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Abstract

Decisions, having the possibility to have important
consequences on people’s lives, are made every day. For
this reason, there exists a great need for making good
decisions in today’s world. Because consistency has
been assumed to be a rationality measure, inconsistent
judgments are considered to lead to bad decisions. This
study aims to introduce a new granular-based approach
to deal with consistency, concretely multiplicative
consistency, of reciprocal preference relations in
decision-making. Firstly, we present a process of
an optimal distribution of information granularity
maximizing the consistency of the reciprocal preference
relation. Secondly, based on it, we develop an
interactive procedure for multiplicative consistency
improvement with the implication of the decision maker.
Several numerical examples are conducted to validate
the effectiveness of this granular-based approach.

Keywords: Consistency, information granularity,
decision-making, reciprocal preference relations.

1. Introduction

Decision-making is the act of selecting between two
or more possible solutions to a problem. Both for
business and life, decision-making and problem-solving
are essential skills. We will not even become aware of it,
but we make decisions on a daily basis. It consists in a
succession of steps taken by a decision maker to decide
the best alternative meeting the needs of the problem
to solve. In one of these steps, the decision maker
must evaluate the alternatives and then choose the best
one. We can find a number of preference elicitation
methods to model the decision maker’s judgments
about the alternatives (Millet, 1997). For instance,

the decision maker can provide a vector of alternatives
ordered from best to worst, give an utility value to
each alternative representing the fulfilment degree on a
specified criterion from her or his viewpoint, or express
her or his preference degree of one alternative over
another one. The latter gives rise to a preference relation
by repeatedly applying these pairwise comparisons.

Preference relations have been chosen in
decision-making to model decision maker’s evaluations
for two main reasons. Firstly, they facilitate the
aggregation of individual decision maker evaluations
into group ones (Fodor & Roubens, 1994). Secondly,
they allow the decision maker to give more precise
evaluations (Millet, 1997). Despite that, a preference
relation requires more information that the one
needed, which could lead to contradictions because
of the complex nature of the decision-making process
itself and the insufficiency of the current knowledge
(Garcı́a-Lapresta & Montero, 2006). Consistency has
been comprehended as a measure of rationality that
allows performance degrees. Therefore, a consistency
degree related to a preference relation acts as a sound
measure of its reliability and quality. A low value
means that the preference relation contains many
inconsistencies leading to wrong decisions. As a
result, it is very important to get preference relations
with consistency degrees as high as possible before
continuing with their usage in the further decision
analysis. It ensures the validity of the resulting
decisions (Herrera-Viedma et al., 2004).

Many consistency improvement approaches dealing
with preference relations have been conceived in the
literature (Li et al., 2019). They seek to increase
the consistency of the preference relation, but most
approaches achieved this goal in a way that gives rise
to high divergences between the evaluations provided

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 1541
URI: https://hdl.handle.net/10125/102823
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



by the decision maker and the modified ones, which
produces a notable information loss. To address
this concern, the consistency improvement approaches
can incorporate a number of conditions into the
modification process of the evaluations. For instance,
to control the difference between the modified and
original evaluations given by the decision maker in the
AHP (analytic hierarchy process), Pedrycz and Song
(2011) made use of a central concept of Granular
Computing, namely information granularity allocation
(Pedrycz, 2014). The underlying idea consists in
treating the evaluations as information granules that
provide the flexibility degree that is necessary to
improve the consistency. Based on this idea, several
consistency improvement methods have been developed
(Cabrerizo et al., 2021; Cabrerizo et al., 2017; Pedrycz,
2014), which deal with different types of preference
relations. Their common characteristic is that they are
based on an information granularity whose allocation
is uniform. Even though these methods have the
ability of improving the consistency of the preference
relation at the same time that they limit the range
in which the evaluations are modified according to
the granules of information, their performance could
actually be improved by allowing an optimal distribution
of a distinct information granularity to the elements
of the preference relation (Zhang et al., 2022). This
distribution, by being more flexible, could achieve a
better consistency than the approaches assuming that the
information granularity is distributed in a uniform way.

Based on the idea introduced by Zhang et al. (2022),
this study aims to introduce a new granular-based
approach to deal with consistency of reciprocal
preference relations. First, based on an established
average level of information granularity, a consistency
improvement process with an optimal distribution of
information granularity is presented. Due to the
limitation offered by the average level of information
granularity, it can improve the consistency degree of
the reciprocal preference relation whereas preserving
the original evaluations to the greatest extent. On the
one hand, to characterize the consistency, the property
of multiplicative transitivity is assumed (to model the
cardinal consistency of a reciprocal preference relation
this property is the most appropriate as it was shown
by Chiclana et al. (2009)). On the other hand, the
underlying optimization problem is solved by means
of the differential evolution (DE) algorithm (Storn
& Price, 1997). Second, an interactive consistency
improvement procedure involving an active implication
of the decision maker is developed. It is based on the
optimal consistency improvement process and offers a
complete application framework for practical situations.

