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Abstract

Unmanned aerial vehicles are becoming integrated
into a wide range of modern IoT and CPS environments
for various industrial, military, and entertainment
applications. With growing estimations for this market
in the future, the problem of energy consumption and
its prediction is becoming increasingly important for
optimal battery-saving, as well as the safety of the
application and thus protection of surrounding persons
near the drone flight. This paper presents a machine
learning-based approach for the prediction of the power
consumption of unmanned aerial vehicles at certain
times of the flight. Instead of predicting the power
consumption in prescribed environments with complex,
time-consuming measurement techniques, our approach
is fast, easy to implement, and predicts real-world power
consumption in five classes, with a balanced accuracy of
66.7 percent.

Keywords: UAV, drones, power consumption,
machine learning, dynamic environments

1. Introduction

The exceptional growth of the unmanned aerial
vehicle (UAV) sales is expected to continue with
shipments of over 90 million consumer UAVs to be
recorded in 2025 alone (Yuan et al., 2018). UAVs are
nowadays used for various applications, like mailing,
delivery of products, inspection of hard-to-reach areas
like pipelines and bridges, military usage, and other
industrial applications (Hassanalian & Abdelkefi, 2017;
Lee & Choi, 2016). The benefit of using UAVs for
companies is having lower cost, increased speed, and
reduced greenhouse gas emissions (Zhang et al., 2021).
Additionally, for consumers, the usage of drones for

entertainment becomes more and more popular (Quiroz
& Kim, 2017).

With the increasing use of drones and the population
density rising, a new problem, besides surveillance fear
of inhabitants, arose. Namely, the fear of falling drones
causing physical injuries to people (Dalamagkidis et al.,
2008; Schenkelberg, 2016). Not only does the weight
significantly impact the potential damage caused by
falling drones, but also the propeller blades can harm
persons.

There were over 4,250 registered drone injuries
between 2015 and 2020 (Gorucu & Ampatzidis, 2021).
With over 70 percent, most injury diagnoses were
lacerations, followed by contusion or abrasion with
about ten persons, and strain and internal injuries each
with 5 percent. The most injured body parts are the
fingers and the head of victims. The impacts on the
body can therefore be drastic (Dalamagkidis et al., 2008;
Duma et al., 2021; Gorucu & Ampatzidis, 2021), which
leads to the first researchers assessing the risk of drone
flights (Dalamagkidis et al., 2008).

With growing estimations for the UAV market, this
number of accidents is also expected to grow in the
future (Clothier et al., 2015; Giones & Brem, 2017).
One major issue causing this is the fact that most
regulations are still superficial (Dalamagkidis et al.,
2008). This is why damage prevention by falling
drones is important (Schenkelberg, 2016) and should be
implemented by developers. As stated previously, the
technology of drones is developing rapidly, but safety
regulations do not (Dalamagkidis et al., 2008; Zhang
et al., 2021).

Limited battery life and its estimation are one
of the biggest challenges in drone development
(Abeywickrama et al., 2018; Mansouri et al., 2017).
This fact also significantly influences the emergency
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rate and success rate of drone applications (Prasetia
et al., 2019). It is essential to know the future
power consumption to forecast how many flights can
be made and thus improve security and the service
quality of companies (Baek et al., 2018). Therefore,
developing reliable energy consumption models that can
accurately predict the energy use and End of Discharge
(EoD) is essential for improving safety, and efficiency
(Abeywickrama et al., 2018; Dalamagkidis et al., 2008;
Liu et al., 2017; Mansouri et al., 2017; Zhang et al.,
2021).

In general, energy models are clustered into
black-box models and white-box models. White box
modeling approaches use statistical and mathematical,
mostly linear models, but also specific machine
learning models, like decision trees, to estimate energy
consumption (Prasetia et al., 2019). White box models
are explainable for humans but usually less accurate
(Loyola-Gonzalez, 2019). In contrast, black-box
methods do not require any physical or theoretical
models and parameters. This approaches primarily
uses machine learning methods, like support vector
machines, gradient boosted trees (Loyola-Gonzalez,
2019; Prasetia et al., 2019), or convolutional networks,
which also showed good performance when using image
data (e.g., quality control of electrical components
(Breitenbach, Gross, Baumgartl, et al., 2022) or medical
products (Breitenbach, Gross, Buettner, et al., 2022)).
These models are more accurate but hard to explain
(Loyola-Gonzalez, 2019).

