
A Hybrid Genetic Algorithm for Solving the VRP with Pickup and Delivery
in Rural Areas

Timo Stadler
OTH Regensburg

timo.stadler@oth-regensburg.de

Jonas Schrader
OTH Regensburg

Jan Dünnweber
OTH Regensburg

Abstract

In this paper, we present a new Hybrid Genetic
Search (HGS) algorithm for solving the Capacitated
Vehicle Routing Problem for Pickup and Delivery
(CVRPPD) as it is required for public transport in
rural areas. One of the biggest peculiarities here
is that a large area has to be covered with as few
vehicles as possible. The basic idea of this algorithm
is based on a more general version of HGS, which we
adopted to solve the CVRPPD in rural areas. It also
implements improvements that lead to the acceleration
of the algorithm and, thereby, to a faster generation
of a fastest route. For example, we use a modified
form of the 2Opt method. We tested the algorithm on
real road data from Roding, a rural district in Bavaria,
Germany. Moreover, we designed an API for converting
data from the Openrouteservice, so that our algorithm
can be applied on real world examples as well.

Keywords: VRP, Mobility-on-Demand, Pickup and
Delivery, Genetic Algorithm, 2Opt

1. Introduction

Due to the changes in our society, there are
increasingly complex route planning problems
for applications such as home-delivery or
mobility-on-demand applications. Especially in
areas with insufficient public transport connections,
such applications are urgently needed, because buses
only run rarely. The presented research is a step towards
improving mobility in rural areas and are developing
a mobility-on-demand solution for rural areas. In our
specific case, minibuses, called feeders, are supposed to
pick up people close to their home and bring them to
their desired destination in a maximum prescribed time.

Thus, we are facing a specific variant of the Vehicle
Routing Problem (VRP) wherein we need to take pickup
and delivery into account. A guest who is picked up by a
vehicle must also be dropped off by the same vehicle. A
precise mathematical definition is given in chapter 3.2.
The VRP can be broken down into many more specific
sub-problems. In our case, we consider the Capacitated
VRP for Pickup and Delivery.

This particular version of the problem creates some
constraints we had to cope with. In our case, these are
the constraints that vehicle capacity and pickup/dropoff
order should be respected. The key constraint in our
problem is the correct order of pickup and dropoff
nodes. If this is not observed, a route can be expected
that is up to 200% as long, because a passenger has not
yet to be picked up and therefore all further points of the
route have to be repeated.

We are specifically looking at mobility-on-demand
applications and ride-sharing options for rural areas.
Specifically, all the test routes we selected for the
evaluation of the algorithm are located in the area of
the small town of Roding. The city of Roding has
about 11500 inhabitants (as of 2008) spread over an
area of 113km2. We additionally take into account
the significantly less populated but larger neighbouring
regions with a size of 674km2. For this purpose, 500
predetermined test points were randomly selected on
the map and the best route was calculated by various
algorithms. With this number, the entire district should
be covered and there should be enough different points
that can be approached. Different algorithms were used
to calculate the best route. Our algorithm returned a
solution closer to the optimum when tested against these
other algorithms.

We solved this problem using hybrid genetic search
(HGS). The HGS allows us to combine the advantages

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 5039
URI: https://hdl.handle.net/10125/103251
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



of a genetic algorithm with a local search (LS) and thus
arrive at an optimised route more quickly. Here, an
initial solution is assumed and its neighbouring solutions
are examined, thus improving the solution iteratively
(Groër et al., 2010).

In this paper, we describe the adjustments that need
to be made to a HGS in order to make the CVRPPD
solution possible. This is the basic requirement to be
able to implement a mobility-on-demand solution in
rural areas. Several vehicles with different capacities are
taken into account and these solve the problem of pickup
and delivery belonging together. This system is the best
solution to provide the entire area with accessible public
transport, especially because of the widely spaced stops.

In the next chapters, we will first look at related
work and how the CVRPPD is solved here. This is
followed by a description of the problem and the general
functioning of the HGS. After that an explanation of the
implementation of the algorithm, especially the extra
steps that are necessary for solving the CVRPPD is
done. Therafter we give a description of the use of the
algorithm on real road data, and the use of the API to
query routes for multiple vehicles. This is concluded in
Section 6 by an outlook on further improvements, we
plan to make to our algorithm.

