
(Cooper et al., 2019). However, it still requires a 
basic understanding of information-system 
functionality – e.g., the structure of rule-based systems 
(loops, conditions, parameters, etc.), the use of data, 
and interfaces to applications (Hofmann et al., 2019). 
Also, RPA does not create a new application or store 
any transaction data, so there is no need for a data 
model or a database as there is in most business-
process management systems. 

2.2. Design capital 

Woodard et al. (2013) provide a useful 
framework for examining the effects of RPA 
implementation on an organization’s design capital –
the cumulative stock of non-physical designs owned 
or controlled by the company. One may regard this, 
alongside other types of capital stock, as an economic 
factor of production. It comprises the capabilities of 
the various IS the organization possesses along with 
their interaction with complementary business 
processes and assets (Woodard et al., 2013), making 
its value highly firm-specific (Teece, 1986). As other 
company-specific resources do, design capital may 
function as a major source of competitive advantage 
or disadvantage, depending on the extent to which the 
IT architecture and the related digital artifacts enable 
creation of economic value. Improving the state of a 
company’s design capital brings it significant 
advantages such as ability to launch new digitally 
enabled products and services swiftly and at lower 
cost, react more rapidly to market opportunities and 
competition/threats, and more effectively shape the 
business ecosystems (Woodard et al., 2013). To 
assess the state of a company’s design capital and 
gauge how deliberate actions may affect it, Woodard 
et al. (2013) utilize the concepts of digital options, 
technical debt, and design moves.  
 

Page 5443



2.2.1. Digital options. New designs intrinsically hold 
economic “option value,” which reflects both the 
direct value the product may bring and indirect value 
from enabling the creation of other designs (Baldwin 
& Clark, 2006). Therefore, one can regard digital 
options as a proxy for the value of the opportunities 
afforded by the organization’s design capital. They 
are a means of preserving the chance to capitalize on 
a new technology or practice (Woodard et al., 2013). 

Digital options play a crucial part in increasing 
organizational agility (Overby et al., 2006; 
Sambamurthy et al., 2003). Since an option  reflects a 
right to invest later on without any obligation to make 
the full investment, digital options offer companies a 
degree of flexibility in their operations 
(Sambamurthy et al., 2003). While the company can 
capitalize on its digital options if the need arises, it is 
not bound by any decision in the present. The agility 
created through digital options allows companies to 
respond to changes in the market more swiftly and to 
gather and better interpret externally generated 
knowledge (Overby et al., 2006). 

Prior research has identified four distinct areas 
wherein digital options are created: knowledge reach, 
knowledge richness, process reach, and process 
richness (Sambamurthy et al., 2003). The first 
involves the accessibility of codified knowledge 
available to a company. Well-architected IT systems 
can assist firms in accessing data from a wide range 
of sources (Overby et al., 2006). Knowledge richness, 
in turn, may be defined as the quality and timeliness 
of the accessible data (Evans & Wurster, 2000). 
Finally, process reach and process richness are largely 
analogous to these but tie in with business-process 
level: the former notion refers to how well various 
systems and stakeholders are mutually integrated, 
while the latter is a measure of the quality of the 
information at business processes’ disposal. While 
some IT designs can improve both knowledge and 
process-related factors, most technologies tend to be 
either knowledge-oriented or process-related (Overby 
et al., 2006).  
 
2.2.2. Technical debt. The second key concept refers 
to compromises, errors, lapses, and omissions arising 
during the design and implementation of software 
that unnecessarily increase its complexity (by 
introducing unwarranted dependencies) and thereby 
add to maintenance obligations (Cunningham, 1992). 
It can manifest itself through, for example, low-quality 
code, lack of documentation, or poorly structured IT 
architecture (Li et al., 2015). Technical debt 
accumulates over time as a natural byproduct of the 
design process, creating obligations that must be 
“repaid” when one strives to make new changes to 

the system. While it is often incurred inadvertently, 
especially when there is a shortage of resources, it 
can be taken on deliberately in a similar way as 
financial debt. An example of this would be using 
design shortcuts to allow for faster product launches.  

Analogously to financial debt, technical debt can 
either create or destroy economic value, in line with 
how it is managed. Typically, companies with 
technical debt have two options for addressing it: 
they can continue paying the “interest” and endure its 
consequences or pay back the “principal” by reducing 
their debt via re-architecting (Brown et al., 2010). If 
the debt is handled in an appropriate manner, the 
short-term benefit gained from shortcuts during 
development can outweigh the maintenance costs and 
long-term drawbacks. On the other hand, technical 
debt tends to mount superadditively rather than 
linearly, which means that building up too much can 
drag systems into an irreparable state (Brown et al., 
2010). Tackling technical debt can be rendered 
difficult by its largely invisible nature. Also, a large 
proportion of technical debt is related to 
structural/architectural choices or to technological 
gaps rather than the quality of the code itself. In most 
cases, it does not manifest itself in visible defects but, 
rather, creates barriers to future development 
(Kruchten et al., 2012). 
 