White box models are often time-consuming and
complex to implement. Additionally, those approaches
are difficult to apply to different scenarios and types
of drones. Most studies only observed individual
parameters but did not represent a holistic picture of
energy models (Abdilla et al., 2015; Bezzo et al., 2016;
Figliozzi, 2017; Liu et al., 2017; Schacht-Rodrıguez
et al., 2018; Shan et al., 2020). Studies done in the
field of black-box modeling have grown in the past
years. Several machine learning approaches, like
Non-recursive Least Squares, Kalman Filters, ELM
neural networks, Long-Short Term Memory, linear
sparse models, support vector regressions, multilayer
perceptrons, and advanced tree-based algorithms have
been used for different cases, and measurements
(Abeywickrama et al., 2018; Costa et al., 2019;
Mansouri et al., 2017; Prasetia et al., 2019; Saha
et al., 2012). The effects of different parameters were
identified, and the first holistic approaches for energy
models were described and evaluated (Abeywickrama
et al., 2018; Ahmed et al., 2016; Choudhry et al., 2021;
Mansouri et al., 2017; Prasetia et al., 2019).

Although many studies in the field of energy
consumption models of UAVs have been conducted,
there is still a lack of realistic energy models for drones
that can be used for different cases (Si et al., 2011;
Trihinas et al., 2021). Most models in the field of
energy consumption for UAVs are still not accurate
enough (Mansouri et al., 2017), and therefore reliable
results cannot be guaranteed with most of the models
currently available (Prasetia et al., 2019). One major
problem causing this is that current techniques are
insufficient to manage when having different loads in
dynamic environments (Saha, Koshimoto, et al., 2011;
Saha, Quach, & Goebel, 2011). There are only a few
holistic models (Abeywickrama et al., 2018) that include
payload, wind speed, speed, different maneuvers, and
communication. Most studies only included certain
parameters in their experiments (Ahmed et al., 2016;
Alyassi et al., 2022; Liu et al., 2017; Valenti et al.,
2007). This is also one of the reasons why there is no
“consensus on standards for drone energy consumption,
nor on how to model drone energy consumption” (Zhang
et al., 2021). To sum up, “various drone energy models
can produce widely divergent results in terms of the
energy consumed for essentially the same drone delivery
operation” (Zhang et al., 2021) since most studies only
conducted a few flights and therefore collected few data.
Thus, the energy consumption rate varies by a factor of
3 to 5 across the models (Rodrigues et al., 2021).

Accurate energy prediction requires a reliable and
realistic energy consumption model (Abeywickrama
et al., 2018). Mathematical models are usually very
complex and, in numerous instances, not transferable
to other scenarios. The work usually only relates
to individual scenarios, and truly overarching models
cannot be mapped. There are too many parameters
and environmental influences on drone flights, which
mathematical functions cannot depict. Therefore, these
proposed energy consumption models vary strongly
(Rodrigues et al., 2021). To build an accurate,
fully comprehensive energy prediction model that is
considering all relevant parameters influencing a drone
flight, a machine learning approach is necessary.
Such an approach ensures higher accuracies, more
efficient, less time-consuming algorithms, and the use
of large amounts of data, which allows consistent and
comprehensive research results.

For improving security, improving public
perception, and thus increasing the market size,
it is highly relevant for companies to use drones
containing accurate power consumption predictions
since high reliability is one of the primary goals when
using drones (Schenkelberg, 2016). Therefore, we
will look at the topic of drone power consumption
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prediction from an economic and financial point of view
with a focus on security. We will specifically focus
on the security aspect regarding power consumption.
Security aspects like hacking, sensor malfunction, or
external influences, like humidity or fog mentioned in
(Schenkelberg, 2016) will not be considered.

The most important contributions of this paper are:

• We develop a random forest classifier with five
power consumption classes of each 200W that
achieves a balanced accuracy of 66.7 percent.

• We contribute to research in the field of power
consumption prediction for UAVs.

• We underpin the impact of payload and wind
speed on the power consumption of UAVs.

The paper is organized accordingly: First, we
present an overview of the research background on
the power consumption of drones, prediction of energy
consumption using different models, and machine
learning approaches in the field of drones. After that, we
describe the used methodology, including the machine
learning model and the dataset. Afterward, we show the
results of the machine learning approach and discuss the
results. Finally, we outline the limitations and questions
for future research.