2. Related Work

For our mobility-on-demand approach, we need
buses with different capacities that can start from
different depots. In Roding, as elsewhere in Germany
however, there is a restriction that passengers can only
be picked up at places that are marked as bus stops.
Stadler et al., 2022 developed an algorithm in which
new bus stops are determined by weighting a Voronoi
diagram. The weighting is based on the size of the
population and the number of points of interest within
a polygon. These new points are combined with the
existing stops as so-called virtual stops and can be used
as depot or pickup and dropoff points. The number of
points we have chosen is sufficient to cover the entire
public transport space.

McKenna et al., 2019 defined a method that shows
a dynamic route planning approach, based on real-time
demand, is possible. For this, they completely deviate
from the existing bus system with rigid routes and
departure times and rely on a dynamic system. This
system allows a user to call the bus via an app to a
stop near him. As a result, the authors found that using
dynamic buses emits 38.43% less Co2 emissions while
reducing travel time by 34.76%. This is mainly achieved
by allowing the bus to travel shorter distances than on a
static route and by not calling at stops without people.

We also test our algorithm with real data and allow the
user to address the service via an app.

There are many different methods for solving the
VRP. Generally, a distinction is made between exact
solution methods and the use of heuristics. For an exact
solution, however, the path lengths of all possible paths
along a graph would have to be calculated, which is why
there are (n−1)!/2 different paths between a number of
nodes (Laporte and Nobert, 1987). They are only used
to calculate the optimum in order to obtain a benchmark
for other algorithms later on, or for very small problems.

Over time, heuristics were found that led to a better
solution more quickly. The best-known method is the
LS method. For the sake of optimization, various
improvement operators (so called moves) are used,
which perform different tasks such as swapping two
edges or removing an edge from a tour. An extension of
the LS is the so-called tabu search. This adapts the LS in
such a way that a list is created in order to avoid cycles
when traversing the solution space (Fred W. Glover,
1997). By these conditions it represents an improvement
of LS.

Another approach to solve the VRP is through an
evolutionary approach; the genetic algorithm. Here,
the evolution of a species is mimicked according to
Darwin’s ”Survival of the Fittest” theory in order
to achieve an optimal result. Baker and Ayechew,
2003 presented a genetic algorithm, which, however,
performed worse than the tabu search. By incorporating
a simple neighbourhood search, however, a significant
improvement could be achieved. Thus, a hybrid
algorithm was used. Unlike the Tabu search, for
example, this Genetic Algorithm (GA) assumes more
than one solution in each iteration step. Thus, an
optimisation is searched for in several solutions in
parallel, which expands the search space more quickly.

Another one of these hybrid approaches was
presented by Vidal et al., 2012 with their hybrid genetic
search for solving the capacitated VRP. Here, they
combine a genetic algorithm with LS to form a new
algorithm. In addition, they extend it with a population
management that contributes to a higher performance
level (Vidal et al., 2012). In chapter 3, the general
functioning of the HGS is explained and how it can be
used to solve the VRP.

Chapter 3 describes the general function of the HGS
and explains how it can be used to solve the VRP.

3. Problem Statement

The problem to be solved is the capacitated vehicle
routing problem for pickup and delivery (CVRPPD). In
addition, other constraints, such as a maximum travel

Page 5040



time will be considered.

3.1. Functionality of the HGS

The basic concept of a GA is to evolve a population
of individuals that manage either a feasible or an
infeasible solution (Holland, 1984). A population is a
set of different solutions for the CVRPPD, which are
gradually improved or replaced by new solutions with
the help of evolution. Depending on which type of
solution (feasible or infeasible) an individual manages,
it is classified into the respective subpopulation.

The algorithm then applies a number of operators to
select two parents among the individuals and combine
them into a new individual, the offspring. This is
first improved by applying LS methods (education and
repair) and then divided into the correct subpopulation.
This is referred to as a hybrid algorithm, since the
algorithm is initially constructed according to the
principles of GA, but is also optimised by LS.