2.2.3. Design moves. There is a strong 
interconnection between digital options and technical 
debt. For instance, taking design shortcuts to get 
access to digital options faster tends to increase 
technical debt. Maintaining access to digital options 
may come bundled with greater technical debt 
accumulation when it involves increasing IT 
maintenance obligations (Woodard et al., 2013). 
Then again, letting go of digital options (e.g., 
eliminating specific system functions) may decrease 
technical debt as there is less complexity and 
maintenance needs. Such actions, which may have 
increasing or decreasing impacts on digital options 
and/or technical debt, are referred to as design 
moves. One can plot the state of an organization’s 
design capital on two dimensions (Figure 1) – digital 
options and technical debt – to form a 2×2 evaluation 
matrix (Woodard et al., 2013). The axes separating 
the quadrants run from high to low values for the 
two. The resulting “design capital map” is a simple 
but powerful analytic framework for assessing the 
effects of deliberate actions on an organization’s 
design capital. Design moves may shift an 
organization from one quadrant to another, depending 
on the moves’ implications of options and debt. 
 

Page 5444



 
Figure 1. Design-capital map. 

3. The method – action research 

To shed light on how the implementation of RPA 
to automate business processes affects a firm’s design 
capital, we deemed action research a suitable 
approach, on account of its pragmatic and iterative 
nature (Baskerville & Myers, 2004). We were able to 
access a Finnish engineering company that had 
decided to configure an RPA tool to automate the 
process of validating outbound invoices. For our 
purposes, assessing design capital at the level of the 
company’s IT infrastructure as a whole was 
infeasible, so we confined our analysis to the level of 
the company’s customer relationship management 
(CRM) system. This system is used for the majority 
of the steps in the target business process.  

In practice, the action research project reported 
upon here unfolded through four stages, from initial 
planning to the creation of a minimum viable product 
(MVP). The first stage (February 2021) consisted of 
establishing the requirements for RPA solution and 
scoping the possible RPA tools. The second (March 
2021) entailed building the proof-of-concept (POC) 
version and reviewing and testing the results. Then, 
the third stage (April 2021) comprised building the 
pre-MVP version and validating the tool with real 
invoice data. The final stage (May 2021) consisted of 
finalizing the MVP version and probing areas for 
future development. The first author on the 
three-person research team was directly involved in 
the project as a customer-service coordinator and was 
the main person responsible for the task of 
configuring the RPA tool for the work process. The 
author took part in scoping the feasibility of using 
RPA for the business process, setting requirements 
for the software robot, and selecting the RPA vendor, 
along with the project team. In later stages, the author 
was responsible for configuring the software robot, 
developing the workflow, and initializing testing 
procedures.  

The body of empirical data constituting the basis 
for the empirical narrative and subsequent analysis 
covers initial planning work, RPA development, and 

internal weekly meetings with project participants 
and other stakeholders. Further, in our design-moves 
analysis, we identified modifications which changed 
the company’s design capital specific to their CRM 
system. When assessing the effects of design moves 
on options and debt, we drew on Woodard et al.’s 
(2013, p. 543) operationalization of the concepts. 
Regarding options, we identified the extent to which 
moves increased or decreased knowledge reach, 
knowledge richness, process reach, and process 
richness (Sambamurthy et al., 2003). Regarding debt, 
we probed the extent to which moves increased or 
decreased complexity and IT maintenance 
obligations. 

4. The empirical narrative  

We present the empirical narrative via the four 
above-mentioned stages of the action research 
project: planning, POC, pre-MVP, and final MVP. 

4.1. Planning  

The planning process, constituting the first stage 
in the action research process, began in February 
2021, when the idea of using RPA to validate the 
information related to outbound bills was proposed. 
Flexibility, ease of use, price, and reconfigurability 
formed the reasons for choosing RPA as a potentially 
good method for this task.  

The first step in planning for development of the 
RPA implementation was to assess how RPA was 
going to be used, how it would affect the workflow, 
and its limitations. Three key criteria were set for the 
performance of the RPA solution: 1) it must be able 
to save on human labor in a cost-efficient way, 2) its 
performance should be somewhat comparable to a 
human worker’s, 3) a low error rate was to be 
prioritized over extensive automation, and 4) the 
solution should not need extensive post-implementation 
maintenance.  

