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Abstract 
As AI decision-support systems are increasingly 

developed for applications outside of traditional 

organizational confinements, developers are 

confronted with new sources of complexity they need 

to address. However, we know little about how AI 

applications are developed for natural use domains 

with high environmental complexity, stemming from 

physical influences outside of the developers’ control. 

This study investigates what challenges emerge from 

such complexity and how developers mitigate them. 

Drawing upon a rich longitudinal single-case study on 

the development of AI decision-support for maritime 

navigation, findings show that achieving high output 

accuracy is complicated by the physical environment 

hindering training data creation. Further, developers 

chose to reduce the output accuracy and adapt the 

HMI design to successfully situate the AI application 

in an existing sociotechnical context. This study 

contributes to IS literature following recent calls for 

phenomenon-based examination of emerging 

challenges when extending the scope frontier of AI and 

provides practical recommendations for developing AI 

decision-support for complex environments.  

 

Keywords: AI decision-support, AI development, 

complexity, maritime navigation, case study 

1. Introduction  

Artificial intelligence (AI) can be described as a 

moving “frontier of computational advancements that 

address ever more complex decision-making 

problems” (Berente et al., 2021). That frontier is 

expanded in the two dimensions of increasing 

performance and widening scope. Increasing 

performance refers to improved execution of a specific 

task, e.g., predicting a future state with higher 

accuracy. For instance, advanced AI methods have 

vastly accelerated existing drug discovery processes 

(Topol, 2019). Widening scope refers to utilizing AI 

in contexts that had little digitalization prior (Berente 

et al., 2021). As the range of contexts becomes more 

diverse and ubiquitous, the complexity of developing 

and using AI tools increases (Benbya et al., 2020). 

Recent empirical IS studies show various challenges 

when expanding “the scope frontier” of AI (Berente et 

al., 2021) towards new complex contexts. Much of that 

research refers to contexts where the underlying 

problems are confined within the “organizational 

container” (Berente et al., 2021). This includes 

developing an HR hiring tool where success factors 

are subjectively constructed by the organization’s HR 

managers (van den Broek et al., 2021), or classifying 

fashion products within a brand’s assortment to detect 

customer trends (Shrestha et al., 2021). Furthermore, 

in the light of pervasive digitization, AI tools also 

increasingly challenge how we see relations between 

digital and physical elements. Many objects are 

nowadays created “digital-first” where a physical copy 

serves only as representation (Baskerville et al., 2020). 

However, as the technical capabilities of AI 

increases and use domains expand outside the 

confinement of bounded organizational or virtual 

processes, design processes involve new sources of 

complexity. One such source is external physical 

forces that are out of the developers’ control, e.g., 

wind or weather. Such sources of complexity cause 

interesting challenges for meeting the objective of AI 

tools to predict future states accurately (Benbya et al., 

2020). While challenges for AI development from 

increased contextual complexity have been outlined 

conceptually and highlighted as future research 

avenues (Berente et al., 2021), there is a paucity of 

research that explains how potential conflicts between 

“performance” and “scope” unfold in empirical 

settings, as well as how AI developers address such 

challenges.  

Dynamic natural use domains, such as maritime 

navigation, thus represent a new scope frontier for AI 

that can provide insights on ongoing discussions on 

digital and physical materiality (Baskerville et al., 

2020) and navigating tensions between technological 

potential and the existing environment (Lebovitz et al., 

2021). Thus, my research questions are: What are the 

challenges in designing a high-accuracy AI-based 

decision-support tool for a complex context subject to 

external physical sources of inaccuracy? And how do 

developers mitigate these challenges? 
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2. Background 

2.1 Developing AI for Decision-Support 

AI applications are rarely designed a priori and in 

toto. Rather, development is often iterative and can be 

conceptualized as involving three key processes 

(Shrestha et al., 2021; van den Broek et al., 2021), 

illustrated in Figure 1.  First, any AI model requires 

accurate input data, also called ground truth, to train 

the algorithm and form the basis of a model’s ability 

to match new inputs to outputs. This is important as 

inaccuracies in input data can skew output, illustrated 

by the common saying “garbage in, garbage out”. 

Constructing accurate input datasets can be 

challenging as developers have to negotiate what 

constitutes a satisfying level of data quality and may 

need to access and integrate data from various sources. 

Additionally, data may prove insufficiently accurate if 

it stems from legacy systems that have a historically 

higher error tolerance for existing operational 

processes (Gupta et al., 2022).  

Second, developers need to build, train and refine 

an algorithm that produces output based on input data. 

Different algorithms and parameter calibrations may 

produce varying outputs and it might not always be 

apparent what output is most accurate. To assess 

suitable configurations, developers rely on both 

algorithmic training and qualitative input from domain 

experts (van den Broek et al., 2021). 