To proceed with this approach and its realization,
we organize this study in the following way.
Section 2 recalls the needed knowledge in relation
to the reciprocal preference relation, the related
consistency degree, and the DE algorithm. Section 3
further explains both the process of multiplicative
consistency improvement with an optimal distribution
of information granularity and the interactive procedure
for multiplicative consistency improvement. Section 4
conducts a number of numerical experiments and
analyzes the performance of the proposed approach.
Lastly, Section 5 concludes the research conducted and
points out new directions for future investigations.

2. Preliminaries

2.1. Reciprocal preference relations and
consistency

Let A = {a1, a2, . . . , an} be a set of alternatives
solving a given decision problem. In decision-making,
the objective is to order the alternatives as a solution to
the problem, according to the evaluations given by a sole
decision maker or a group (Carlsson et al., 2012).

It has already been mentioned that pairwise
comparisons in the form of preference relations have
widely been used in decision-making. However, to
model the decision maker’s evaluations, in addition
to the preference elicitation method, a representation
domain must be established (Herrera-Viedma et al.,
2021). Concretely, the fuzzy sets and their extensions
have generally been used as they can manage efficiently
the vagueness of the not well-defined evaluations
given by decision makers (human beings) (Bustince
et al., 2016). Among them, the reciprocal preference
relations (Świtalski, 1999), which have been utilized to
characterize preference degrees in the fuzzy set theory,
are the subject of this research.

Definition 2.1 (Kacprzyk, 1986) “A reciprocal
preference relation R defined over a set of alternatives A
is given by its membership function µR : A×A → [0, 1],
µR(ai, aj) = rij , that verifies rij + rji = 1,
∀i, j = 1, . . . , n, i ̸= j.”

Generally, R is represented by a matrix R = [rij ] of
size n × n. For a decision maker, rij = µR(ai, aj),
being i ̸= j, designates her or his preference degree
of ai over aj . Notably, a value ≤ 0.5 is given to rij
if the decision maker has a preference for aj over ai;
0.5 is given to rij if the decision maker has an equal
preference for ai and aj ; and a value ≥ 0.5 is given to
rij if the decision maker has a preference for ai over aj .
As the entries of the leading diagonal are not used, they
are commonly denoted as “–” (Kacprzyk, 1986).
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There exist three hierarchic and strictly necessary
levels of rationality that have to be considered when
dealing with preference relations: (i) Indifference is
required between an alternative and itself, (ii) is ai is
preferred to aj , then aj cannot be preferred to ai, and
(iii) if ai is preferred to aj , and aj is preferred to ak, then
practical thinking suggests that ai should be preferred to
ak (Chiclana et al., 2009).

The definition of a reciprocal preference relation
guarantees the first and the second levels of rationality,
but not the third one, which is related to the
transitivity in the pairwise comparisons between any
three alternatives. However, to consider a preference
relation as consistent, it must satisfy the third level of
rationality (Chiclana et al., 2009). In addition, any
property satisfying transitivity is named as consistency
property. Because of that, the consistency of a reciprocal
preference relation is based on the transitivity notion
(De Baets et al., 2006; Świtalski, 1999), which has
been characterized in several forms as, for instance,
minimum transitivity, moderate stochastic transitivity,
maximum transitivity, strong stochastic transitivity,
additive transitivity and multiplicative transitivity, to cite
some of them (Chiclana et al., 2009; Herrera-Viedma
et al., 2004). Among them, we focus on the property
of multiplicative transitivity as Chiclana et al. (2009)
proved it is the most convenient to model cardinal
consistency of reciprocal preference relations. This
property is formulated in the following way:

rij · rjk · rki = rik · rkj · rji (1)

being rij > 0 ∀i, j.
Assuming reciprocity, the multiplicative transitivity

property may be formulated as follows by simple
algebraic manipulation (Chiclana et al., 2009):

rik =
rij · rjk

rij · rjk + (1− rij) · (1− rjk)
(2)

R is referred to as “multiplicative consistent”
whether for each three alternatives, i.e., ai, aj , ak,
belonging to a set of alternatives A, then (2) is satisfied
by rij , rjk, and rik.

To estimate rik, being i ̸= k, an intermediate
alternative aj and (2) can be applied:

mrjik =
rij · rjk

rij · rjk + (1− rij) · (1− rjk)
(3)

The average of all mrjik estimates the value of rik,
which is denoted as mrik:

mrik =
1

n− 2

n∑
j=1;j ̸=i,k

mrjik (4)

Then, the error, denoted as ϵrik, between the
preference degree and its estimated value is measured
as |rik −mrik|. These values can be utilized to measure
the consistency degree of R, denoted as cd(R), as:

cd(R) =
2

n2 − n

n−1∑
i=1

n∑
k=i+1

(1− ϵrik) (5)

If cd(R) = 1, the consistency reached is the highest.
The lower cd(R) is, the lower the consistency has been
reached.