The next step in the planning was to prepare a 
detailed description of the billing process. This aided 
in creating an overview of the process, assessing 
what parts of it could be automated, and addressing 
potential concerns. The process was articulated via a 
flowchart-like structure, which formed a good basis 
for initiating automation. This stage identified 
validation of contact information as the key 
subprocess for automation of the billing workflow. 
This subprocess relied partly on external data, some 
not accessible via APIs; hence, RPA was envisioned 
as serving the retrieval of some data from the 
company-internal information system that were not 
readily available in the desired form from the existing 

I: Option Constrained

Low debt, but few options to fuel 
innovation or development of 

complementary assets

IV: High Quality

Low debt and many options; strongly 
positioned for innovation and 

platform leadership

II: Low Quality

High debt and few options; weak 
position saps resources with little 

strategic benefit

III: Debt Constrained

Many options, but high debt impairs 
the firm’s ability to exploit them 

effectively

Te
ch

ni
ca

l D
eb

t

Hi
gh

Lo
w

Option Value

Low High

Page 5445



reporting tool. In addition, some types of engineering 
inspection require submitting an official document on 
the inspection to the customer’s contact point 
alongside the invoice, with most of these documents 
being emailed to a property manager. The goal for 
RPA in this subprocess was to largely mimic the 
workflow of manual validation. In the latter flow, 
firstly, the information about property management is 
checked against both the customer information stored 
in the CRM tool and a Web service of the Finnish 
Patent and Registration Office. This information gets 
compared, further, to the contact information in the 
work order. If all these sources match, the contact 
information is considered valid; otherwise, closer 
manual inspection is needed. An additional challenge 
with this subprocess stemmed from the fact that not 
all data consulted shared the same format. The 
property-management information from the customer 
data and the external source used the property 
manager’s name, while the contact information was 
retained in the form of an email address. Also, minor 
variations in the person’s name, such as abbreviations 
or corporate identity markers, were common. This 
meant that successful automatic matching across the 
data sources required additional steps. 

4.2.  Building the POC 

Building of test versions of the software robot 
began in March 2021. This marks the start to the 
second stage in the action research process. Initial 
trials employed Python’s RPA library (TagUI), but 
this was quickly ascertained to be a non-ideal 
solution for the final implementation, for 
performance and maintenance reasons. The library 
had trouble accessing some data sources, execution 
was fairly slow, and the code would not have been 
the easiest to maintain. Therefore, the staff decided 
that the development should utilize a trial version of a 
commercial RPA tool – if the project did not succeed, 
no tool costs would have arisen. For this, the project 
personnel chose the vendor UiPath, the market leader 
for RPA software and generally regarded as 
providing powerful, user-friendly solutions. It also is 
among the lowest-cost options for software licensing. 

The first part of the testing focused on collecting 
information from the various data sources 
automatically. As noted above, the software robot 
had to consider two sources, the Finnish Patent and 
Registration Office’s free-to-use service YTJ, 
containing basic data on Finnish enterprises, and the 
case company’s CRM system. Obtaining data from 
either of these required its own combination of 
actions, but collecting the data from both was 
determined to be possible. The approach chosen for 

data retrieval was to store the search terms used to 
obtain the data in an Excel-file column, then let the 
software robot retrieve the information and add it to 
other columns in the same file. Then, the data would 
get processed Excel-internally for indication of which 
bills have valid contact and billing information. Excel 
was chosen for this task for three reasons: many of 
the invoice-related data items could be easily pulled 
into Excel files from the company’s internal systems, 
the RPA software interfaced well with it, and this 
seemed to be the option affording the simplest 
maintenance. If everything matched on the file, the 
tool would mark a bill ready for automatic sending. 

Once these sub-procedures were created in a 
UiPath environment, testing in a sandboxed version 
of the CRM system was undertaken, to avoid any 
chance of unintended actions by the software robot 
affecting live billing data. Sandboxing is designed 
precisely for this type of testing, to prevent any of the 
actions influencing data in the production 
environment. The result of the testing was a software 
robot capable of collecting all the necessary data and 
navigating the CRM system to mark the validation 
checkbox. At this stage, the software robot could be 
characterized as a POC version: it had reached the 
internal testing phase but not yet been tested beyond 
the project team. This version was largely 
unoptimized and still required a large amount of 
manual work. 