Finally, the model is deployed to practice, or the 

“real world”, to assess if produced output is a good fit 

with the tasks it aims to support and if users are able 

to use it (Goodhue & Thompson, 1995). Well-

designed support systems “disappear into the hand” 

(Martelaro & Ju, 2018), removing the need of constant 

data-translation in users’ brains and thus allowing 

them to focus on more difficult tasks at hand. Many AI 

applications, while technically impressive, fail 

because designers fail to translate complex workflows, 

context, and norms into their design and 

implementation (Shneiderman, 2022). Overall, the 

development of AI applications is a highly iterative 

process and involves multiple trade-offs. For instance, 

higher prediction speed can result in less accuracy, and 

including more data sources can result in higher 

accuracy but may introduce new technical obstacles in 

integrating different systems.  

 

  

Figure 1 - conceptual representation of AI 
development (adapted from Shrestha et al. 2021) 

2.2 AI Decision-Support in Complex 

Environments 

With recent advances in AI and the generation of 

large amounts of data, decision-support systems (DSS) 

have evolved from rule-based expert systems toward 

systems that can guide ambiguous, unstructured 

processes (Gupta et al., 2022; Russell & Norvig, 

2022). Empirical IS studies have highlighted 

successful AI applications within the boundaries of 

organizational processes or virtual settings (van den 

Broek et al., 2021). In contrast, this paper focuses on 

DSS for complex, natural use domains or “naturalistic 

decision-making” (Klein, 1993), that is in loosely 

structured, real-world settings like maritime 

navigation or military operations. In contrast to 

conventional settings, these domains involve new 

sources of complexity as their "physics" do not confine 

permissible actions to enable prescriptions for 

decision-making (Klein, 1993). In other words, 

decision makers are given a great deal of latitude in 

how they establish order in their environment and 

deliver desired outcomes (Hutchins, 1995).  

Prior literature has outlined two particular 

challenges that DSS developers for such domains face. 

First, the unbounded and dynamic nature of these 

contexts limits developers’ ability to account for all 

possible external factors that may influence decision-

making (Spurgin & Stupples, 2017). This challenge 

how to respond to contextual complexity is illustrated 

in Ashby’s Law of Requisite Variety, a central 

principle in cybernetics. It states that a regulator (DSS) 

needs a level of variety that exceeds that of the external 

system to be controlled (Cybulski & Scheepers, 2021). 

An autonomous car may drive safely in a test 

environment with limited variety but may struggle if 

the variety of inputs increases, e.g., due to stray 

animals or bad weather. In this regard, increasingly 

advanced AI methods like reinforcement learning hold 

the potential for a DSS to interact with its environment 

to account for dynamic or uncertain information, thus 

incorporating more external variety (Grantner et al., 

2016). For instance, the AI DSS in this research paper 

could account for dynamic changes in wind conditions 

to tune future predictions.  

A second challenge for developing DSS in 

complex environments lies in heightened human-

machine interface (HMI) requirements. Most 

decision-processes in complex environments are more 

likely to be augmented, rather than automated, by 

algorithmic decision systems and thus still require a 

“human-in-the-loop” (Benbya et al., 2021). Although 

algorithms can outperform human decision-making in 

certain situations, e.g. routine tasks or subject to 

human bias (Kahneman & Riepe, 1998), humans excel 
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in intuitive perception skills, such as instantly and 

automatically recognizing patterns and anomalies in 

chaotic environments (also known as Moravec’s 

Paradox) (Shrestha et al., 2021). As those human 

decision-makers in complex environments are under 

high cognitive load, often having to make quick 

decisions with large consequences (Hutchins, 1995), 

DSS need to present information in a reliable and 

interpretable way (Tacker & Silvia, 1991). As 

increased technical complexity makes AI applications 

more inscrutable for non-technical experts, developers 

must consider how they design AI tools that integrate 

frictionless in complex sociotechnical environments 

(Martelaro & Ju, 2018). In this regard, much recent 

attention has been given to the design principle of 

explainable AI (XAI), meaning AI systems should 

provide users explanations to how output is derived 

and how systems will behave in the future 

(Confalonieri et al., 2021).  

Maritime navigation is one example for human-

machine collaboration in complex environments as 

navigators rely on various sensors, systems, 

colleagues and their audiovisual senses to make sense 

of the ship’s trajectory (Hutchins, 1995). During its 

voyage, a ship moves through various operational 

states with differing levels of complexity. For 

instance, while navigating narrow fairways or 

docking, navigators face a higher input variety 

compared to sailing on open seas. Therefore, such 

situations typically require increased number of 

personnel on the bridge to respond to situational 

requirements. Given that high variation in operational,  

technical and environmental complexity, a large 

variation of autonomy states is possible with varying 

degrees of human support and/or AI support (van den 

Broek et al., 2020). Van den Broek et al. (2020) note 

that designers for maritime DSS need to consider both 

the level of envisioned self-sufficiency, that is the 

“range of conditions the system can deal with”, and 

self-directedness, the “range of conditions the system 

is given authority to conduct autonomously”. Poorly 

designed maritime DSS can have grave consequences 

for human life and the environment, and improper use 

has been found a key issue in maritime accidents (cf. 