A cost parameter is defined for each solution. This
usually includes the sum of travel times for all routes
and, for infeasible solutions, an additional penalty
parameter. In addition, our approach to optimising
Vidal et al., 2012 does not only consider the costs of
a solution, but also the contribution a solution makes
to the diversification of the gene pool. This provides a
higher degree of diversity, allowing different solutions
to be explored and increasing the performance of the
algorithm.

0

1

11

u x 4

10 9 y v

5 6

7

Figure 1. Structure of a single solution

A single solution of the population describes the
route a bus must take to pick up all passengers. So in
each solution, the depot is assigned to a customer as a
departure or end point, each customer is recorded with
his boarding point and the total tour that a bus has to
take is defined. The tour is saved for each period of
evolution. In addition, a cost parameter is set for each
solution in the amount of the trip duration. In the case of
infeasible solutions, this cost parameter is additionally
assigned a penalty in order to mark them as infeasible
and thus weaker in the evolution. Figure 1 shows the
structure of a single solution of the HGS. The red arrows
mark the pickup and dropoff pairs. For example, node u
represents a pickup location and node v represents the
corresponding dropoff point. For readability reasons,

only 2 node pairs are used here, whereas all other nodes
also represent either pickup or dropoff pairs.

A solution is called infeasible if it does not comply
with the conditions of the algorithm. In the case of the
CVRP, the maximum journey time is too long or the
maximum capacity of a vehicle is exceeded. However,
it turned out that it makes sense to penalise infeasible
solutions for their costs and to initiate a controlled
exploration of the infeasible subpopulation (Glover and
Hao, 2010).

During each iteration, evolution occurs through the
selection of parent solutions. If no improvements
are made to the best solution for a fixed number of
iterations, the entire population is diversified. This
prevents the too early convergence of a solution, which
occurs when only good solutions are kept in each
evolution. Survivor selection tries to keep the best
solutions of a subpopulation and at the same time keep
solutions that contribute to the diversification of the gene
pool, no matter how high their costs are. All other
solutions are discarded because they are either clones
of solutions that have been retained or do not contribute
sufficiently to the diversification of the gene pool. The
algorithm is terminated either after a certain number of
iterations or when a fixed time has elapsed.

During each iteration, a mutation of the solution
can occur with a certain fixed probability. This is not
randomised in HGS, but is based on LS methods. In
this phase of route improvement (RI), the edges of the
graph are iterated randomly and each of the optimisation
moves is evaluated. These are methods that correspond
to inserting a node into a route, swapping the positions
of two nodes. A final move that can be executed is the
2-opt-move. Here, edges between nodes are swapped in
such a way that a crossover-free graph can be created
(Croes, 1958). From these moves, a random one is
chosen until one leads to an improvement of the route.
The RI phase is terminated when all moves have been
tested one after the other and none of them leads to an
improvement of the route.

In addition, a so-called repair phase takes place
for 50% of the infeasible solutions. Here, an attempt
is made to generate a feasible solution from an
infeasible solution. Depending on the result of the
repair, the solution is divided into the corresponding
subpopulation.

In the following, the application of the HGS to the
CVRPPD is described and it is shown which further
constraints apply to this problem in the context of rural
transportation. Moreover which moves of the RI cannot
be implemented or which new moves can be applied
instead.

Page 5041



3.2. Necessary adjustments for Pickup and
Delivery

Let G = (V,E) be a directed graph where V =
v0, . . . , vn is a set of nodes representing locations
and E = (vi, vj)|vi, vj ∈ V, i ̸= j is a set of edges
representing the connections between the locations. In
addition to the edges there is a distance matrix (dij).
The vertex v0 represents a depot from which a fleet
of m vehicles start their tours. The remaining vertices
correspond to n geographically distributed locations,
which are either pickup or dropoff points of a customer.
Each vehicle has a capacity Q and a maximum driving
distance D. The goal of the CVRPPD is designing a set
of at most m routes such that

1. each route starts and ends at the depot

2. each location is visited exactly once by exactly
one vehicle

3. the vehicle load at any point of a route does not
exceed the capacity of the vehicle assigned to it

4. the total distance of each route does not exceed
the preset limit D

5. the total routing cost is minimized

The CVRPPD can be defined mathematically as
follows and is an extension of Christofides’ VRP
formulation. Thereby following decision variables exist:

• xijk is a binary variable indicating whether
vehicle k traversed the edge i, j (xijk = 1 means
that the edge has been traversed)

• yijk is the load of the vehicle k while traversing
the edge i, j

• bij is a decision variable indicating whether vertex
i is visited before vertex j (bij = 1 means that
vertex i is visited before vertex j

• sijk is a decision variable indicating whether the
vertices i and j are visited by the vehicle k (sijk =
1 means that the vertices are on the same route)

And following objective function Z has to be
minimized:

f

m∑
k=1

n∑
j=1

x0jk + g

n∑
i=0

n+1∑
j=1

m∑
k=1

dijxijk (1)

Subject to

n∑
i=0

m∑
k=1

xijk = 1 for 1 ≤ j ≤ n (2)

n∑
j=0

xijk =

m∑
j=1

xijk

for 1 ≤ i ≤ n, 1 ≤ k ≤ m

(3)

n∑
j=1

x0jk ≤ 1 for 1 ≤ k ≤ m (4)

yijk ≤ xijkQ

for 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ m
(5)

n∑
j=1

y0jk =

n∑
j=1

qj

n∑
i=0

xijk

for 1 ≤ k ≤ m

(6)

xijk ∈ 0, 1

for 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ m
(7)

yijk ≥ 0

for 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ m
(8)

W.l.o.g let vi be the pickup location to the dropoff
location vj :

bij = 1 for 1 ≤ i < j ≤ n (9)

∃!k ∈ K : sijk = 1 for 1 ≤ i < j ≤ n (10)

Each vehicle must include both the pickup and the
dropoff for each passenger in its route. Thus, passengers
cannot split their pickup and dropoff among the routes
of two different vehicles, i.e. one always gets off the
bus they got on before. In addition, the pickup must
always precede its associated dropoff in the route for
the route to be feasible. This condition is not given
for VRP instances where goods instead of passengers
are transported, since they are identical and only the
capacity of the vehicles plays a role in the delivery. In
our case, however, we are considering the transport of
different individuals.

A solution is considered infeasible even if this
condition is not met. Furthermore, some of the moves
listed in 3.1 automatically lead to an infeasible solution.
Especially swap moves that exchange a single point
between the routes of two vehicles automatically create
an infeasible solution.

In order to solve the problem, a matrix is first needed
that determines which pickup point belongs to which
dropoff point at any given time. The moves for an
insertion and swap must be adapted so that they also
function meaningfully for the CVRPPD. We developed
a new move that makes it possible to relocate a pair of

Page 5042



pickup and delivery points within a route. Furthermore,
we found a method to ensure that the order of pickup and
delivery pairs is maintained. In addition, we introduce
the 2kOpt method, to speed up the process of finding a
solution for the CVRPPD.

4. Implementation of the Algorithm for
solving the CVRPPD

In order for the HGS to be applied to the CVRPPD
in conjunction with the LS, both compoents must be
adjusted to take into account the pickup and delivery
problem. Contrary to other VRP instances, our problem
does not allow for delivery nodes placed in front of
a pickup node or split pickup and delivery into two
different routes.

4.1. Assignment of a pickup and dropoff to
each user

The first point to implement is the algorithm’s
handling of input and output. In the generic VRP, each
node can be handled on its own and has no relationship
to other nodes. Thus, besides the change in capacity at
that point, only the coordinate points of the node need
to be recorded. In CVRPPD, two points always have
a relationship that a node always needs a reference to
the associated pickup or delivery node. In our format,
this is made possible by additionally passing the node its
own id, the id of its corresponding counterpart, as well
as a label indicating whether it is a pickup or dropoff
node. The only exception for nodes that do not have
an associated point is the position of the depot at the
start and end of a route. In addition, when the input is
passed, it is already checked whether a delivery point
is also assigned to each pickup. If this is not the case,
the algorithm terminates. With this data, the algorithm
can determine whether the additional conditions of the
CVRPPD are fulfilled.

4.2. Consideration of distance matrices

To enable the algorithm to work on real data, the
new parameter real was introduced by us for the type of
edge weight. This states that all points that are passed
to the algorithm are real coordinates. This makes a
difference for the calculation, as very precise points have
to be calculated in some cases and no improvements
are detected in part due to rounding errors. If this
parameter is passed, a distance or cost matrix is created
in which the travel time/distance from each node to all
other nodes of the graph is recorded in an N : N
representation. The route-data is generated from a map
using the Openrouteservice (Neis and Zipf, 2008). In

addition, the polyline of the route is determined for each
route. This polyline represents the exact course of a
route and can be used for later visualisation.