The testing involved using unvalidated bills, for 
which contact data were collected and mapped to a 
property manager, with the results later getting 
cross-referenced with the bills validated by Customer 
Service. Whenever errors or edge cases were 
detected, they were noted for future development 
attention. Also, the POC version’s performance was 
tested against known exceptional cases, for seeing 
how it would perform in certain tricky situations. 

Another key element in the testing was to make 
sure the RPA could not perform unintended actions 
when left unmonitored. This was especially important 
with regard to the company’s CRM system, where an 
edge case or bug could have led to considerable 
damage (e.g., accidental deletion of outbound bills). 
Therefore, the developers set out to create a separate 
account for the software robot, with restricted system 
access: it would have read-only access to everything 
but the single specified checkbox.  

Overall, the results from testing of the POC 
version were positive. The software robot was found 
capable of collecting the necessary data and could 
handle exceptions reasonably well. One of the 
reasons behind the attention to exception-handling 
capabilities was the strict requirements for when a 
validation checkmark could be given. The software 

Page 5446



robot also was observed to not perform any 
unintended actions. 

4.3. Building the pre-MVP 

With the POC version’s testing complete, the 
software robot entered further development in 
preparation for testing with the ultimate end users in 
Customer Service. This development included 
combining the sub-procedures into a single entity, 
creating logic to handle known exceptions, 
simplifying the software robot’s workflow, and 
making various minor optimizations. The resulting 
version of the software robot was much more fully 
optimized and had a better-defined automation 
workflow. It can be viewed as a pre-MVP version. 

In its testing with Customer Service and a live 
version of the CRM system, the pre-MVP version 
used unvalidated bills, as the POC version had, but 
now customer-service coordinators were presented 
with the system’s proposed checkmark when 
validating a bill. A coordinator who saw a checkmark 
and identified the information as incorrectly validated 
would assign the bill a keyword; otherwise, human 
validation of a bill that had a checkmark was seen as 
indicating a correct validation decision. Additional 
information was gathered via periodic collection of 
feedback from customer-service workers about their 
impressions of the software robot’s performance. 

The results from the pre-MVP version’s testing 
too were found to be positive, with only a few edge 
cases getting identified. Addressing these proved to 
be relatively straightforward. Upon completion of the 
pre-MVP testing stage, the software robot was 
determined to have an adequate feature set for 
forming a successful automation workflow. Thus, it 
reached MVP stage. 

4.4. Configuration of the MVP 

Throughout the MVP artifact’s development 
process, the progress of the software robot was 
tracked via project-team meetings held 2–3 times per 
month. At these meetings, personnel evaluated the 
current state of the software robot, presented new 
ideas, and addressed any potential issues identified. 
Depending on the progress and the possibilities and 
challenges that emerged, the initial plans for the 
software robot’s configuration were adjusted to better 
reflect the current state of the software robot. 

The MVP artifact’s configuration was broken 
into four distinct steps. The first pulled a report 
containing the information on outbound bills in the 
customer-service queue from the company’s CRM 
system. This report featured the bill’s unique identity 

code, the corporate identifier of the customer billed, 
and the contact information from the customer’s 
billing-contact details (again, for a property manager 
in most cases). These data would get copied to a 
standard-form Excel sheet integrated with the UiPath 
solution. Using said details, the UiPath system would 
search for and return a corresponding “c/o” address 
from the YTJ service. This step’s speed was roughly 
20 searches a minute. After this, the software robot 
would search the company’s CRM system for contact 
information matching each bill-identifier code (the 
system structure did not allow retrieving the contact 
information in report form). The contact details 
included the email address of the person receiving the 
documentation, the company where the recipient 
works, that person’s inspection-related role (e.g., 
property manager or maintenance person), and the 
email address for the contact persons associated with 
the location of the inspection. UiPath’s solution 
automatically inserted these data in the corresponding 
columns in the Excel file. While this step was 
relatively slow, at 6 searches/minute, it was still 
many times human speed. 

Recall, however, that the CRM data gathered for 
the Excel file are not in the same form as the data 
pulled from YTJ; as described above, some of the 
data related to contact points were expressed as “c/o” 
names and some as email addresses. For matching the 
two types of data with each other, a lookup table was 
created to map each “c/o” address to a corresponding 
email-address domain. Next was a check of whether 
the corresponding domain matches the email 
addresses for the recipients and the location’s contact 
persons. If both lists of email addresses contained the 
relevant domain and if the internally and externally 
fetched “c/o” addresses mapped to the same domain, 
the contact information was regarded to be valid.  