MAIB, 2015). Thus, newly developed DSS need to 

avoid information overload while providing 

navigators information that is interpretable and useful 

to their specific operational state.  

Many AI applications being developed for the 

maritime domain focus on supporting strategic 

planning processes or traffic surveillance, leveraging 

easily available datasets. However, AI DSS for 

navigators onboard are still in a relatively early 

development phase compared to e.g., the automotive 

sector (Munim et al., 2020). For developers, a major 

challenge is that a ship’s trajectory is much more 

difficult to model in a predictive algorithm than a car, 

as it is influenced by environmental conditions, 

complex hydrodynamic effects or other ships (Perera, 

2017). Further, traffic regulation is less bounded at sea 

than on land, and includes concepts like “good 

seamanship” that are difficult to codify in algorithms 

(Azimi et al., 2020). Finally, many AI applications are 

developed and tested mainly in ship simulators due to 

cost reasons, making it more difficult to account for 

real-world issues like erroneous onboard sensors 

(Perera, 2017). Considering the environmental context 

and the sociotechnical onboard system, the maritime 

domain presents an interesting study context to 

investigate potential tensions between contextual 

complexity and the pursuit to develop high-accuracy 

AI DSS outside of conventional organizational 

confines.   

3. Methodology 

3.1 Research Setting 

This research is based on a qualitative, longitudinal 

case study (Yin, 2018) of “Neptune” (pseudonym). 

Neptune was a publicly funded, 2-year innovation 

consortium formed to develop an AI-based ship 

predictor for maritime navigation. It consisted of five 

Northern European public and private organizations 

from maritime, global satellite navigation systems 

(GNSS) and telecommunications industries, including 

one multinational corporation with 15000+ 

employees. Ship predictors visualize a future 

trajectory of a ship’s movement to navigators on their 

electronic chart system (ECDIS), typically for time 

spans of 1-12 minutes, and are instrumental to their 

decision-making (s. Figure 2). Current ship predictors 

are based on dead reckoning, i.e., past information on 

course, speed, and rate of turn. Such predictions can 

be misinterpreted and require an experienced human 

operator to triangulate with other information. More 

advanced predictors, accounting for a ship’s individual 

maneuvering characteristics or loading conditions 

exist but are costly and far from widespread adoption. 

Neptune’s envisioned AI predictor would use 

reinforcement learning to increase prediction accuracy 

by 1) integrating additional shipboard sensors like 

wind sensors in the predictive model, and 2) assessing 

accuracy of past predictions to train the model for 

future predictions. Compared to existing approaches, 

the AI capability would lower development costs and 

allow using the same algorithm across different ships 

as it would self-train to their respective characteristics.  

Neptune was selected as suitable in-depth case for 

this research as its goal to design commercially viable 
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AI applications resulted in including experienced data 

scientists and navigators with 30+ years of experience 

and testing the applications in both simulated and 

physical environments. These characteristics 

suggested that tensions between design goals and 

contextual constraints would emerge as particularly 

salient. 

 

Figure 2 - Example display of ship predictor 

3.2 Research Design 

Starting in October 2020, I studied Neptune over 

the course of 20 months, following an interpretative 

approach to case study research (Walsham, 1995). 

This approach is suitable to support combining data 

from multiple sources and to investigate “a 

contemporary phenomenon within its real-life context, 

especially when boundaries between phenomenon and 

context are not clearly evident” (Yin, 2018). Several 

data sources were collected to allow triangulation, 

including semi-structured interviews, participant 

observation and archival studies, and data collection 

ceased when saturation was reached.  

First, 14 in-depth, semi-structured interviews with 

12 respondents were conducted. Respondents were 

selected so to cover all Neptune work packages and to 

speak to the most active participants for a holistic view 

of the predictor development. This included data 

scientists (developing predictor software and 

algorithms), maritime experts (installing hardware 

onboard test ships, testing prototypes), GNSS experts 

(providing accurate location data), telecommunication 

experts (ensuring data transmission at sea), as well as 

two project managers. All respondents except one had 

at least 5 years of related work experience before 

joining Neptune. The interview guide focused on the 

respondent’s role in the development process, 

interactions with other actors and challenges arising 

from the maritime environment. Interviews were 25-

80 minutes in length (avg. 50 min) and were done 

during fall 2020, winter 2021 and spring 2022.  