4.3. Adaptation of standard moves for RI

0

1

11

u x 4

10 9 y v

5 6

7

0

1

11

x 4 5

10 9 y v

6 u

7

Insert u after 6

Figure 2. Individual after insert move

With the RI of the generic VRP, infeasible solutions
would occur far too often, so that after a short time
almost all generated solutions would be infeasible and
the algorithm would not be able to find a solution. To
prevent this, the insert and swap moves of the RI were
adapted accordingly. In general, it should be avoided
that a node would be relocated from one route to another
or that the resulting route violates the precedence
of a pickup and dropoff node pair. Therefore, the
corresponding pickup/dropoff node should always be
handled additionally. Before each insert move, it is
checked whether the node is relocated to another route
or within the same route. If it is transferred to the route
of another vehicle, this move is not carried out. In the
figure 2 an example insert move is shown. At the top of
the image, the single solution already presented in figure
1 can be seen again. In the illustrated move, node u
has been inserted after node 6. This is possible because
node u remains in the same route and is inserted before
its dedicated dropoff node. In doing so, all original
dependencies in the tour must be reset and a new fitness
value of the individual is created. As dependencies
counts for example the deletion of the connection u → x
and the addition of the connection 6 → u.

A similar procedure is used for the swap moves and
can be seen in figure 3. Here the tour created by the
previous insert move was taken and node u was swapped
with node 5. This move is also possible because it is
again completed inside the same tour and no pickup
node is placed after its corresponding dropoff node, as

Page 5043



0

1

11

x 4 u

10 9 y v

6 5

7

Swap u and 5

Figure 3. Individual after swap move

can be seen from the red arrows.
Since the previously known moves often fail due to

the additional conditions, we developed two new moves
that can be used in any case. These are the moves
relocatePair and swapPair.

The swapPair move is similar to the standard swap
move, but here not only one node is swapped with
another, but the respective pickup and dropoff pairs are
swapped with each other in any route. The pickup
node is swapped with the other pickup node and the
corresponding dropoff nodes are swapped analogously.
Since this move does not change the order of pickup and
dropoff nodes to each other, it cannot result in infeasible
routes. Thus these checks can be ommited in contrast to
the standard swap move.

relocatePair instead moves a pair of nodes so that in
the new route both nodes are still in the correct order
and the dropoff point is at most 3 nodes after the pickup
point in the route. The calculation of the costs for
this move is done according to the methods defined in
Pacheco et al., 2021.

To minimize the computation time in each iteration,
this move can only be applied on 3 separate nodes.
No significantly better result would be obtained if this
were calculated for all nodes. Like the swapPair move,
this move also doesn’t violate the order of pickup and
dropoff pairs.

In addition to these modified versions of the standard
moves for LS, moves have also been developed that
can be applied specifically to the CVRPPD. These
moves ensure that the individual routes are shortened by
removing detours from the route and avoiding having to
travel the same route several times.

4.4. One Point Crossover and 2kOpt-Move
Implementation

Two other adaptations that we would like to discuss
in more detail here are the One Point Crossover and the
2kOpt move.

The one point crossover is responsible for creating
a new individual c from two existing ones, the parents
p1, p2. The parents are selected for this in a binary

tournament selection based on their fitness value. Then,
with uniform probability, a cutting point s ∈ {1, . . . n}
is randomly chosen in the giant tour of p1. The nodes
(πp1

1 , . . . , πp1
s ) of the first parent are inserted in the new

giant tour of the offspring. After that, the second parent
is traversed twice from the beginning to the end for
adding the missing nodes to the new individual. During
the first traversal, all missing dropoff nodes are added
to the already existing pickup nodes of c in the same
order as in p2. In the final traversal, all remaining nodes
are added to the offspring. All in all, a new individual
has been created where the order of pickup and dropoff
nodes has not been compromised (Homsi et al., 2020).