2.2. DE algorithm

Storn and Price (1997) proposed it as a
population-based metaheuristic search technique
that aims at evolving a population of NP ≥ 4
d-dimensional vectors encoding the candidate solutions,
xg
i = (xg

i,1, . . . , x
g
i,d), i = 1, . . . , NP , in the direction

of the global optimum. To cover the search space
to the greatest extent, the population should be
initialized by randomizing uniformly the candidate
solutions within the search space constrained by
the established maximum and minimum parameter
boundaries xmax = (xmax,1, . . . , xmax,d) and
xmin = (xmin,1, . . . , xmin,d). At generation the g = 0,
the jth parameter in the ith candidate solution can be
initialized as:

x0
i,j = xmin,j + U(0, 1) · (xmax,j − xmin,j) (6)

where U(0, 1) is a uniform distribution over [0, 1].
After the initialization, three operations (mutation,

crossover, selection) are repeatedly applied generation
after generation until a given criterion is satisfied.
First, in the current population, the mutation operation
produces a mutant vector vg

i as regards to each xg
i . At

the generation g, for each xg
i , its corresponding vg

i is
obtained via a given mutation strategy. The basic DE
uses the “DE/rand/1” strategy, which is defined as:

vg
i = xg

a + F · (xg
b − xg

c) (7)

being a, b, and c, integers produced randomly in the
interval [1, NP ] that are mutually exclusive and also
distinct from i. They are produced randomly once for
every mutant vector. The scaling factor F ∈ [0, 2] is a
control parameter for scaling the difference vector.

Second, the crossover operation is applied to every
xg
i and its vg

i to produce a trial vector ug
i =

(ug
i,1, . . . , u

g
i,d). In the basic version of the DE, the

crossover operation is defined as:

ug
i,j =

{
vgi,j , if k ≤ CR or k = j

xg
i,j , otherwise

(8)
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being k an integer produced randomly in the interval
[1, d] and CR ∈ [0, 1] a crossover rate controlling the
portion of parameter values copied from the mutant
vector. Whether the value of any component of the
obtained trial vector exceeds the corresponding lower
and upper bounds, it must be uniformly and randomly
reinitialized within the specified interval.

Third, the selection operator is applied, which is as
follows:

xg+1
i =

{
ug
i , if f(ug

i ) ≥ f(xg
i )

xg
i , otherwise

(9)

being f : Rd → R the fitness function that must be
optimized (maximized, in this case).

The DE algorithm has as a principal advantage that
only three parameters must be adjusted, namely NP , F ,
and CR. Based on previous works (Das & Suganthan,
2011), a good value for NP is between 3d and 8d, the
value of CR is between 0.3 and 0.9, and F = 0.8.

3. Granular-based approach to address
multiplicative consistency

Based on an optimal distribution of information
granularity, first, this section describes a multiplicative
consistency improvement process for reciprocal
preference relations. Second, an interactive procedure
for multiplicative consistency improvement, which
guides the decision maker to change the pairwise
comparisons, is developed.

3.1. Multiplicative consistency improvement
process

From a practical viewpoint, the decision maker
usually provides a reciprocal preference relation R
that is inconsistent to some extent. For this reason,
to improve its consistency, the decision maker must
allow a certain adaptability and gives up her or his
first pairwise comparisons. These modifications result
in an information loss in the decision-making process.
Based on the ideas presented by Pedrycz and Song
(2011), the [0, 1]-values of the entries of the reciprocal
preference relation can be replaced by granules of
information, which gives rise to a granular reciprocal
preference relation (Cabrerizo et al., 2017). Particularly,
interval-valued entries are constructed if the granules
of information are in the form of intervals. In such a
case, if εij is the information granularity level injected to
rij , then an excessive information loss can be prevented
during the consistency improvement process because of
the limitation imposed by εij .

Definition 3.1 Let R = [rij ] be a reciprocal preference
relation of size n × n. G(R) = [gij ] of size
n × n is the granular (interval-valued) reciprocal
preference relation connected to R, being G(·) a family
of interval-valued reciprocal preference relations and
gij = [rij − 0.5εij , rij + 0.5εij ].

Here, for the alternatives ai and aj , taking into
account the reciprocity property, we principally focus on
modifying the value of rij ∈ [0, 1] within the following
interval:

gij = [max(0, rij−0.5εij),min(1, rij+0.5εij)] (10)

Let Ψ = {(i, j) | i > j} be the set of pairs of
alternatives whose preference degree will be changed at
first. Let Ψ = {(i, j) | (i, j) /∈ Ψ ∧ i ̸= j}. Clearly,
the cardinality, m, of Ψ is equal to 0.5n(n− 1). On the
one hand, the needed adaptability may be injected to the
decision-making process by the information granularity
level. On the other hand, it could lead to the problem
of loss of information. Consequently, we must limit
and evaluate the average level of information granularity
ε to guarantee a certain information accuracy. This is
performed as:

mε =
∑

(i,j)∈Ψ

εij (11)

The value of ε is a parameter of the model that
is given by the decision maker. The higher the
value assigned to ε, the higher the decision maker’s
compromise and adaptability degree.