Second, participation observation included 

attending meetings and sea trials. This included 40 bi-

weekly general project meetings with participants 

from all work packages, and 15 meetings between data 

scientists and a maritime expert that focused on 

predictor development, integration into the ECDIS, 

and HMI design. Sea trials were conducted in coastal 

waters on three occasions of 3-5 days each in the 

summers of 2021 & 2022, where Neptune tested the 

predictor and system integration in a real-life 

environment. I joined onboard of the test ships on 10 

days in total, observing the various practical activities 

related to installation, testing and evaluation of the 

different components. Further testing involved a user 

study over two days at a professional bridge simulator 

that I attended. With a background as nautical officer, 

I embedded myself as a “native” in the study context 

(Brannick & Coghlan, 2007), allowing me to “speak 

the language” of maritime experts and understand 

domain-specific processes, as well as assist in minor 

tasks like navigation. Finally, extensive project 

documentation, such as internal reports, presentations, 

and newsletters, provided both in-depth technical 

insights and allowed comparing initially envisioned 

application designs against final outcomes.  

The collected data were analyzed in an iterative 

and systematic manner, following the 

recommendations for data-driven thematic analysis 

(Boyatzis, 1998), to identify events or decisions that 

impacted the envisioned prediction accuracy of 

Neptune’s ship predictor. First, a broad overview of 

the development process was constructed using the 

software Aeon Timeline. This was helpful in 

organizing the rich data and understanding causal 

linkages between different observations. Second, field 

notes, interview transcripts, and relevant 

documentation were read to identify and corroborate 

challenges and mitigating actions specific to the 

context. For instance, while frequent software bugs 

and network issues were observed, these were not 

included in the analysis as developers noted those 

were common in any technical project. Based on this, 

various themes were developed that were organized 

into first-order codes that were supported by various 

data sources. Second-order themes were then 

developed to deepen the understanding and mapped 

across the three stages of AI development outlined by 

Shrestha et al. (2021). 

4. Findings 

This section presents Neptune’s process in 

designing a high-accuracy AI DSS, challenges that 

arose in gathering input data, refining the AI model, 

and deploying to end-users, and what steps Neptune 

took to mitigate those challenges (s. Table 1).  
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4.1 Input Data  

 Findings revealed challenges in accessing two 

types of data important for the ship predictor, namely 

accurate ground truth data and legacy sensor data. 

Accurate ground truth data (Table 1, ID1) about a 

ship’s location is crucial in navigation. Modern ships 

typically use GNSS with location accuracy of <10cm. 

Neptune developers noted that an AI predictor based 

on data with this level of accuracy would be sufficient 

for human operators who would not notice small 

differences on the visual display anyway: “[right now, 

exceeding current GNSS] accuracy is not necessary to 

make a prediction. The captain looking at the ECDIS 

display will not see a difference if the location is 2cm 

more accurate. And the uncertainties in the prediction, 

let’s say 2 min in the future, are much bigger than 

centimeters.", maritime expert. However, developers 

also noted that higher location accuracy would make 

the AI predictor more useful for the long-term future, 

for instance for upcoming advanced sea charts or 

autonomous ships: “[exceeding current GNSS 

accuracy] is a step to prepare for the future. For 

example, the new IHO S -100 ECDIS standard will be 

much more accurate. Then centimeter positioning will 

be very interesting.”, maritime expert.  

Therefore, Neptune invested substantial effort to 

create input data with higher location accuracy than 

currently available at sea. To do so, GNSS experts 

transferred specific techniques used mainly for land-

based applications to the maritime context. Validating 

whether these land-based techniques actually helped 

improve location accuracy was difficult, as this had 

not been done before. Particular limitations were the 

lack of standards compared to road transportation (like 

EN 16803-1:2020) and constant ship movements due 

to wind and waves: “the issue is that when you're at 

sea, you don't really have a ground truth to compare 

to. So it's really hard to say that you reached an 

accuracy level in an absolute sense.”, GNSS expert.  

Instead of aiming to get an “absolute ground truth”, 

GNSS experts established “relative ground truth” by 

installing a second reference system on test ships. This 

reference system consisted of equipment normally 

used for geodetic land surveys in order to achieve 

“factor of 10 or better in location accuracy” (GNSS 

expert) compared to the input data used for the 

predictor. Having two separate systems on a test ship 

allowed to validate location input data regardless of 

ship movements, as the two system antennas always 

remained the same relative distance to each other. In 

that sense, while Neptune was not able to have the 

same absolute location accuracy as, e.g., a car or a 

train. However, that was not necessary because the 

location data could now be compared with data that 

was 10 times more accurate: “[the accuracy] is still 

there as only a relative measurement. So we could 

never really say anything about how close [our data] 

is to the ground truth. [...] But in the end, we got good 

results and were definitely satisfied.”, GNSS expert. 

 While that setup proved effective, it was important 

to design these reference systems with attention to the 

physical onboard environment. For example, the 

custom rigs for antennas were designed with high 

distances between antennas to ensure better location 

accuracy. “We want to do get them as far away out in 

the boat as possible. [...] if you have the receivers right 

on top of each other, it’ll be hard to [assess 

accuracy].”, GNSS expert.  