The 2Opt move belongs to one of the often used LS
strategies. Here 2 edges are exchanged by 2 new ones
and the order of the nodes between them is reversed.
If one would transfer this methodology 1 to 1 to the
CVRPPD, the probability would be high to produce an
infeasible route, since thereby pickup and dropoff nodes
could be traversed in the wrong order. To avoid this
problem, the so-called 2kOpt is used here, which is
created by applying nested 2Opt moves.

In the 2kOpt move first 2 nodes u and y are selected
between which the order of the nodes is to be reversed.
W.l.o.g. let u be before y. Then a pointer is set to
u → next, called the start pointer, and to y → prev,
called the end pointer, which traverse the intermediate
sequence of nodes in the opposite direction until they
arrive at the same node. For each pair of nodes to which
the pointers point, a check is made to see if they can be
swapped. This check depends on the type of node and
is performed first at the start pointer node and then at
the end pointer node. Here it is distinguished as follows
whether a node is OK or NOK for the exchange with the
current counterpart node.

A node is OK exactly when:

• node is pickup node and the corresponding
dropoff node is behind the current end pointer

• node is dropoff node and the corresponding
pickup node is before the current start pointer

A node is NOK exactly when:

• node is pickup node and the corresponding
dropoff node is before or equal to the current end
pointer

• node is dropoff node and the corresponding
pickup node is behind or equal the current start
pointer

Thus the following cases of node states can occur:

• start node is NOK and end node ∈ {OK,NOK}

Page 5044



• end node is NOK and start node ∈ {OK,NOK}

• start and end node are OK

If the start node is NOK, the start pointer is shifted
by one to the next node and the check is repeated
until a node exists that is OK or start and end pointers
point to the same node. Only when a start node with
the status OK has been found, the process continues
at the end pointer. For the end node, the procedure
is analogous, except that the pointer is shifted in the
opposite direction. If both nodes are OK, the two
pointers are moved forward by one or backward by one
and the two previously checked nodes are swapped.

The figure 4 shows the individual steps for
performing a simple 2kOpt move. Here the red arrows
visualize the pickup and dropoff node pairs, where the
initiating node represents the pickup node and the end
node is the corresponding dropoff node. In step 1 a swap
of the nodes x with v takes place because both have the
status OK. In the second step no swap can take place
because the check for the new start node failed and the
node is marked as NOK. Now node 5 is checked and
gets the status OK. After that Node 7 is also checked
positively and the two nodes can be swapped. Now start
and end pointer are both on node 6 and so the 2kOpt
move terminates. The first END diagram shows the new
order of the nodes with additional arrows for the pickup
and dropoff node pairs. In the second END diagram
the placement of the nodes corresponds to the old order
and the green arrows show the new order caused by the
move.

By using these two algorithms, we can more quickly
achieve the best possible solution to the CVRPPD
through new recombinations.

Figure 5 shows a route calculated by our algorithm.
The colour-coded lines represent the routes taken by
different vehicles. The red dots are stops where people
can be picked up or dropped off.

5. Evaluation

In order to be able to integrate our algorithms into
our application, we also implemented a REST API that
makes it easier to address the algorithm. In total, there
are three different functions that can be invoked via
different addresses. These are: Solving the CVRPPD
with artificial data, solving the CVRPPD for real traffic
data and the generation of a data set of test routes, as
well as the calculation of all test routes. These test
routes can later be used to generate a large number
of cases that are to represent specific test cases of the
dynamic mobility solution. The API was developed
using the Node.js runtime environment and thus allows

0

1

11

u x 4

10 9 y v

5 6

7

0

1

11

u x 4

10 9 y v

5 6

7

OK

OK

SWAP

 

0

1

11

u v 4

10 9 y x

5 6

7

NOK

0

1

11

u v 4

10 9 y x

5 6

7

OK

0

1

11

u v 4

10 9 y x

5 6

7

OK

OK

SW
AP

0

1

11

u v 4

10 9 y x

7 6

5

END

0

1

11

u v 4

10 9 y x

7 6

5

0

1

11

u x 4

10 9 y v

5 6

7

1 2

3 4

5 END

END

Figure 4. Implementation of the 2kOpt Move

Figure 5. Visualization of a Solution calculated by

our algorithm

us to execute our code platform-independently.
If artificial routes are to be calculated by the

algorithm, the edge weight type 2D-eucl must be passed
to the algorithm as an option within a JSON file. This
specifies that all coordinates are defined as points on a
2D surface and have a distance to the other points that is
defined as the Euclidean distance. The definition of Lin
and Chou, 2012 is used as the basis for the definition of
the Euclidean distance.