Let R ∈ G(R) be a component of the family of
interval-valued reciprocal preference relations G(·), i.e.:

rij ∈ gij (i, j) ∈ Ψ

rij = 1− rji (i, j) ∈ Ψ

rij = “–” i = j

(12)

Considering an information granularity level
distributed uniformly, i.e., εij = ε, we carry out a
random experiment with the purpose of analyzing
the impact of the distributed granularity level. For
a reciprocal preference relation R and average level
of information granularity ε, a reciprocal preference
relation R is randomly obtained coming from G(R),
i.e., the interval-valued representative of R. Next,
using (5), we calculate the consistency degree of R. To
perform this experiment, the following R is considered:

R =


− 0.70 0.60 0.40 0.20
0.30 − 0.30 0.10 0.40
0.40 0.70 − 0.90 0.60
0.60 0.90 0.10 − 0.70
0.80 0.60 0.40 0.30 −
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Figure 1. Consistency degree versus ε.

Taking into consideration several levels of
information granularity ε, we run the random
experiment 600 times. The related plots of ε versus the
consistency degrees of the randomly obtained reciprocal
preference relations R coming from G(R) are displayed
in Fig. 1. We can observe that, on the one hand, the
minimum consistency degree decreases when the value
assigned to ε is incremented. On the other hand, the
maximum consistency degree increases and the average
value stays essentially equal. As a result, by allowing an
established level of information granularity, a modified
reciprocal preference relation with a lower or a higher
consistency degree may be generated. In particular,
it is determined by the distribution of the information
granularity, i.e., εij , and the formation of the modified
reciprocal preference relation, i.e., rij . Therefore, a
pertinent point is how to compute rij and εij to make
sure the achievement of a high consistency degree.

When we generate R from G(R), we aim to obtain
a reciprocal preference relation having a consistency
degree as high as possible, i.e.:

max cd(R) (13)

On the other hand, the modified reciprocal
preference relation comes from an interval-valued
(granular) representation of R, i.e.:

R ∈ G(R) (14)

Based on (11)–(13), we construct the model
for improving the multiplicative consistency with an
optimal information granularity distribution as:

max
rij ,εij

cd(R)

s.t.

{
R ∈ G(R)

mε =
∑

(i,j)∈Ψ εij

(15)

being rij and εij the decision variables. Essentially, we
can contemplate the model as a decision-making process
composed of two sequential steps as εij determines rij .

In model (15), there are n(n− 1) decision variables.
Nevertheless, considering that R ∈ G(R), the interval
to which the value of rij belongs is determined by (10).
On account of that, one has:{

0 ≤ 2|rij − rij | ≤ εij

rij ∈ [0, 1]
(16)

In view of this, we may convert the model (15) into
the following one:

max
rij

cd(R)

s.t.


∑

(i,j)∈Ψ 2|rij − rij | ≤ mε

rij ∈ [0, 1] (i, j) ∈ Ψ

rij = 1− rji (i, j) ∈ Ψ

rij = “–” i = j

(17)

being rij the decision variables. Its number now is
0.5n(n− 1).

In model (17), the mean of the absolute distance
between rij and rij in l1-norm is limited due to
ε. Consequently, a delimited information difference
between the adjusted and the original reciprocal
preference relation is guaranteed.

To solve the process of multiplicative consistency
improvement, two steps are carried out. Firstly, based
on (17), the value assigned to every rij is calculated.
Secondly, the value assigned to every εij , (i, j) ∈
Ψ, is computed. In the latter, let ∆ = mε −∑

(i,j)∈Ψ 2|rij − rij |. Given (16), it is clear that
countless values can be assigned to ε as solution whether
∆ > 0. Without loss of generality, in the process of
multiplicative consistency improvement, ε is distributed
as follows:

εij =

{
2|rij − rij |+ 1

#Υ∆ (i, j) ∈ Υ

0 (i, j) ∈ Ψ−Υ

(18)
being Υ = {(i, j) | (i, j) ∈ Ψ ∧ rij ̸= rij} and #Υ
its cardinality. Notably, whether ∆ = 0, then εij =
2|rij − rij | is the only one solution.

To solve this optimization problem, viz., model (17),
the DE algorithm described in 2.2 is used for two main
reasons. First, its simplicity (Das & Suganthan, 2011).
Second, it has already demonstrated good performance
in similar optimization problems (Zhang et al., 2022).
Anyway, any other optimization method such as the
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particle swarm optimization could be applied as it has
also been applied to this kind of problems (Cabrerizo
et al., 2021).