2. Research Background

2.1. Drone Power Consumption

There has been much research on how different
factors affect the power consumption of drones. The
study of Zhang et al. (2021) identifies four key aspects
influencing drone power consumption. First, drone
design has a significant impact on power consumption.
These include, for example, the weight and size of the
drone, the number of rotors, the weight of the battery,
the maximum speed and much more. But also, the
number and type of sensors can consume lots of energy
(Schenkelberg, 2016). Second, environmental factors
like weather, temperature, and wind speed influence
power consumption. Third and fourth, dynamics like
altitude, speed, acceleration as well as weight, and size
of payload have an impact on the battery consumption.
This means that different maneuvers affect energy
consumption in different ways (Prasetia et al., 2019).
A straight flight consumes less energy than a flight at
different heights, or directions (Shan et al., 2020).

If all these factors are combined, the total
energy consumption can be mapped using different
mathematical or data-driven models (Abeywickrama
et al., 2018; Zhang et al., 2021). The same works

for estimating the future energy consumption, where
research proposed several models, which will be
discussed in the next two chapters. In order to make
a basic prediction, the State of Charge (SoC) is usually
used in the literature. This shows what percentage of
the battery is still available for use, for example, three
percent. However, the SoC is practically less relevant
than the metric of Remaining Useful Life (RUL), which
describes how long it takes for the battery to run out of
charge (Mansouri et al., 2017). The RUL is commonly
used in current research.

2.2. Common Mathematical and Statistical
Approaches for Predicting Power
Consumption

Several mathematical and statistical studies to
model energy consumption using linear, statistical, and
mathematical methods have been conducted. In general,
these methods can be classified as white-box modeling
approaches (Prasetia et al., 2019). Such methods usually
require different physical parameters and use theoretical
models (Abdilla et al., 2015; Bezzo et al., 2016;
Figliozzi, 2017; Liu et al., 2017; Schacht-Rodrıguez
et al., 2018; Shan et al., 2020). Thus, the application is
rather time-consuming and complex. For non-physics,
it is therefore hard to understand and build such models.

Figliozzi (2017) focussed on lifecycle modelling
and co2 emissions. To estimate emissions, they had
to estimate power consumption first. Therefore, they
analyzed deliveries that went directly to the delivery
destination and back, as well as multiple deliveries
at the same time before heading back to the station.
For those scenarios, they used different analytical
frameworks. They found that payload can heavily
impact the efficiency of drone battery and deliveries,
which makes drone delivery of heavy packages less
CO2-efficient than a typical US Van. Abdilla et al.
(2015) used a battery model and rotorcraft power model
to estimate the endurance. The authors validated the
results experimentally through flight tests. This model
and experimentation reached solid results but is quite
time-consuming to implement and hard to adapt to other
flight scenarios.

Bezzo et al. (2016) tried to plan a policy for
minimum energy path planning of UAVs, with the
goal of improving the operation of drones. The
experiment was conducted in the real world, also
including environmental disturbances. They used a
non-linear model and could, as stated by themselves,
improve existing models. Still, they could not prove
with numbers an exact improvement in the accuracy of
their model.
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Schacht-Rodrıguez et al. (2018) also used a
mathematical model to predict flight endurance and
remaining mission time. The authors used a so-called
Extended Kalman filter to estimate the State of Charge.
In the next step, they used a polynomial function to
predict the SoC and, therefore, the End of Discharge
during the flight mission. The authors conclude that it is
possible to predict flight endurance using this approach.
Still, their approach is quite time-consuming and not
accurate enough (Prasetia et al., 2019).

The study by Liu et al. (2017) focused mainly
on long drone flights and was one of the first
approaches that used helicopter theory. The authors
used an analytical model including six non-dimensional
parameters, which is few. Important factors like wind
speed and payload are not considered. This also makes
their energy model incomplete.

Shan et al. (2020) focussed on speed as a metric.
To do so, they disclose a speed-related flight energy
consumption model. Instead of flight time or
distance, they observed the effect of the speed for the
respective time and distance. A looking before the
crossing algorithm was used to map a consumption
model accurately. This speed-related energy model
is especially useful for wireless communication (Shan
et al., 2020).

To sum up, all studies conducted added significant
value and insights into energy models. Still, most
approaches are time-consuming and very complex and,
therefore, also hard to adapt to different scenarios. For
mathematical approaches, there is no complete energy
model that includes all relevant parameters influencing
drone flights.