The lookup table contained “c/o” addresses of 
property-management companies and each one’s 
corresponding email-domain name. Because the data 
often featured slight variations in the “c/o” addresses 
(abbreviations etc.), sometimes multiple entries had 
to be made for a single property manager. Though 
built manually, the table was amenable to constant 
reuse, and it permitted small updates and other 
necessary changes. Since including all possible 
versions of every property manager’s “c/o” address 
was impossible, sometimes the domain matching the 
given “c/o” address could not be found. However, 
roughly 90% of the “c/o” addresses could be matched 
to a domain, with this number naturally increasing 
further with updates to the table and as it grows from 
its initial 500 rows. Those cases wherein a match is 
impossible would simply be directed to manual 

Page 5447



checking, so the only disadvantage should be a slight 
decrease in the percentage of automatic validation. 

This solution, while less elegant than writing a 
special program to handle fuzzy data-matching, was 
deemed preferable for the time being. While a custom 
program could have led to a higher rate of automatic 
handling via better matching of data, building such a 
system from scratch could well have taken 
significantly more time, and the solution would have 
been harder to maintain. Nonetheless, it was 
discussed as a possibility for future improvement to 
the software robot’s workflow. 

Because a low error rate for the RPA solution 
was crucial, bills were to get marked for automatic 
sending only if all the information, from different 
sources, matches. Bills not reaching this threshold 
should be handled manually. Channeling them into 
the same flow as before was a way to make sure the 
probability of errors would be small. Naturally, 
conservatism presented the downside of a lower 
automatic-processing rate, with fewer bills being 
eligible for automation. The requirements could be 
gradually relaxed, however, if error rates remained 
low, thus allowing for higher percentages later. 

The final step for the software robot was to mark 
the checkbox in the corresponding work order in the 
company-internal system. The software robot would 
read the Excel file row by row, marking the box and 
clicking Save if the contact-information check 
yielded a Boolean value of TRUE. This checkbox 
could then inform the workflow in the CRM system 
such that those bills with a checkmark need not 
undergo validation by Customer Service. 

5. RPA’s effects on design capital  

Against the background of detailed description 
of the RPA tool’s development and configuration, we 
can now discuss its effects on the organization’s 
design capital. Firstly, we set the stage related to the 
initial state of design capital, after which we provide 
an account of the effects on digital options and 
technical debt found. We then elaborate on how the 
design capital developed in the course of the project, 
before, finally, reflecting on the MVP’s fulfillment of 
the initial requirements from a design-capital angle. 

5.1. The initial state of design capital 

We confined our analysis to the level of the 
company’s CRM system which is used for the 
majority of the steps in the target business process. 
We found no strong interdependencies with other 
internal systems to affect the business process 

scrutinized so one can regard the CRM system as 
operating largely as an independent entity. Although 
one of the biggest providers in the marketplace 
supplied the CRM system and it features some 
advanced automation capabilities, integration with 
many external sources is not fully supported. This led 
to a need for repetitive manual work in many 
processes that rely on external input. Limits arose, 
accordingly, in how quickly material such as 
outbound bills could be processed. Therefore, in this 
regard the system can be described as featuring a 
relatively low level of digital options. The amount of 
technical debt, in turn, was considered manageable in 
the CRM system. Debt was present in some designs 
but did not greatly affect regular use. Hence, we 
deemed the initial state of design capital as option 
constrained.  

The MVP project work identified RPA’s clear 
potential to create new digital options while 
managing technical debt by addressing the four key 
criteria set for the project (see 4.1. Planning). The 
options would arise from enabling a previously 
manual process to be automated. The first criterion 
related to cost-efficiency is tied to an increase in 
digital options brought by allowing the company to 
save costs by increasing its level of automation. 
Meeting the second criterion (RPA’s performance 
must be comparable to a human worker), in turn, 
guarantees maintaining incumbent digital options by 
minimizing the lost value derived from suboptimal 
process performance. The third criterion directs the 
types of digital options to be created by prioritizing 
error prevention over efficiency. Finally, setting the 
fourth criterion (the solution cannot require too much 
maintenance after implementation) helps make sure 
that the level of technical debt stays manageable. 
Since any technical debt created by RPA would be 
largely siloed in the functions associated with the 
billing workflow, the expected effect on debt was 
deemed reasonable.  

5.2. Design moves during the project 

Next, we track the changes in the company’s 
design capital through three design moves reflecting 
the introductions of different versions of the RPA 
solution: the POC, pre-MVP, and MVP artifact. Each 
version involved a series of smaller interventions and 
changes which cumulatively constitute a design 
move.  