3.2. Interactive procedure for multiplicative
consistency improvement

There exist two kinds of methodologies managing
consistency in preference relations (Li et al., 2019),
particularly, (i) methods based on automatic adjustment
and (ii) methods based on interactive adjustment.
The process of multiplicative consistency improvement
presented in Section 3.1 belongs to the former, i.e.,
the multiplicative consistency is improved by means of
an optimization model without the participation of the
decision maker. However, in practical decision-making
processes, the decision-maker’s implication is essential
in the alteration of the preference relation. As a result,
considering the proposed process of multiplicative
consistency improvement, we further construct an
interactive procedure for multiplicative consistency
improvement involving the decision maker. Here,
the optimal adjusted reciprocal preference relation, R,
returned by the process described in Section 3.1 is only
taken into account as a decision support that the decision
maker can use as an aid to change the values assigned to
the pairwise comparisons.

The main point of the interactive procedure is
to return the optimal adjusted reciprocal preference
relation, R, to the decision maker, who should
reconstruct a new adjusted reciprocal preference relation
R′ according to it. To construct R′ = [r′ij ], the following
interval-valued components are suggested:

r′ij ∈ [min(rijrij),max(rij , rij)] (19)

Therefore, we have:

r′ij = min(rij , rij)βij +max(rij , rij)(1− βij) (20)

being βij ∈ [0, 1] a value decided by the decision maker.
In the interactive procedure for multiplicative

consistency improvement there exist two stop
conditions. On the one hand, it stops whether a
maximum number of iterations, max iter, is reached
by the current iteration. On the other hand, it stops
whether the adjustment of the reciprocal preference
relation is less than a threshold δ, which establishes
a tolerance degree. In particular, based on the
original/adjusted reciprocal preference relation given by
the decision maker, the number of iterations is recorded
and the deviation, DEV , between the original and
the adjusted reciprocal preference relation is obtained
by calculating the distance between both reciprocal

preference relations:

DEV (R,R′) =
2

n2 − n

n−1∑
i=1

n∑
j=i+1

|rij − r′ij | (21)

Whether the deviation is greater or equal than δ and
the number of the current iteration is less than max iter,
the feedback is given to the decision maker based on the
optimal adjusted reciprocal preference relation returned
by the process described in Section 3.1. According to
it, the decision maker may change her or his reciprocal
preference relation. Concretely, the decision maker
may refuse, partially accept, or entirely accept the
recommendation received. Let k be the iteration number
and let Rk be the reciprocal preference relation given
by the decision maker at the k iteration. Algorithm 1
describes the steps of this interactive procedure.

Algorithm 1:
Input: R, ε, max iter, δ
Output: R′

1: k = 0, R0 = R, DEV 0 = δ
2: while k < max iter and DEV k ≥ δ do
3: Calculate R

k
according to (17)

4: Construct R′ as suggested by (19)
5: Rk+1 = R′

6: Calculate DEV k+1(Rk, Rk+1)
7: k = k + 1
8: end while
9: return R′

4. Illustrative examples

First, three numerical examples are performed to
show the applicability of the proposed process of
multiplicative consistency improvement to increase the
consistency degree of the reciprocal preference relations
by means of the optimization of the level of information
granularity and the adjusted reciprocal preference
relations. Second, its effectiveness is illustrated by
offering some comparisons. Third, the application of
the interactive procedure for multiplicative consistency
improvement is shown by using the same numerical
examples.

4.1. Numerical examples with the process of
multiplicative consistency improvement

We consider three reciprocal preference relations,
R1, R2 and R3, of dimensions 5 × 5, 7 × 7, and 8 × 8,
respectively, to show the applicability of the optimal
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process of multiplicative consistency improvement:

R1 =


− 0.70 0.60 0.40 0.20
0.30 − 0.30 0.10 0.40
0.40 0.70 − 0.90 0.60
0.60 0.90 0.10 − 0.70
0.80 0.60 0.40 0.30 −



R2 =



− 0.60 0.70 0.20 0.40 0.30 0.10
0.40 − 0.40 0.10 0.60 0.20 0.30
0.30 0.60 − 0.70 0.90 0.90 0.20
0.80 0.90 0.30 − 0.70 0.30 0.70
0.60 0.40 0.10 0.30 − 0.80 0.80
0.70 0.80 0.10 0.70 0.20 − 0.90
0.90 0.70 0.80 0.30 0.20 0.10 −



R3 =



− 0.30 0.80 0.80 0.30 0.20 0.40 0.60
0.70 − 0.60 0.60 0.60 0.70 0.20 0.30
0.20 0.40 − 0.70 0.30 0.60 0.80 0.80
0.20 0.40 0.30 − 0.70 0.80 0.20 0.60
0.70 0.40 0.70 0.30 − 0.80 0.60 0.70
0.80 0.30 0.40 0.20 0.20 − 0.20 0.70
0.60 0.80 0.20 0.80 0.40 0.80 − 0.70
0.40 0.70 0.20 0.40 0.30 0.30 0.30 −