2.3. White and Black Box Machine Learning
Approaches for Predicting Power
Consumption

Several studies used data-driven methods for
estimating drone energy consumption. Especially in the
past years, the popularity of such Machine Learning
approaches grew strongly. In the literature, these
methods are described as black-box modeling (Prasetia
et al., 2019). It is believed that Machine Learning is the
easiest method for implementing energy consumption
models (Prasetia et al., 2019). This is mostly since it is
less time-consuming and less complex. In this chapter,
an insight into state-of-the-art literature in the field of
ML approaches for predicting power consumption for
UAVs will be given.

Chen and Pecht (2012) combined Machine Learning
approaches with model-based approaches from the
previous chapters to estimate RUL accurately. Research

results show that for the used example of the authors, the
RUL can be predicted precisely. Unfortunately, the same
model cannot be applied for different circumstances and
battery ages.

Mansouri et al. (2017) implemented a relatively
extensive approach, using four machine learning
techniques. These are a sparse linear model, a
support vector regression, a multilayer perceptron, and
an advanced tree-based algorithm, namely a gradient
boosted tree. They concluded that non-linear methods
usually outperform linear ones, which also shows that
mathematical models have certain limitations (Prasetia
et al., 2019). Furthermore, they found out that the
gradient boosted tree performed best and suggested
using a dataset with more parameters in the future
(Mansouri et al., 2017).

Saha et al. (2012), Trihinas et al. (2021), and Costa
et al. (2019) also used different, but rather superficial
ML approaches. However, Trihinas et al. (2021) are still
lacking accuracy and scope of energy profiles. Costa
et al. (2019) used a Non-recursive Least Squares, a
Kalman Filter, and an ELM neural network in their
study. The used algorithms are not robust enough, and
results still have to be evaluated with different models.
Saha et al. (2012) did not validate and test the results.
Furthermore, they only analyzed SoC, but not RUL, just
like Charkhgard and Farrokhi (2010). Saha, Koshimoto,
et al. (2011) also primarily focused on SoC but then
used a particle filter to forecast RUL to improve system
safety.

Ahmed et al. (2016) focused on black model
approaches, too. They only analyzed a few basic
maneuvers, like hovering, flying 180 degrees upwards
and downwards. Ahmed et al. (2016) expanded these
metrics by also taking into consideration the impact of
payload and wind on the power consumption of drones.
Factors like communication, take-off and speed were
not observed in these studies of Ahmed et al. (2016).
This is the same for Choudhry et al. (2021), who used
a deep learning model, which works highly accurate
but unfortunately only includes data from standard
maneuvers of drones.

Abeywickrama et al. (2018) were the first to
provide a comprehensive and entirely energy model.
Their model has an error rate of only 4.3 percent and
can be used for mission planning. They analyzed
the power consumption on the ground, impact of
communication via Wi-Fi, taking off, and different
vertical and horizontal movements. Furthermore, the
effect of payload, wind, and speed was observed and
included in the energy model. However, the amount of
data used and conducted flights is relatively small and,
therefore, hard to use for other types of drones.
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Wei et al. (2019) used a dataset from NASA, which is
not available anymore to the public domain. The support
vector machine model achieved an accuracy of 98.42
percent. It is especially accurate during discharging
processes of batteries.

Prasetia et al. (2019) made a big advance, proposing
their energy prediction model with an accuracy of
98.773 percent. In the preprocessing, they separated the
different movements, accelerations, and decelerations
from one another. The regression was done using Elastic
Net Regression from Sklearn. The authors suggest
that the accuracy can be improved even more and
suggest using different ML approaches like Long-Short
Term Memory to predict the energy consumption of
UAVs. Furthermore, the data used is relatively small,
conducting only a few flights, and therefore does not
include all relevant parameters influencing drone flights.

Concluding, the different machine learning
algorithms used in the above-mentioned studies
already delivered accurate and valuable results. Over
the past years, all relevant metrics like payload, speed,
payload wind have been taken under consideration. The
approaches made with ML are already accurate, but
often miss the use of sufficient data points (Prasetia
et al., 2019). Also, the “energy consumption rate
(J/m) varies by a factor of 3 to 5 across the models”
(Rodrigues et al., 2021). To build an accurate,
fully comprehensive energy prediction model that is
considering all relevant parameters influencing a drone
flight, a Machine Learning approach is necessary.
Mathematical and statistical models have limitations in
complex scenarios, including multiple parameters. A
Machine Learning approach ensures higher accuracies,
more efficient, less time-consuming algorithms and use
of big amount of data, which allows consistent and
comprehensive research results. A big dataset as the
one used within this study helps to achieve this goal.