AI Process Ref. AI Design Goal 
Environmental 

constraint 
Resulting challenges Actions taken by Neptune 

Input data 

ID1 
Need accurate 

ground truth data 
Ship constantly moving 

Difficult to validate absolute 

ground truth location; lack of 
standards  

Use reference system for relative 
accuracy.  

Use physical innovations to 

adapt environment 

ID2 
Need to model 

internal system 

Ship is complex, 

modularized system 
with various sensors 

Legacy sensors non-
digitized, non-calibrated, 

missing or with non-

standardized APIs 

Identify sensors essential for 

DSS functionality; Implement 
automatic bias detection 

Model 

Evaluation 

& 

Refinement 

ME1 

Support decision-

making in suitable 
situations 

Different stages of ship 

voyage have differing 
levels of complexity 

Identify suitable & feasible 

situations to be supported by 
AI DSS 

Remove too complex 
functionalities. 

Focus on situations that play to 

DSS strengths   

ME2 
Need to account for 
dynamic changes 

Continuous physical & 

internal changes to ship 

state 

Small physical input 

fluctuations lead to high 
output fluctuations 

(“windshield wiper”) 

Use domain knowledge to 

determine balance between 

sensitivity and interpretability 

Deployment DE1 

Provide output that 
augments decision-

making 

Limited cognitive 
capacity for operators in 

complex environment 

Match system complexity 
with cognitive capacity.  

Avoid information overload  

Use domain knowledge and 

simulations to determine HMI 

design that balances user 
freedom and useability  

Table 1 - Overview of challenges and mitigating actions during Neptune's development process 
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A second input dataset to provide the AI predictor 

with was legacy sensor data (ID2) onboard about the 

ship’s dynamic state, like rudder and propulsion 

settings. However, accessing and integrating those 

sensors proved challenging. While there are 

communication standards for marine equipment like 

NMEA, the variety of equipment types resulted in 

different data formats that developers had to account 

for. Further, certain sensors did not exist in a digitized 

format, simply because it was never necessary before. 

A maritime expert illustrated: “one test ship has this 

jet engine that can be set to ahead/astern/neutral. 

There’s only a physical lever on the bridge, without 

any digital sensors. Why? Because the captain can just 

look at the lever. But for the predictor, of course that’s 

an important data point, to know if the ship will 

accelerate or not (laughs).”  

 As result, Neptune had to decide which onboard 

sensors could and should be included in the predictor 

input data. This often constituted a balance between 

heightened accuracy and technical feasibility. A data 

scientist illustrated this balance with rudder data: “an 

example is the difference between the current value 

and set value of the rudder angle. When you change 

the angle, it takes time for the steering pumps to move 

the rudder. [...] We could get both values in the 

predictor and then simulate how the rudder moves.” 

However, they decided eventually against 

including both rudder values, as more simulated 

processes might mean more error sources if they don’t 

match with physical reality: “the steering pumps might 

not be digitized. Or you assume it takes 40s from hard-

port to hard-starboard, but in reality, it takes 60s. 

That’s yet another coefficient to keep track of. The 

possibility of being more accurate, it's there. But then 

the complexity to reach that accuracy is higher. [...] 

You don't want too many or too few coefficients.” 

Finally, many sensors were found to not be 

perfectly calibrated, meaning for instance that while 

the physical rudder was set midships, the rudder sensor 

would show a few degrees to starboard. This resulted 

in the predictor indicating a constant drift to starboard, 

even if the ship actually sailed in a straight line. Such 

poor calibration is not uncommon on merchant ships. 

Therefore, an early adaptation was to implement 

functionalities in the predictor to automatically detect 

and self-correct such value biases.  

These challenges highlighted the importance of 

testing in physical onboard environments and 

improvisation during Neptune’s repeated sea trials. 

For instance, I repeatedly observed how technicians 

referred to duct tape as “magic tape” because it 

allowed them to install equipment like antennas or 

cables in temporary yet stable positions. A maritime 

expert reflected: “I'm very happy about these sea 

trials, as they get us closer to the actual usage and the 

environment. There are so many things that you don't 

really understand until you actually experience them 

or get a feeling for something that could be a problem 

that we didn't think about.” 

4.2 Model Evaluation & Refinement  

As Neptune tested and refined its AI predictor, two 

challenges were identified, identifying suitable 

situations to support navigators in and making the 

predictor less responsive to physical disturbances.  

Early in the project, Neptune outlined potentially 

suitable situations that would benefit from AI DSS 

(ME1). The variety of operational states in a ship’s 

voyage meant many potential scenarios where an AI 

predictor could provide useful knowledge output. 