Using (5), the consistency degrees of R1, R2 and R3,

are cd(R1) = 0.642, cd(R2) = 0.578 and cr(R3) =
0.688, respectively. Before applying the proposed
process of multiplicative consistency improvement, we
establish two average levels of information granularity:
ε = 0.1 and ε = 0.2. Subsequently, we apply the
process of multiplicative consistency improvement to
optimize the modified reciprocal preference relations,
R1, R2 and R3, related to R1, R2 and R3, and the
distribution of information granularity ε.

To optimize the entries of the adjusted reciprocal
preference relations, R1, R2 and R3, we run the
DE algorithm. The search parameters of DE are
set to be F = 0.8, NP = 8(0.5n(n − 1))
and CR = 0.9. Then, using (18), we calculate
the information granularity distribution according to
the adjusted reciprocal preference relations that have
been obtained. The matrix D = [εij ], being
εij the distributed information granularity, conveys
the information granularity distribution. Taking into
account R1, R2 and R3, the adjusted reciprocal
preference relations and the matrices containing the
information granularity distribution are the following.

Given ε = 0.1, the values of R1 and D1 for R1 are:

R1 =


− 0.70 0.47 0.40 0.38

0.30 − 0.30 0.10 0.40
0.53 0.70 − 0.72 0.60
0.60 0.90 0.28 − 0.69
0.62 0.60 0.40 0.31 −



D1 =


− 0.00 0.26 0.00 0.36
− − 0.00 0.00 0.00
− − − 0.36 0.00
− − − − 0.02
− − − − −


Given ε = 0.2, the values of R1 and D1 for R1 are:

R1 =


− 0.63 0.46 0.38 0.41
0.37 − 0.27 0.24 0.44
0.54 0.73 − 0.59 0.61
0.62 0.76 0.41 − 0.68
0.59 0.56 0.39 0.32 −



D1 =


− 0.142 0.282 0.042 0.422
− − 0.062 0.282 0.082
− − − 0.622 0.022
− − − − 0.042
− − − − −


Given ε = 0.1, the values of R2 and D2 for R2 are:

R2 =



− 0.59 0.58 0.10 0.38 0.29 0.22
0.41 − 0.42 0.11 0.53 0.21 0.30
0.42 0.58 − 0.71 0.82 0.81 0.23
0.90 0.89 0.29 − 0.66 0.35 0.69
0.62 0.47 0.18 0.34 − 0.58 0.78
0.71 0.79 0.19 0.65 0.42 − 0.89
0.78 0.70 0.77 0.31 0.22 0.11 −



D2 =



− 0.02 0.24 0.20 0.04 0.02 0.24
− − 0.04 0.02 0.14 0.02 0.00
− − − 0.02 0.16 0.18 0.06
− − − − 0.08 0.10 0.02
− − − − − 0.44 0.04
− − − − − − 0.02
− − − − − − −


Given ε = 0.2, the values of R2 and D2 for R2 are:

R2 =



− 0.58 0.50 0.21 0.35 0.39 0.26
0.42 − 0.42 0.19 0.47 0.19 0.26
0.50 0.58 − 0.65 0.63 0.72 0.26
0.79 0.81 0.35 − 0.69 0.32 0.58
0.65 0.53 0.37 0.31 − 0.61 0.69
0.61 0.81 0.28 0.68 0.39 − 0.77
0.74 0.74 0.74 0.42 0.31 0.23 −



D2 =



− 0.046 0.406 0.026 0.106 0.186 0.166
− − 0.046 0.186 0.266 0.026 0.086
− − − 0.106 0.546 0.366 0.126
− − − − 0.026 0.046 0.246
− − − − − 0.386 0.226
− − − − − − 0.266
− − − − − − −
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Given ε = 0.1, the values of R3 and D3 for R3 are:

R3 =



− 0.27 0.64 0.79 0.33 0.37 0.39 0.59
0.73 − 0.60 0.64 0.60 0.53 0.26 0.34
0.36 0.40 − 0.70 0.31 0.59 0.65 0.81
0.21 0.36 0.30 − 0.66 0.77 0.28 0.57
0.67 0.40 0.69 0.34 − 0.78 0.58 0.62
0.63 0.47 0.42 0.23 0.22 − 0.14 0.63
0.61 0.74 0.35 0.72 0.42 0.86 − 0.64
0.41 0.66 0.19 0.43 0.38 0.37 0.36 −



D3 =



− 0.06 0.32 0.02 0.06 0.34 0.02 0.02
− − 0.00 0.08 0.00 0.34 0.12 0.08
− − − 0.00 0.02 0.02 0.30 0.02
− − − − 0.08 0.06 0.16 0.06
− − − − − 0.04 0.04 0.16
− − − − − − 0.12 0.14
− − − − − − − 0.12
− − − − − − − −