Firstly, as discussed above, the initial design 
capital was in an option-constrained state, with low 
levels of both digital options and technical debt. 
From here, the development of the POC significantly 
increased technical debt, in that the solution was 

Page 5448



largely unoptimized and increased complexity was 
introduced to the company’s IT architecture, gets 
introduced here. This change was coupled with an 
increase in digital options through improvements to 
knowledge reach and knowledge richness. Increased 
knowledge reach stemmed from allowing the 
company’s systems to access to access the external 
(YTJ) data automatically. The improved reach 
allowed customer data to be enriched by means of 
external sources, hence resulting in higher data 
quality and greater knowledge richness. This move 
drew the design capital temporarily into the low-
quality quadrant.  

Second, as the system entered the pre-MVP 
stage, the more robust and streamlined workflow, the 
software robot’s better exception-handling 
capabilities, and resolution of the issues identified in 
the POC stage mitigated a portion of the technical 
debt. Also, the digital options increased from 
unlocking access to higher-quality data for the billing 
process, thus enhancing process richness. The RPA 
enabled data to be both extracted from the CRM 
system and structured in ways not possible with the 
previous, standard configurations.  

Finally, the MVP version moved the design 
capital to a debt-constrained state via slight net 
increases in both digital options and technical debt. 
Increases in digital options and decreases in technical 
debt stemmed from improving the software robot’s 
usability and addressing the issues encountered in the 
pre-MVP stage, respectively. However, most of the 
technical debt remained unaddressed. For example, 
the daily process in this configuration still was 
triggered manually on a desktop computer instead of 
via the desired automatic, timed operation. The 
workstation involved was virtually unusable at 
runtime, since the process would fail were another 
program to be opened in addition to UiPath and the 
Web browser it was using. Also, the Excel 
configuration for mapping property managers to 
“c/o” details featured a highly customized ad hoc 
setup. In the lookup process matching the “c/o” data 
from the external source to the property managers, 
the most common variations of the property 
managers’ “c/o” names were checked against existing 
values. A process of this type is difficult to maintain 
in that a property manager’s name may change and 
new ones may enter the market. There was a 
possibility of the process yielding a lower percentage 
of automatic processing through “c/o” values not 
being recognized as belonging to the relevant 
property manager. 

In sum, the design-capital map in Figure 2 
represents a path from an initial option-constrained 
state toward the middle of the matrix through the 

low-quality state. Assessing the overall change in 
design capital features many subjective elements, but 
one can conclude that the digital options created here 
should outweigh the downside of the technical debt.  

 

 
Figure 2. RPA’s effects on CRM system’s 

design capital. 

5.3. Reflections on digital options and 
technical debt 

Overall, the MVP was found to comply well 
with the initial project requirements for the software 
robot. It could handle the validation of billing 
information for roughly 30% of the outbound bills. 
This represents significant potential to reduce the 
amount of manual work related to their validation 
process. The speed of execution was also more than 
sufficient for the number of bills sent out: the 
software robot could clearly outperform a human 
worker in speed. Therefore, the digital options 
referred to in the first and second criteria could be 
realized. Next, analysis found the error rate to be low. 
During development, no cases were observed 
wherein the RPA tool would have marked the 
validation checkbox for any bill that, per the logic of 
the automation workflow, should not have had one. 
That workflow logic also seemed to function well 
overall in dividing the bills between fully 
automatable and non-automatable cases based on 
validation. That said, the number of invoices used in 
testing was somewhat low, totaling about a thousand, 
so these observations must be taken with a degree of 
caution. There could always be undiscovered edge 
cases that might result in unforeseen behavior of the 
software robot and the workflow. The same 
uncertainties apply to any claims about maintenance 
requirements after implementation. Hence, the 
constraint set by the third criterion is satisfied while 
analysis related to the fourth criterion is inconclusive. 

RPA represented a potentially powerful method 
of accelerating digital transformation within the 
company. The software robot could allow the 
company to digitalize the remaining manual tasks in 
the billing workflow for a large number of cases and 

I: Option Constrained IV: High Quality

II: Low Quality III: Debt Constrained

Te
ch

ni
ca

l D
eb

t

Hi
gh

Lo
w

Option Value

Low High

Initial 
state

POC

Pre-MVP MVP

Page 5449



offers potential to automatically generate data on the 
billing process – data that can inform improvements 
to both the process and the software robot. The audit 
trail created could be used, for example, aid in 
identifying edge cases and monitoring performance. 

Adopting RPA as a part of the organization’s IT 
architecture has rendered the company able to utilize 
RPA for other use cases in a more agile manner, in 
that it already supports the tool and can benefit from 
the initial implementation. Indeed, several potential 
cases for using automation in comparable business 
processes were discussed during the project. In such a 
manner, implementing RPA as a new tool showed 
potential to create digital options outside the context 
of the billing workflow alone. These options could be 
considered as “carryover” from the implementation.  