Developers noted that navigation in confined waters 

would benefit the most from increased prediction 

accuracy, since open waters typically provide enough 

room to maneuver, and existing ship predictors 

provided sufficient information. “[In open waters], 

you won't notice even a deviation of 2m. Because you 

wouldn't want to be in a situation where being off by 

1m  puts you in a dangerous situation. It's when you're 

close to obstacles or dock the ship, then [improved 

prediction] becomes useful.”, maritime expert.   

But even in the specific context of confined waters, 

developers had to consider to what extent the ship’s 

behavior could be modelled. This was illustrated by 

Neptune’s initial goal to model hydrodynamic effects 

between ship and physical obstacles. These effects are 

highly complex and require experienced navigators to 

detect and counteract. Given their complexity and 

importance for maritime safety, modelling these 

effects in the prediction was deemed a suitable goal. 

Eventually however, it was dropped. While the 

calculation itself of these effects was noted as 

challenging but feasible, the main obstacle was 

integrating sea chart information about physical 

objects to the AI predictor. “We could calculate 

hydrodynamic effects against fixed objects shown in 

the ECDIS. But it would require the predictor to have 

information about the chart contours around it. […] 

And it was very clear by [ECDIS manufacturer] that 

such integration would be a big issue.”, data scientist. 

Instead, during development and sea trials, it 

became clear that the predictor functionality was 

particularly suited for situations where short-term 

predictions of <3min and high levels of accuracy were 

beneficial, allowing Neptune to highlight two suitable 

situations. “We identified two main things [the 

predictor] can help [operators with]: to avoid close-

quarter [collision] situations and handling the ship in 

maneuvering in narrow waters.”, maritime expert. 
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Subsequently, towards the end of the project, 

Neptune focused its test activities on situations where 

a ship would dock, or where two ships would navigate 

close to each other to evaluate its performance. 

A second challenge emerged in the AI DSS being 

overly sensitive to input fluctuation (ME2). For 

instance, sudden wind gusts or small rudder 

adjustments would result in a big, sudden change of 

the predicted ship trajectory. Developers referred to 

this fluctuation as “windshield wiper” effect, as it 

resembled the ship symbol moving erratically from 

left to right. While this level of sensitivity technically 

allowed to predict changes in ship movements early 

on, too much fluctuation was noted as limitation for 

readability and thus a risk for user acceptance. “If 

you'll show [a captain] a predictor moving like a 

wiper, they’ll say, ‘This is bloody stupid. Why is it 

showing that we’re moving this way?’ Because they 

don't ask how it's actually working under the surface. 

And that makes them lose trust.”, maritime expert.  

Consequentially, data scientists implemented 

filters in the algorithm to reduce input sensitivity and 

increase input latency, making the predictor move 

more sluggish. This highlighted the difficulty of 

finding the right balance between desired sensibility 

and interpretability, i.e., to determine what constituted 

a “responsive enough” prediction. To do so, data 

scientists developed a simulation software where they 

could experiment with different filter balances. 

Further, they emphasized the importance of domain 

knowledge in this process and asked maritime experts 

to experiment with that software. “We involved 

[maritime experts] to get a suitable [filter balance]. 

How many seconds in the past do we average? After 

several iterations and different ships, we found a 

reasonable value. [...]You want to avoid the wiper 

effect, but you still want to be able to set rudder hard 

to port and see a change in the prediction now, not 

with 20 seconds delay.”, data scientist. 

The role of maritime expertise during testing was 

also highlighted to detect unexpected technical 

challenges when incorporating algorithms from 

different domains. For instance, the predictor value 

indicating the ship’s direction was calculated using an 

algorithm developed for cars. That algorithm assumed 

that a car’s heading was equal to the orientation of its 

axle, which neglected the potential sideways drift that 

ships experience. A GNSS expert reflected: “this was 

an easy error to fix. But it was [maritime expert] who 

detected it visually on the ECDIS display, we did not 

detect it in the code. It was really his ‘gut instinct’.” 

Overall, data scientists noted the added challenge 

of developing a predictor designed for real-life use and 

the resulting importance of sea trials. “I developed 

similar predictors for [simulated environments] where 

you have control over all variables. That’s not the case 

at sea. You cannot tweak the ship’s behavior in the 

code.”, data scientist. 

4.3 Deployment  

The final stage in Neptune’s design process 

involved deploying the predictor to navigators and 

assess whether it actually supported their decision-

making as intended. Notably, this highlighted the 

challenge in matching DSS complexity with users’ 

cognitive capacity (DE1). While currently available 

ship predictors can potentially produce erroneous 

predictions, e.g., due to faulty sensors, their 

functionality is “simple enough” that navigators can 

comprehend these errors with proper training. In 

contrast, Neptune developers noted that the technical 

complexity of the AI predictor would make it more 

difficult to scrutinize its output. Their AI predictor was 

designed to continuously evaluate its own 

performance and thus to display its current accuracy 

estimate. If past predictions were unreliable, e.g., 

because of poor sensor input or strong wind, the 

predictor would be able to display that future 

predictions might be less accurate. Since traditional 

predictors did not have this functionality, much 

discussion revolved around how to present such 

quality indicators to the navigators to avoid confusion. 