Given ε = 0.2, the values of R3 and D3 for R3 are:

R3 =



− 0.40 0.39 0.65 0.31 0.58 0.41 0.64
0.60 − 0.60 0.59 0.61 0.70 0.33 0.57
0.61 0.40 − 0.59 0.37 0.64 0.53 0.81
0.35 0.41 0.41 − 0.50 0.82 0.25 0.57
0.69 0.39 0.63 0.50 − 0.77 0.46 0.67
0.42 0.30 0.36 0.18 0.23 − 0.22 0.53
0.59 0.67 0.47 0.75 0.54 0.78 − 0.73
0.36 0.43 0.19 0.43 0.33 0.47 0.27 −



D3 =



− 0.202 0.822 0.302 0.022 0.762 0.022 0.082
− − 0.000 0.022 0.022 0.000 0.260 0.542
− − − 0.222 0.142 0.082 0.542 0.022
− − − − 0.402 0.042 0.102 0.062
− − − − − 0.062 0.282 0.062
− − − − − − 0.042 0.342
− − − − − − − 0.062
− − − − − − − −


Considering the optimal adjusted reciprocal

preference relations, we determine their consistency
degrees, which are shown in Table 1. These three
numerical examples have demonstrated that the
consistency degrees of the adjusted reciprocal
preference relations can be improved by allowing
a given ε. In addition, for ε = 0.2, the consistency
degree reached in the three numerical examples has
been greater than the one achieved for ε = 0.1. It means
that a higher value of ε allows to achieve a greater
improvement of the multiplicative consistency.

Table 1. Values of cd(Rl) for chosen values of ε.

ε = 0.1 ε = 0.2
cd(R1) 0.729 0.750
cd(R2) 0.630 0.660
cd(R3) 0.721 0.749

4.2. Comparative study

As a means to validate the effectiveness of
the proposed process, some simulated experiments
are conducted in which it is compared with an
approach based on a uniform distribution of information
granularity (Cabrerizo et al., 2017), i.e., the level
of information granularity ε is uniformly distributed
among all the entries of the reciprocal preference
relation. For comparative purposes, we refer to this
approach as UD-process.

We randomly produce 150 reciprocal preference
relations of distinct dimensions. The dimensions
of the reciprocal preference relations Rl are 5(l =
1, . . . , 30), 6(l = 31, . . . , 60), 7(l = 61, . . . , 90), 8(l =
91, . . . , 120), and 9(l = 121, . . . , 150).

Let ε be 0.1 and 0.2, respectively. Based on
the maximization of the consistency degree, both the
UD-process and the proposed process are applied to
obtain the adjusted reciprocal preference relations.
The relation between the optimized and the original
consistency degree, i.e., cd(R) and cd(R), is illustrated
in Figs. 2 and 3. It can be observed that the values
of cd(R) in both procedures are higher than the values
of cd(R) for all the reciprocal preference relations.
Furthermore, the values of cd(R) are evidently higher
for the proposed process than those reached by the
UD-process. It illustrates the proposed process achieves
better multiplicative consistency degrees.
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Figure 2. Optimized cd (ε = 0.1). Proposed process

versus UD-process.
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Figure 3. Optimized cd (ε = 0.2). Proposed process

versus UD-process.

4.3. Numerical examples with the interactive
procedure

To show the performance of the interactive
multiplicative consistency improvement procedure, the
reciprocal preference relations, R1, R2 and R3, are also
considered. In these examples, the decision maker’s
modification behavior in the interactive procedure is
modeled by assuming that she or he agrees with
the optimal adjusted reciprocal preference relation
produced by the process of multiplicative consistency
improvement described in Section 3.1, i.e., we
suppose that the decision maker entirely accepts the
recommendation received.

Let max iter = 4, δ = 0, and ε = 0.1.
Let k be the iteration number and let cd(Rl) be
the multiplicative consistency degree of the reciprocal
preference Rl. Table 2 shows the values of the
multiplicative consistency degrees of R1, R2 and R3, in
successive iterations of the interactive procedure (when
k = 0, the consistency degree is the one related to the
original reciprocal preference relation). As shown in
Table 2, the values of the consistency degrees improve
with the increasing numbers of iteration. It demonstrates
the effectiveness of the interactive procedure.