We worked with integers when testing the algorithm
in order to be able to understand and visualise the result
of the algorithm. Figure 6 shows an example of the
generated route from our algorithm for simulated data.
In addition, each transport request that is to be processed
must be passed within the JSON file. Here, in addition to
the coordinates in longitude and latitude, it must also be

Page 5045



specified whether the point is a new pickup, or to which
pickup point the dropoff belongs.

Figure 6. Visualisation of the algorithm for artificial

selected points with Euclidean distance

In contrast to the artificial routes, real coordinates
in longitude and latitude format must be passed here.
With the help of these coordinates, an instance of the
Openrouteservice is called (Neis and Zipf, 2008). It
calculates the distance matrix with the real distances
between all points and the actual travel time between the
points. The output is also a JSON file that contains all
vehicles and the stops there are to approach. In addition,
the route to be travelled by each vehicle is transferred
as a polyline, which contains the exact route for each
vehicle and can be visualised in a map display. Figure
5 shows the route calculated by our algorithm on real
data. The individual points to be approached are marked
with Arabic letters. The subscripts have been used
for numbering purposes only and do not indicate any
relationship between two points. The coloured routes
here represent the polyline.

The last option of addressing the API is to generate a
test data set of pickup and delivery problems and get the
solution of each problem after calculation. This feature
was very useful as it allowed us to quickly check the
functioning of the algorithm.

As already mentioned, the data of a real route
can also be visualised. For this purpose, a frontend
developed by us can make the requests to the
HGS-CVRPPD and receives back all stops to be served
as well as the polyline that is to be travelled. In real
use, this application is an app via which users can call a
dynamic call bus to take them to their destination. This

app is a prototype that is not yet publicly available. The
user sees the route to be taken and the total journey time
until they reach their desired destination.

We adapted the VROOM algorithm by Coupey et al.,
2021 to generate the required test data for our special
version of the CVRPPD. There is no standard test data
set or format to be used for this problem so far. So,
using our REST interface, we created our own dataset
of 100 routes in the area of the small town of Roding.
This was generated from the stops provided to us by
the local transport companies. The positions of these
stops are now available on Google Maps. In order
to determine the longitude and latitude of the stops
the map material of Geofabrik from 01-02-2022 was
used and the partial routes were calculated with the
Openrouteservice version 6.7.0.

The only other open source application we found that
implements our problem is VROOM (Coupey, 2021).
VROOM uses a tabu search to plan the routes. We used a
parser to convert our data set into a format that VROOM
could understand. As parameters for the maximum
duration, we set a time of 100ms, 200ms and 300ms for
the HGS. VROOM had an average runtime of 263ms on
our test system.

As a result, we found that our algorithm had a
deviation of 3.7% from the optimal result at a duration
of 100ms. At 200ms the deviation was 1.9% and at
300ms a deviation of 1.4%. VROOM achieved an
average deviation of 1.9%. Thus, it can be assumed
that our algorithm produces usable results even at lower
runtimes.

6. Conclusion

In this paper we presented our extended HGS for
solving the CVRPPD. This is the first approach to
solving this particular sub-problem of the VRP based on
a HGS. It allows us to test many different solutions by
using the genetic algorithm and thus not to end up in a
local optimum in the route finding. By using the LS, we
were able to achieve optimal results in a short period
of time. The quality of the algorithm is determined
by the calculated distance covered by all vehicles. In
our evaluation, we found that our algorithm achieves a
result that deviates only 1.8% from the optimum with
a runtime of 200ms. Our algorithm thus outperforms
previously used methods such as the tabu search in
solving the CVRPPD by 0.1% in the quality of the
solution and 24% in the required calculation time.