3. Method

The methodological approach can be clustered in
three steps. The first step was data preprocessing to
prepare the data for training the models. Thereby, we
eliminated excessive data points and reduced the amount
of data for processing in the different classification
models. Afterwards, the models were trained using
a test-train split of 70-30. Finally, the classification
models were divided into different classes of 5,10 and
20. The evaluation is based on the balanced accuracy,
precision-score, recall-score and f1-score. In addition,
the kappa score was also used.

Table 1. ML Approaches for Modelling Energy

Consumption of UAVs
Reference Methods Dataset Investi-

gation
(Mansouri
et al., 2017)

LASSO,
Support
Vector
Machine,
Multilayer
Perceptron,
Gradient
Boosted
Tree

Different
maneuvers
excluding
payload
and
current

RUL
prediction

(Wei et al.,
2019)

Support
Vector
Machine

NASA
dataset
(Saha &
Goebel,
2007)

SOC
prediction

(Costa
et al.,
2019)

Kalman
Filter,
ELM
Neural
Network,
Non-
Recursive
Least
Squares

NASA
dataset
(Saha &
Goebel,
2007)

SOC
prediction

(Choudhry
et al., 2021)

Temporal
Convolu-
tional
Networks

Dataset
by
Rodrigues
et al.
(2021)

Conditional
Value
at Risk

(Charkhgard
& Farrokhi,
2010)

Neural
networks
and
Kalman
Filter

Self-
recorded
dataset of
different
maneuvers

SOC
prediction

(Prasetia
et al., 2019)

Elastic
Net
Regression

Self-
recorded
dataset of
different
maneuvers

Prediction
of energy
consump-
tion of
mission

3.1. Date Preprocessing and Machine
Learning Model

After the dataset was read in, it was reviewed.
Thereby, it was relevant to see how many flights
were performed with different speed, payload and
on different altitudes. Additionally, different speed
variables like accelerations and velocities were checked
with correlations matrixes and if necessary eliminated.
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In order to see the power consumption for the respective
times of the flights, it was necessary to calculate it
from the two values ”battery current” and ”battery
voltage”. Then the distribution of power consumption
was considered and a normal distribution was detected.
Only around the value ”0” is a large outbreak. This is
due to the fact that for the individual flights, the data
collection already started before and after the flight. For
this reason, all rows with a power consumption of less
than 10 were eliminated. In the dataset from Rodrigues
et al. (2021), it is described that the payloads are present
with data sets of 0, 250 and 500. However, it was found
that there is also a flight with 750. For this reason, this
flight was eliminated. Since most of the columns in the
data set contain many decimal places, these values were
rounded to five decimal places to reduce the complexity
of the data.

A decision tree and a random forest algorithm were
then trained with this processed data. As a target
variable, we used the parameter power consumption.
Both models were assigned with different categories,
which were 5 classes (classes of 200 Watt each), 10
classes (97 Watt), 20 classes (48 Watt) and 60 classes
(16 Watt).

In order to achieve the best possible results and to
optimally configure and train the models, individual
parameters were changed. For example, the maximum
depth of the tree was influenced and changed. For
performance reasons, the random forest was left to
determine the best maximum depth. It was also
necessary to adjust imbalances in the distribution. In
the variant of the random forest that was used, not all
features were used because the amount of data in the
data set was too large to achieve accurate results. For
example, only

√
n features were used here so that the

model can be trained more quickly and fewer data points
are included.

3.2. Evaluation method

For evaluation, we used a hold-out k-fold
cross-validation. This method splits the dataset
into subsets for training and testing. For our work,
10 random splits into 70 percent training data and 20
percent unseen testing data, along with 10 folds for each
split, were performed. Only the testing data is used for
evaluation. Before evaluation, this data is not shown to
the model (Yadav & Shukla, 2016).

3.3. Dataset

The used dataset for this Machine Learning
Approach consists out of 209 flights using a small
quadcopter of the type DJI Matrice 100 (M100)

(Rodrigues et al., 2021). The drone is fully
programmable and customizable, which made it
especially suitable for this experiment. The DJI Matrice
100 was equipped with the DJI 3510 motors (350 Kv),
DJI E SERIES 620D ESCs, and the DJI 1345s for the
rotor blades. Its standard battery has a capacity of 4500
mAh and the weight of this UAV totaled 3680g, without
payload.