Examples were displaying a traffic light or error bars 

on screen. The HMI designer noted: “Captains just 

want to have a quick look and know what’s going on. 

[...] There is a lot of information on the ECDIS. So we 

want to absolutely avoid information overload.” 

Another discussion topic was how much freedom the 

operators should have in changing predictor settings 

and what information to view. “We have to be 

selective in what we show to the operators, and what 

settings they can access.”, HMI designer.  

To evaluate the predictor usefulness, Neptune 

conducted A/B tests in ship simulators with 

experienced sea captains, i.e., captains would do 

certain maneuvers with both traditional and Neptune’s 

predictor to compare differences. Initially, Neptune 

used their self-developed simulation software for these 

tests, but developers noted that it failed to properly 

capture the complexity of navigators’ work 

environment. Subsequently, Neptune booked two days 

in a professional bridge simulator that included a 

realistic mock-up of a ship’s bridge and control 

consoles (s. Figure 3).  A data scientist reflected: “[our 

software] isn’t bad. But it's a desktop simulator 

[without] all this other information that people use 

when they're actually navigating. These captains are 

not used to drive a ship with mouse and keyboard. [...] 

So we decided ‘nope, didn't work well, let's do full 
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bridge simulators’ so the captains can handle the ship 

in a comfortable manner as they do in reality.” 

 

Figure 3 - Example of professional bridge 
simulator 

Feedback from captains and Neptune’s maritime 

experts helped an HMI design presenting the predictor 

output in an interpretable and useful manner. An 

example was implementing an automatic switch 

between traditional and AI predictor, for instance 

when a certain speed threshold or collision risk with 

other ships was identified. This reduced cognitive load 

on navigators who didn’t need to determine when the 

predictor would be useful and manually select it. Data 

scientists reflected positively on the involvement of 

user perspectives instead of evaluating usefulness 

from a purely technical perspective. “We could have 

cherry picked the top situations and showed really 

good [prediction] performance. [...] [But] we felt that 

with a quantitative approach, we could just twist the 

numbers in any direction. It was more valuable 

building on the [captains’] experience to answer, ‘is 

this useful for [navigators]?’”, data scientist. 

Neptune closed in June 2022 and the final outcome 

was met with positive reactions from Neptune, 

industry, and the funding agency. While commercial 

deployment was not within Neptune’s scope, at the 

time of writing, project members were positive 

towards commercializing the predictor as well as 

further collaboration. 

5. Discussion  

Until now, the relationship between AI 

development and contextual complexity has been 

analyzed mainly conceptually (Benbya et al., 2020; 

Berente et al., 2021). In this paper, I intended to go a 

step deeper into understanding how contextual 

conditions in a physical environment create challenges 

in the pursuit to develop a high-accuracy AI decision-

support and how developers mitigate these challenges. 

Two particularly noteworthy insights emerged from 

this study. 

First, prior IS research has suggested that 

ubiquitous digitalization presents a “digital-first” 

paradigm in IS development, where digital objects 

increasingly take precedence over their physical 

counterparts and information systems shape their 

physical reality, rather than provide a reflection of that 

reality (Baskerville et al., 2020). This study however 

illustrates that when developing applications that 

require ground truth data based on, and aim to be 

situated in complex physical environments, 

developers need to account for and integrate both 

digital and physical elements in their design. For 

instance, in order to acquire accurate input data from a 

highly modularized and constantly moving system, 

Neptune needed to create physical innovations, such 

as fixing two antenna sets for location accuracy or find 

workarounds for non-digitized sensors. Similarly, the 

usefulness of the predictor was ultimately not assessed 

by technical analysis, but by experienced domain 

experts while using the predictor in a sophisticated 

simulation that mirrored their physical onboard 

environment. This suggests a “digital-physical 

tandem” approach is necessary to situate AI decision-

support in physical environments outside of traditional 

organizational confines.  

Second, advances in data science allow AI 

applications to fully account for the variety and thus 

automate processes within organizational confines, 

such as product quality control (Cybulski & 

Scheepers, 2021). In the words of Ashby’s Law, these 

AI-based regulator systems possess enough variety to 

control the input variety of the environment they are 

designed for. This study however illustrates the 

challenges in developing a regulator system, an AI 

DSS for maritime navigation, that is able to control a 

variety of dynamic inputs in a complex environment. 