Many of the digital options created can be 
characterized as unique to RPA in relation to other, 
comparable technologies (such as business-process 
management tools). Among them are the ability to 
access data sources that lack an API and the 
possibility of quickly reconfiguring the tool to alter 
the workflow of the automation process. The project 
team considered these to be major upsides to RPA. 

A few sources of technical debt were identified. 
The most noteworthy ones lay in the addition of a new 
technology requiring support. This inherently brings 
more complexity to the IT architecture and requires 
the company to have an employee with the associated 
understanding and skills in (re)configuring the 
software robot. In addition to this, daily processing 
via RPA requires creating and maintaining a 
dedicated process. 

Another potential source of future technical debt 
is RPA’s low level of technical robustness. This may 
lead to an increased need for maintenance work and 
reconfiguration. For instance, changes to the user 
interface of the external data source could result in 
the software robot being unable to access the required 
data. Thanks to RPA’s flexible nature, typically one 
should be able to reconfigure it fairly quickly, but the 
total amount of maintenance work could still amount 
to something significant over time. 

At the same time, participants found factors 
helping to mitigate technical debt. Because RPA 
operates on top of the CRM system rather than being 
deeply integrated with it, relatively little technical 
debt gets transferred between RPA and the CRM 
system. That is, the technical debt related to the CRM 
system does not strongly affect the RPA’s operation, 
and vice versa. This was evident in the RPA’s ability 
to collect and structure any combination of data items, 
from across disparate parts of the CRM system, by 
simply navigating the user interface. Replicating this 
within the CRM system itself would have likely 

required a significant amount of back-end configura-
tion work. Also, again, the technical debt created by 
RPA could be largely isolated in the CRM-system 
functions associated with the billing workflow. 

One additional element that might serve to 
mitigate the effects of technical debt is the low 
amount of organizational reliance on the software 
robot and remaining flexible for contingency 
strategies in case of downtime. Since human workers 
can handle the process if the software robot breaks 
down, the risk associated with low technical 
robustness is small. Assuming the workers manage to 
maintain the required skills (see Rinta-Kahila et al., 
2018), brief downtime would produce only minor 
losses in productivity and a need for slightly more 
work hours and time for processing outbound bills. 
This reduces the cost of paying “interest” related to 
technical debt. 

6. Conclusions 

Prior work has looked into the development of 
design capital in the context of IT product 
management (Woodard et al., 2013) and heavyweight 
enterprise system implementations and replacements 
(Rinta-Kahila et al., forthcoming; Rolland et al., 
2018). Our study investigated a less-explored 
situation of lightweight IT development by probing 
into RPA’s effect on design capital. RPA was found 
to have a clear and distinct effect on both digital 
options and technical debt at the case organization. 
Firstly, option-creating effects tie in with RPA’s 
potential to create digital options by allowing a 
company to improve its level of digitalization; 
increase knowledge reach, process richness, and 
knowledge richness; and exploit the organizational 
learning that occurred during implementation. Such 
fine-grained consideration of digital options expands 
on previous design capital studies which have given 
less attention to different forms and functions of 
digital options (e.g., Rinta-Kahila et al., forthcoming; 
Woodard et al., 2013). Secondly, the notion of debt-
creating effects helped us articulate the company’s 
level of technical debt increasing through the 
implementation of RPA. Such change takes place 
mostly because of the accompanying increase in 
complexity of IT infrastructure and, in the case 
company, RPA’s low technical robustness. Debt-
mitigating effects help to offset some of the technical 
debt created during the implementation. In our study, 
among these were the low transferal of technical debt 
between RPA and other systems and the mitigating 
effects of maintenance, optimizations, and future 
development. While our study did not conceptually 
separate different types of technical debt, future 

Page 5450



studies can enrich this understanding by considering 
how different debt types (e.g., code, architecture, 
documentation, etc.) might interact with different 
types of options (e.g., knowledge reach/richness). 

Practitioners can benefit from these findings in 
their evaluations of RPA’s effects on design capital 
via sensitization and by identifying ways to maximize 
the creation of digital options and address technical 
debt in advance. By accounting for changes in design 
capital and acknowledging the relevant causal 
relationships, practitioners can optimize the value 
that RPA brings to the organization while limiting the 
associated downsides. They can reap benefits from 
RPA’s flexibility and rapid implementation, to gain 
from the ensuing digital options across multiple use 
cases in a more agile manner. 