Rodrigues et al. (2021) varied different parameters
such as speed, payload and speed of UAV as well as
for example the altitude to have a broad spectrum of
data. The drone flew autonomously making different
maneuvers like take off, different flight patterns, and
landing. For recording the flights, they used different
onboard sensors, such as a GPS, IMU, voltage and
current sensors, and an ultrasonic anemometer, to do
so. Furthermore, the power consumption and battery
voltage has been tracked constantly.

The flight time totals to 10 hours and 45 minutes
and covers a distance of approximately 65 kilometers.
Data was collected from April to October 2019. The
quadcopter flew the same route with varying altitude (25
m, 50 m, 75 m and 100 m), speed (4 m/s, 6 m/s, 8 m/s,
10 m/s and 12 m/s) and payload mass (no payload, 250
g and 500 g). Each combination of settings was repeated
at least three times, totaling 195 flights. To get further
insights, 14 recordings were performed with the drone in
hover and idle modes, which leads to the total number of
209 flights.

Since UAV field test have strict requirements and
take significant effort, there are only few datasets in this
field published. The dataset from Rodrigues et al. (2021)
was used because it contains a large our knowledge,
there are no other equally extensive data sets available
at the time of this research. In addition, the collection
of the data set, and its methodology is transparently
described, which is often not the case with other data
sets.

4. Results

By analyzing the correlation and line plots between
the individual parameters and power consumption, a
big impact of payload and wind speed was identified.
However, speed and altitude as an example had no
visible impact on the overall power consumption. The
mean power consumption for the different flights started
at 470W with 0g payload and increased to 515W
with 250g payload and 565W with 500g payload. In
contrast, for different speeds and altitudes, the power
consumption only varied around 10 to 20 Watt.

The decision tree was trained without maximal depth
and the random forest was trained at 200 trees. Both
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models performed differently when using a different
number of classes. In general, the random forest
performed better than the decision tree. For five classes,
the random forest achieved and balanced accuracy of
66.7 percent, for ten classes, 50.8, for twenty classes,
32.7 and for sixty classes of 14.7 percent (see Table 2).

Table 2. Performance of Both Models Over 10

Train-Test Splits
Number
of Classes

Balanced
Accuracy of
Decision Tree
Classifier

Balanced
Accuracy of
Random Forest
Classifier

5 63.8% 66.7%
10 46.6% 50.8%
20 28.3% 32.7%
60 11.8% 14.7%

5. Discussion

The results of our research show that the accuracy
of the random forest decreases as the number of classes
increases. However, it is not possible to make a general
statement that the model with higher balanced accuracy
also performs better in practice. The hit rate is higher,
but in the case of a wrong hit, the consequence is
also very high because in extreme cases, the energy
consumption is extremely wrongly estimated by up to
200 watts. This can, of course, have a great influence on
the safety of the flight and the prediction of the battery’s
duration (Baek et al., 2018; Zhang et al., 2021).

So, might a lower balanced accuracy be more
sensible and even better? With 60 classes, for example,
the confusion matrix has shown that the estimates are
usually only off by a maximum of two to three classes.
This would then be only 45 watts, which were predicted
too much or too little.

This remaining inaccuracy of the estimation
naturally also has an influence on the safety of the flight.
With the data available so far, it is not yet possible to
guarantee sufficient flight safety. This also raises the
question of when a flight is ultimately safe? How high
must the accuracy be for it to be reliable? How accurate
does the forecast have to be (Schenkelberg, 2016)?

However, it is clear that the Random Forest is
currently the best used model, with about three to six
percent better performance in comparison to a decision
tree. Unfortunately, the used regression model had
significantly weaker performance values. Furthermore,
it was confirmed that payload and wind speed have a
high influence on power consumption (Abeywickrama
et al., 2018; Figliozzi, 2017).