While the aggregate variety of the predictor system 

still remained below requisite variety to fully control 

the phenomena, i.e., to capture all parameters that 

influenced a ship’s future trajectory, the aggregated 

input data and developed algorithm still provided 

output that significantly improved navigators’ 

decision-making in specific situations. This study 

commenced with the assumption that variety 

stemming from physical influences outside of 

developers’ control, like wind or hydrodynamic 

effects, would be the main limiting factor in achieving 

that requisite variety. The findings confirmed that 

these physical influences indeed posed notable 

challenges, for instance in validating accuracy of input 

location data and assessing which physical influences 

could be accounted for in the predictor. However, the 

findings also illustrate that the goal of achieving high 

prediction accuracy was hindered by situating the 

predictor within a complex sociotechnical system, 

consisting of 1) the ship as a highly modularized 

technical system and 2) the human operator with a 

limited cognitive capacity. Highlighting these 

constraints in natural use domains for AI decision-

support, MacKinnon et al. (2020) note that the “AI 
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paradigm is difficult to apply when considering 

naturalist decision-making processes and largely 

ignores the challenges of spatial and temporal aspects 

typical of navigation in complex situations”. 

Consequentially, developers may choose to reduce the 

regulator variety, in Neptune’s case prediction 

accuracy, to mitigate constraints from the 

sociotechnical system. For instance, Neptune 

developers omitted certain onboard sensor data from 

their predictor. Although including more sensors 

would have been technically feasible, like including 

both values for set and current rudder angle, this could 

have produced erroneous predictions if the physical 

rudder movements did not match the coefficients 

modeled in the algorithm. Similarly, the 

responsiveness of the predictor was reduced to prevent 

confusion for navigators when presented with a highly 

fluctuating prediction, highlighting the heightened 

difficulty to scrutinize AI-produced information 

output (Lebovitz et al., 2021). While a fully 

autonomous ship might be able to account for such 

high responsiveness and in fact might benefit from it, 

human operators in cognitive demanding 

environments require easily interpretable information.  

6. Conclusion 

This study contributes to the emerging IS literature 

on AI development and complexity (Benbya et al., 

2021; Berente et al., 2021) by providing a rich, 

empirical account of challenges in developing an AI 

decision-support in a context rarely investigated by IS 

literature. It highlights that, when expanding the 

“scope frontier of AI” (Berente et al., 2021) to 

complex environments, developers need not only to 

produce an AI decision-support that provides output 

with high performance, but also need to situate it into 

complex workflows and technical legacy systems. 

Appropriate HMI design is crucial, since technically 

high prediction accuracy may be detrimental to users’ 

decision-making if the presented output is inscrutable. 

This is especially important considering that AI 

decision-support is increasingly embedded in contexts 

that are far from full automation and thus require AI 

tools to support humans in cognitive demanding tasks, 

such as medicine (Topol, 2019). My findings suggest 

that AI decision-support can aid in complex situations 

where traditional systems struggle with external 

variety. To avoid information overload for the user, 

developers may aim for “invisible AI” rather than 

XAI, i.e., providing reliable, easily interpretable 

information and switching automatically to robust 

non-AI systems in case of unreliable output, rather 

than explaining underlying AI processes to the user. 

In addition, the insights gained in this study may 

also serve as a basis for practical implications in terms 

of guidelines how heterogeneous innovation consortia 

can develop useful AI decision-support.  Notably, this 

study illustrates the importance of domain knowledge 

throughout all stages of the development process to 

detect and mitigate challenges. To this end, developers 

may employ a combination of testing methods, 

including simple desktop simulations, professional 

mock-up simulators and real-life trials, to evaluate 

different functionalities. In Neptune, while the bridge 

simulator was instrumental in experienced captains 

assessing the overall usefulness, I observed multiple 

instances where maritime experts with less experience 

used their tacit knowledge, or “gut feeling”, to help 

inform design choices like determining a suitable 

predictor responsiveness. As result, developers must 

be cognizant of the potential trade-offs in their design 

choices and incorporate different levels of domain 

knowledge in their process. Further, I observed how 

Neptune spent considerable effort in enabling input 

location data with higher accuracy to build capabilities 

for an envisioned future of autonomous ships and 

secondary high-accuracy applications. This suggests 

that developers may consider to “overengineer” AI 

applications to improve their usefulness for future 

scenarios of increasing automation. 

The study is not without limitations. First, while 

my status as “native” to the maritime domain context 

helped to situate myself in the  study context, it also 

presents potential challenges, as it might lead to 

overlooking tacit processes that “everyone in the field 

knows” (Brannick & Coghlan, 2007). To mitigate this, 

some findings, e.g., regarding technical challenges in 

calculating hydrodynamic effects, were discussed with 

non-maritime experts in Neptune to review initial 

assumptions. Second, this study builds on an in-depth, 

single-case study. Future research may consider 

comparing the development challenges outlined in this 

study with similarly complex environments with 

differing degrees of automation, such as road 

transportation or aviation. 
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