Table 2. Values of cd(Rl) in successive iterations of
the interactive procedure.

k = 0 k = 1 k = 2 k = 3
cd(R1) 0.642 0.729 0.750 0.774
cd(R2) 0.578 0.630 0.660 0.680
cd(R3) 0.688 0.721 0.749 0.771

5. Conclusions

This study has presented an optimal granular-based
approach addressing multiplicative consistency of
reciprocal preference relations. First, based on a
given average level of information granularity, a
process of multiplicative consistency improvement
with an optimal distribution of information granularity
has been introduced. Although the increasing of
consistency comes to detriment of improving the loss
of information, and vice versa, i.e., the consistency
degree and the information loss are in conflict, due
to the bounded average information granularity, this
process can improve the multiplicative consistency
with a limited loss of information between the
original and the adjusted reciprocal preference
relation. Second, using this process, an interactive
procedure for multiplicative consistency improvement
has been constructed. The fundamental distinction
between the former (automatic adjustment method)
and the latter (interactive adjustment approach) is
the participation of the decision maker. In many
real-world decision-making processes, automatic
adjustment methods cannot manage the question
of preference degrees with low reliability without
the participation of the decision maker, which is
required during the adjustment step to increase the
acceptability and validity of the solution adopted. In
such a way, the interactive procedure is appropriate for
real-world applications, whereas the optimal process
of multiplicative consistency improvement can be used
to offer an optimal a rational adjustment advice to
the decision maker. Several numerical examples have
been conducted to validate the effectiveness of both
approaches.

The multiplicative transitivity property has been
used in this study to characterize the cardinal
consistency of the reciprocal preference relations due to
Chiclana et al. (2009) proved it is the most appropriate
one. However, as a first step at attempting to extend
this study, any other consistency measure could also
be used (Li et al., 2019). In addition, even though
the computation time of the multiplicative consistency
improvement process takes only a few seconds, it would
be interesting to study how this time is increased with
reciprocal preference relations having a greater number
of components.
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Cabrerizo, F. J., Pérez, I. J., Pedrycz, W., &
Herrera-Viedma, E. (2017). An improvement
of multiplicative consistency of reciprocal
preference relations: A framework of Granular
Computing. Proceedings of the 2017 IEEE
International Conference on Systems, Man,
and Cybernetics (SMC), 1262–1267.

Carlsson, C., Brunelli, M., & Mezei, J. (2012). Decision
making with a fuzzy ontology. Soft Computing,
16(7), 1143–1152.

Chiclana, F., Herrera-Viedma, E., Alonso, S., & Herrera,
F. (2009). Cardinal consistency of reciprocal
preference relations: A characterization of
multiplicative consistency. IEEE Transactions
on Fuzzy Systems, 17(1), 14–23.

Das, S., & Suganthan, P. N. (2011). Differential
evolution: A survey of the state-of-the-art.
IEEE Transactions on Evolutionary
Computation, 15(1), 4–31.

De Baets, B., Meyer, H. D., & De Schuymer, B. (2006).
Cyclic evaluation of transitivity of reciprocal
relations. Social Choice and Welfare, 26,
217–238.

Fodor, J., & Roubens, M. (1994). Fuzzy preference
modelling and multicriteria decision support.
Kluwer Academic Publishers.

Garcı́a-Lapresta, J. L., & Montero, J. (2006).
Consistency in preference modeling.
In B. Bouchon-Meunier, G. Coletti, &

R. R. Yager (Eds.), Modern information
processing: From theory to applications
(pp. 87–97). Elsevier.

Herrera-Viedma, E., Herrera, F., Chiclana, F., & Luque,
M. (2004). Some issues on consistency of
fuzzy preference relations. European Journal
of Operational Research, 154(1), 98–109.

Herrera-Viedma, E., Palomares, I., Li, C.-C., Cabrerizo,
F. J., Dong, Y. C., Chiclana, F., & Herrera,
F. (2021). Revisiting fuzzy and linguistic
decision making: Scenarios and challenges
for making wiser decisions in a better way.
IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 51(1), 191–208.

Kacprzyk, J. (1986). Group decision making with
a fuzzy linguistic majority. Fuzzy Sets and
Systems, 18(2), 105–118.

Li, C.-C., Dong, Y. C., Xu, Y., Chiclana, F.,
Herrera-Viedma, E., & Herrera, F. (2019). An
overview on managing additive consistency
of reciprocal preference relations for
consistency-driven decision making and
fusion: Taxonomy and future directions.
Information Fusion, 52, 143–156.

Millet, I. (1997). The effectiveness of alternative
preference elicitation methods in the analytic
hierarchy process. Journal of Multi-Criteria
Decision Analysis, 6(1), 41–51.

Pedrycz, W. (2014). Allocation of information
granularity in optimization and
decision-making models: Towards building the
foundations of Granular Computing. European
Journal of Operational Research, 232(1),
137–145.

Pedrycz, W., & Song, M. (2011). Analytic hierarchy
process (AHP) in group decision making
and its optimization with an allocation of
information granularity. IEEE Transactions on
Fuzzy Systems, 19(3), 527–539.

Storn, R., & Price, K. (1997). Differential evolution
– A simple and efficient heuristic for global
optimization over continuous spaces. Journal
of Global Optimization, 11(4), 341–359.
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