6. Conclusion

We used a new Machine Learning approach in
this field of research to predict power consumption
based on different parameters at a given time. The
results are novel due to the comprehensive data set
and the methodological approach. With the use of a
random forest, a balanced accuracy of 66.7 percent was
achieved. The results of this work confirm findings
from other models. Payload and wind speed are very
influential on power consumption (Abeywickrama et al.,
2018; Prasetia et al., 2019). The inclination and flight
altitude of the drone have hardly been researched so
far. It has been shown that these have no discernible
influence on consumption. In contrast to the study
of Mansouri et al. (2017), the Gradient Boosted Tree
performed less accurate in our research. Also, most
Machine Learning approaches like the one in the study
of (Mansouri et al., 2017) did not include payload.
Therefore, the proposed model also extends the field
of research for this parameter. Practically, the model
cannot be used yet, as it should only be used for the
drone mentioned and therefore not be transferred to
other drone models (Rodrigues et al., 2021). This is
similar to other research in this area (Abeywickrama
et al., 2018). A similar measurement procedure would
therefore have to be carried out for other drones with
their measured values to see how the same values change
the power consumption of another drone. Accordingly,
the significance of our current research is still limited,
as the model still has to be applied to entire flight
sequences and achieve increasing accuracy. As soon as
entire flights can be covered, such an algorithm can also
find practical application.

6.1. Limitations

The main limitation of this research is the data
set. Rodrigues et al. (2021) conducted the flights
autonomously. If the drone is controlled by a person, for
example for entertainment or military use, the changes
in direction are likely to be more abrupt. Of course,
this could then also influence the final energy model.
Since the measurements were carried out accurately, the
measurement errors and deviations are also minimal,
as described by the authors. This limitation therefore
has only very little influence on the research results.
In addition, for the research, mostly short flights with
a duration of less than 3 minutes were carried out.
Longer flights would have been interesting here, for
example, to see how the energy behaves in the long
term. Furthermore, the survey of the flights was mostly
conducted in triangles. The flights were carried out
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using five fixed routes. This means that really complex
maneuvers are not covered and thus do not affect the
energy model. Finally, the measurements were carried
out at irregular intervals. The sampling does not take
place regularly, for example of one second, but varies.
If this were the case, even better and, above all, more
realistic energy models could probably be implemented
here.

6.2. Future Work

In the future, a more comprehensive data set with
longer flights and different maneuvers could be used.
Here, it would be useful to use another drone to see how
much the energy model proposed here changes with the
use of another drone (Abeywickrama et al., 2018). The
expansion of the parameters would also be important to
explore. How does the drone behave with extremely
high payloads or also with strong external influences
such as strong wind, high humidity or other climatic
extremes (Prasetia et al., 2019).

In addition, since in this research the prediction was
made for individual flights and for specific times of
the flight, it would also be interesting to see how the
RUL changes during the entire flight (Chen & Pecht,
2012). In this way, a practice-relevant and operational
algorithm can be designed. Finally, it would also
be interesting to use or even combine other machine
learning models with the existing data set. This includes
the use of regression models or a combination of the
Support Vector Machine and a Gradient Boosted Tree
(Mansouri et al., 2017).
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Peixoto, A. M., & da Costa, E. P.

Page 6931



(2019). Prediction of Lithium-Ion Battery
Capacity in UAVs. Proceedings of the 6th
International Conference on Control, Decision
and Information Technologies (CoDIT),
1865–1869.

Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A.
(2008). Evaluating the Risk of Unmanned
Aircraft Ground Impacts. Proceedings of the
16th Mediterranean Conference on Control
and Automation, 709–716.

Duma, L. A., Begonia, M. T., Miller, B., & Duma,
S. M. (2021). Proposed injury threshold for
drone blade lacerations. Annals of Biomedical
Engineering, 49(4), 1125–1127.

Figliozzi, M. A. (2017). Lifecycle modeling and
assessment of unmanned aerial vehicles
(Drones) CO2e emissions. Transportation
Research Part D: Transport and Environment,
57, 251–261.

Giones, F., & Brem, A. (2017). From toys to
tools: The co-evolution of technological and
entrepreneurial developments in the drone
industry. Business Horizons, 60(6), 875–884.

Gorucu, S., & Ampatzidis, Y. (2021). Drone Injuries
and Safety Recommendations: AE560/AE560,
06/2021. EDIS, 2021(3).

Hassanalian, M., & Abdelkefi, A. (2017).
Classifications, applications, and design
challenges of drones: A review. Progress in
Aerospace Sciences, 91, 99–131.

Lee, S., & Choi, Y. (2016). Reviews of unmanned
aerial vehicle (drone) technology trends and its
applications in the mining industry. Geosystem
Engineering, 19(4), 197–204.

Liu, Z., Sengupta, R., & Kurzhanskiy, A. (2017). A
power consumption model for multi-rotor
small unmanned aircraft systems. Proceedings
of the 2017 International Conference on
Unmanned Aircraft Systems (ICUAS),
310–315.