In particular, our newly developed methods for
adapting the LS to solve the CVRPPD, as well as
our new methods to solve our problem by a genetic
algorithm (One Point Crossover, 2kOpt), represent the

Page 5046



most important contribution of this paper.
Our algorithm was developed based on an HGS

for solving the VRP. Although the basic idea for
solving the VRP is still the same, this algorithm can
only be used effectively for solving the CVRPPD.
For a different or less specific problem, the algorithm
performs significantly worse than comparable methods
due to the many constraints set.

In order to integrate our on-demand system with
dynamic buses into the public transport system, all static
routes must be known to the system. In the next step,
we do not have to consider a simple transport from A
to B, but rather an optimal integration of our on-demand
system into the static routes as so-called feeder buses.
This requires further adjustments to the algorithm as
well as the integration of the timetables of static bus
routes to enable fast transfers.

We plan to make our HGS available as open-source
software so that it can be used as a benchmark algorithm
for the CVRPPD in the future. We also want to make
the benchmark dataset we use available so that it can be
easily compared with our algorithm.

We want to develop the algorithm further by
adjusting the parameters of the genetic algorithm
accordingly and developing further moves for LS, to get
an even better performance.

References

Baker, B. M., & Ayechew, M. (2003). A genetic
algorithm for the vehicle routing problem.
Computers &amp Operations Research, 30(5),
787–800.

Coupey, J. (2021). New features for our route
optimization api. https : / / blog . verso - optim .
com / 2022 / 05 / 31 / solving - problems - better -
and-faster/

Croes, G. A. (1958). A method for solving
traveling-salesman problems. Oper. Res., 6(6),
791–812. https://doi.org/10.1287/opre.6.6.791

Fred W. Glover, M. L. (1997). Tabu search. Springer US.
Glover, F., & Hao, J. K. (2010). Efficient evaluations

for solving large 0-1 unconstrained quadratic
optimisation problems. International Journal
of Metaheuristics, 1(1), 3. https://doi.org/10.
1504/ijmheur.2010.033120

Groër, C., Golden, B., & Wasil, E. (2010). A library
of local search heuristics for the vehicle
routing problem. Mathematical Programming
Computation, 2(2), 79–101. https://doi.org/10.
1007/s12532-010-0013-5

Holland, J. H. (1984). Genetic algorithms and
adaptation. Adaptive control of ill-defined

systems (pp. 317–333). Springer US. https :
//doi.org/10.1007/978-1-4684-8941-5 21

Homsi, G., Martinelli, R., Vidal, T., & Fagerholt, K.
(2020). Industrial and tramp ship routing
problems: Closing the gap for real-scale
instances. European Journal of Operational
Research, 283(3), 972–990. https : / / doi . org /
https://doi.org/10.1016/j.ejor.2019.11.068

Laporte, G., & Nobert, Y. (1987). Exact algorithms
for the vehicle routing problem. Surveys
in combinatorial optimization (pp. 147–184).
Elsevier. https : / / doi . org / 10 . 1016 / s0304 -
0208(08)73235-3

Lin, J.-H., & Chou, T.-C. (2012). A geo-aware and
vrp-based public bicycle redistribution system.
International Journal of Vehicular Technology,
2012.

McKenna, C., Clarke, S., & Golpayegani, F. (2019).
Floating buses: Dynamic route planning
and passenger allocation based on real-time
demand. 2019 IEEE 5th International
Conference on Computer and Communications
(ICCC), 2203–2207. https://doi.org/10.1109/
ICCC47050.2019.9064471

Neis, P., & Zipf, A. (2008). Openrouteservice. org is
three times “open”: Combining opensource,
openls and openstreetmaps. GIS Research UK
(GISRUK 08). Manchester.

Pacheco, T., Martinelli, R., Subramanian, A., Toffolo,
T. A. M., & Vidal, T. (2021). Exponential-size
neighborhoods for the pickup-and-delivery
traveling salesman problem.

Stadler, T., Hofmeister, S., & Dünnweber, J. (2022).
A method for the optimized placement of bus
stops based on voronoi diagrams. Proceedings
of the Annual Hawaii International Conference
on System Sciences. https://doi.org/10.24251/
hicss.2022.694

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi,
N., & Rei, W. (2012). A hybrid genetic
algorithm for multidepot and periodic vehicle
routing problems. Operations Research, 60(3),
611–624. https://doi.org/10.1287/opre.1120.
1048

Page 5047