7. References  

Aguirre, S., & Rodriguez, A. (2017). Automation of a 
business process using robotic process automation 
(RPA): A case study. Communications in Computer 
and Information Science, 742. 

Asatiani, A., Copeland, O., & Penttinen, E. (forthcoming). 
Deciding on the robotic process automation 
operating model: A checklist for RPA managers. 
Business Horizons. 

Asatiani, Aleksandre, & Penttinen, E. (2016). Turning 
robotic process automation into commercial success 
– Case OpusCapita. Journal of Information 
Technology Teaching Cases, 6(2), 67–74. 

Baldwin, C. Y., & Clark, K. B. (2006). Modularity in the 
design of complex engineering systems. 
Understanding Complex Systems, 2006. 

Baskerville, R., & Myers, M. (2004). Special Issue on 
Action Research in Information Systems: Making IS 
Research Relevant to Practice: Foreword. MIS 
Quarterly, 28(3), 329–335. 

Brown, N., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, 
K., Zazworka, N., Cai, Y., Guo, Y., Kazman, R., 
Kim, M., Kruchten, P., Lim, E., MacCormack, A., & 
Nord, R. (2010). Managing technical debt in 
software-reliant systems. FoSER 2010, 1–5. 

Bygstad, B. (2016). Generative Innovation: A Comparison 
of Lightweight and Heavyweight IT. Journal of 
Information Technology, 32(2), 180–193. 

Cooper, L. A., Holderness, D. K., Sorensen, T. L., & 
Wood, D. A. (2019). Robotic process automation in 
public accounting. Accounting Horizons, 33(4), 15–
35. 

Cunningham, W. (1992). The WyCash portfolio 
management system. Addendum to the Proceedings 
on Object-Oriented Programming Systems, 
Languages, and Applications, 29–30. 

Evans, P. B., & Wurster, T. S. (2000). Blown to Bits: How 
the New Economics of Information Transforms 
Strategy. Harvard Business School Press. 

Hofmann, P., Samp, C., & Urbach, N. (2019). Robotic 
Process Automation. Electronic Markets, 30(1), 99–

106. 
Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical 

debt: From metaphor to theory and practice. IEEE 
Software, 29(6), 18–21. 

Lacity, M. C., & Willcocks, L. P. (2016). Robotic process 
automation at telefónica O2. MIS Quarterly 
Executive, 15(1), 21–35. 

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic 
mapping study on technical debt and its 
management. The Journal of Systems and Software, 
101, 193–220. 

Overby, E., Bharadwaj, A., & Sambamurthy, V. (2006). 
Enterprise agility and the enabling role of 
information technology. European Journal of 
Information Systems, 15(2), 120–131. 

Ramasubbu, N., & Kemerer, C. F. (2016). Technical Debt 
and the Reliability of Enterprise Software Systems: 
A Competing Risks Analysis. Management Science, 
62(5), 1487–1510. 

Rinta-Kahila, T., Penttinen, E., & Lyytinen, K. 
(forthcoming). Getting Trapped in Technical Debt: 
Socio-Technical Analysis of a Legacy System’s 
Replacement. MIS Quarterly. 

Rinta-Kahila, T., Penttinen, E., Salovaara, A., & Soliman, 
W. (2018). Consequences of Discontinuing 
Knowledge Work Automation – Surfacing of 
Deskilling Effects and Methods of Recovery. 
Proceedings of the 51st Hawaii International 
Conference on System Sciences, 5244–5253. 

Rolland, K. H., Mathiassen, L., & Rai, A. (2018). 
Managing digital platforms in user organizations: 
The interactions between digital options and digital 
debt. Information Systems Research, 29(2), 419–443. 

Sambamurthy, V., Bharadwaj, A., & Grover, V. (2003). 
Shaping Agility through Digital Options: 
Reconceptualizing the Role of Information 
Technology in Contemporary Firms. MIS Quarterly, 
27(2), 237–263. 

Teece, D. J. (1986). Profiting from technological 
innovation: Implications for integration, 
collaboration, licensing and public policy. Research 
Policy, 15(6), 285–305. 

Tornbohm, C., & Dunie, R. (2017). Market Guide for 
Robotic Process Automation Software. 

van der Aalst, W. M. P., Bichler, M., & Heinzl, A. (2018). 
Robotic Process Automation. Business and 
Information Systems Engineering, 60(4), 269–272. 

Woodard, C. J., Ramasubbu, N., Tschang, F. T., & 
Sambamurthy, V. (2013). Design Capital and Design 
Moves: The Logic of Digital Business Strategy. MIS 
Quarterly, 37(2), 537–564. 

 
 

Page 5451