Loyola-Gonzalez, O. (2019). Black-box vs. white-box:
Understanding their advantages and
weaknesses from a practical point of view.
IEEE Access, 7, 154096–154113.

Mansouri, S. S., Karvelis, P., Georgoulas, G., &
Nikolakopoulos, G. (2017). Remaining useful
battery life prediction for UAVs based on
machine learning. IFAC-PapersOnLine, 50(1),
4727–4732.

Prasetia, A. S., Wai, R.-J., Wen, Y.-L., & Wang, Y.-K.
(2019). Mission-based energy consumption
prediction of multirotor uav. IEEE Access, 7,
33055–33063.

Quiroz, G., & Kim, S. (2017). A Confetti Drone:
Exploring Drone Entertainment. Proceedings
of the 2017 IEEE International Conference on
Consumer Electronics (ICCE), 378–381.

Rodrigues, T. A., Patrikar, J., Choudhry, A., Feldgoise,
J., Arcot, V., Gahlaut, A., Lau, S., Moon, B.,
Wagner, B., Matthews, H. S., et al. (2021).
In-flight positional and energy use data set of a
DJI Matrice 100 quadcopter for small package
delivery. Scientific Data, 8(1), 1–8.

Saha, B., & Goebel, K. (2007). NASA Ames prognostics
data repository. NASA Ames, Moffett Field, CA,
USA.

Saha, B., Koshimoto, E., Koshimoto, E., Quach, C.,
Quach, C., Vazquez, S., Hogge, E., Hogge, E.,
Strom, T., et al. (2011). Predicting battery life
for electric uavs. Proceedings of the Infotech@
Aerospace 2011 Conference, 1517–1525.

Saha, B., Quach, C. C., & Goebel, K. (2012).
Optimizing battery life for electric UAVs using
a Bayesian framework. Proceedings of the
2012 IEEE Aerospace Conference, 1–7.

Saha, B., Quach, C. C., & Goebel, K. F. (2011).
Exploring the model design space for battery
health management. Proceedings of the
Conference of the Prognostics and Health
Management, (ARC-E-DAA-TN4023).

Schacht-Rodrıguez, R., Ponsart, J.-C.,
Garcia-Beltran, C. D., &
Astorga-Zaragoza, C. M. (2018). Prognosis
and Health Management for the prediction
of uav flight endurance. IFAC-PapersOnLine,
51(24), 983–990.

Schenkelberg, F. (2016). How Reliable Does a Delivery
Drone Have to Be? Proceedings of the
2016 Annual Reliability and Maintainability
Symposium (RAMS), 1–5.

Shan, F., Luo, J., Xiong, R., Wu, W., & Li, J.
(2020). Looking before crossing: An optimal
algorithm to minimize uav energy by speed
scheduling with a practical flight energy
model. Proceedings of the IEEE Conference
on Computer Communications (INFOCOM),
1758–1767.

Si, X.-S., Wang, W., Hu, C.-H., & Zhou, D.-H. (2011).
Remaining useful life estimation–A review
on the statistical data driven approaches.
European Journal of Operational Research,
213(1), 1–14.

Trihinas, D., Agathocleous, M., & Avogian, K. (2021).
Composable energy modeling for ml-driven
drone applications. Proceedings of the 2021

Page 6932



IEEE International Conference on Cloud
Engineering (IC2E), 231–237.

Valenti, M., Bethke, B., How, J. P., De Farias,
D. P., & Vian, J. (2007). Embedding health
management into mission tasking for UAV
teams. Proceedings of the 2007 American
Control Conference, 5777–5783.

Wei, K., Wu, J., Ma, W., & Li, H. (2019). State of
charge prediction for UAVs based on support
vector machine. The Journal of Engineering,
2019(23), 9133–9136.

Yadav, S., & Shukla, S. (2016). Analysis of k-Fold
Cross-Validation over Hold-Out Validation on
Colossal Datasets for Quality Classification.
Proceedings of the 6th IEEE International
Conference on Advanced Computing (IACC),
78–83.

Yuan, Z., Jin, J., Sun, L., Chin, K.-W., &
Muntean, G.-M. (2018). Ultra-Reliable
IoT Communications with UAVs: A Swarm
Use Case. IEEE Communications Magazine,
56(12), 90–96.

Zhang, J., Campbell, J. F., Sweeney, D. C., &
Hupman, A. C. (2021). Energy consumption
models for delivery drones: A comparison
and assessment. Transportation Research Part
D: Transport and Environment, 90, Article
102668.

Page 6933


