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Abstract

The severity of data exfiltration attacks is well
known, and operators have begun deploying elaborate
host and network security controls to counter this
threat. Consequently, malicious actors spare no
efforts finding methods to obfuscate their attacks within
common network traffic. In this paper, we expose
a new type of application transparent, kernel level
data exfiltration attacks. By embedding data into
application messages while they are held in socket
buffers outside of applications, the attacks have the
flexibility to hijack flows of multiple distinct applications
at a time. Furthermore, we assess the practical
implications of the attacks using a testbed emulating
a typical data exfiltration scenario. We first prototype
required attack functionalities with existing Layer 4.5
application message customization software, and then
perform flow hijacking experiments with respect to six
common application protocols. The results confirm the
flexibility of socket layer attacks and their ability to
evade typical security controls.

Keywords: network security, data exfiltration,
protocol customization

1. Introduction

Many cybersecurity incidents involve some form of
data exfiltration and can be perpetrated by both insider
and outsider threats (Ullah et al., 2018). Obfuscated
data exfiltration is routinely used by malicious actors
because of its ability to take advantage of network
applications and services utilized for daily operations
to blend in with normal network traffic. This
is evidenced by the recent SolarWinds and Anchor
DNS attacks. In the SolarWinds incident, once the
attackers obtained a foothold into target systems via the
SolarWinds Orion update mechanism, they utilized the
communication channel between the Orion program and
the SolarWinds’ servers to establish their own command
and control (C2) server (Chesney, 2020). Subsequently,

they were able to conduct a host of malicious activities
to include data exfiltration.

In response to data exfiltration attacks, elaborated
rules aiming to detect and prevent unauthorized traffic
from leaving a proprietary network have been added to
host-based and network-based security controls (Bertino
et al., 2011). As a result, malicious actors are
increasingly using obfuscation via common application
protocols such as HTTP(S), DNS and VoIP that
are allowed within the bounds of the organization’s
policy (Collins et al., 2016; MITRE, 2022).

Prior works (Ede, 2017; Schlicher et al., 2016) reveal
that emulating message flows of an application (e.g., a
web browser) for obfuscated data exfiltration requires
significant effort on the part of the attackers. This is
because the pattern of legitimate message flows may
vary from application to application and from host to
host. Accordingly, the data exfiltration must be carefully
customized per application and/or per host to avoid
detection by aforementioned security controls.

In this paper, we expose a new application
transparent, kernel level method of hijacking
application flows for the purpose of obfuscated
data exfiltration. Termed “socket layer flow hijack
attack”, the new attack method is conceptualized from
two observations as follows. First, socket buffers in
the kernel, where application messages are stored
before transport layer processing, present a point
of entry for embedding data in application flows.
Second, modern operating systems support dynamic
kernel extensions that can add capabilities to process
kernel data structures such as the socket buffers,
without rebooting the host (Jones, 2001; The Linux
Foundation, 2022). We believe that the new attacks can
amplify data exfiltration from a host because they can
simultaneously hijack flows of multiple applications
and more importantly, it is relatively straightforward for
them to blend in with normal traffic by embedding a
small amount of data within each application message.

Furthermore, we assess the practical impact of
socket layer flow hijack attacks using a VM based
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Figure 1. Data exfiltration attack scenario

testbed emulating a typical data exfiltration scenario
as shown in Figure 1. In this scenario, the attacker
gains control of a Staging Host (SH) in a specific public
or enterprise network and exfiltrates data to a Data
Extraction Point (DEP), while attempting to evade a
network intrusion prevention system (NIPS). The attack
hijacks legitimate traffic (e.g., to a commercial web
server) and/or generates new camouflage flows to a
pre-established Exfiltration Server (ES).

Leveraging an existing Linux based Layer 4.5
message customization system (Lukaszewski et al.,
2022), we have prototyped two kernel level attack
modules that run on the staging host (SH) and data
exfiltration point (DEP), respectively, and performed
a series of hijack experiments involving six common
networked application protocols (HTTP, HTTPS,
SMTP, DNS, NTP, and VoIP) with typical host and
network based security controls.

The remainder of the paper is organized as follows.
We review related work in Section 2. Section 3
details the technical considerations and building blocks
for launching a socket layer flow hijacking attack,
including an overview of the existing Layer 4.5 software
framework. Section 4 presents the experimental design
for evaluating the attack’s feasibility and detectability
with respect to a range of common application protocols.
We present the results of the evaluation in Section 5.
Section 6 details an extension to the Layer 4.5 software
to properly evaluate attacks on application flows that
utilize TLS. We outline other potential extensions and
discuss mitigation of the attack in Section 7. Finally,
Section 8 concludes the paper.

2. Related Work

A large body of related work exists for data
exfiltration attacks. In this section, our review focuses
primarily on (i) ways to perform and enhance data
exfiltration obfuscated within common network flows
and (ii) potential security controls against such attacks.

Exfiltration by Hijacking Network Flows: MITRE
Corp. actively tracks such incidents and has identified
FTP, SMTP, HTTP/S, DNS, and SMB as the most
common targets (MITRE, 2022). Additionally, several

studies concluded that directly manipulating existing
applications (e.g., browsers) or invoking shell utilities
(e.g., curl or dig) requires careful examination of
application usage patterns in order to evade host level
security controls or a NIPS (Born, 2010; Ede, 2017;
Schlicher et al., 2016). In contrast, the new socket layer
attack exposed in this paper – by hijacking legitimate
flows outside of applications – can be less prone to
deviation from normal application usage patterns and
thus, become less detectable.

Meanwhile, Mazurczyk (2013) and Wu et al.
(2021) focused on VoIP applications after observing
the applications incorporate multiple protocols during a
session and stream a sizable amount of sound and video
data for at least a few minutes at a time. Socket layer
data exfiltration can amplify these attacks by targeting
any of the sockets established during a VoIP session.

Security Controls: First, there are host specific
security controls that can detect or prevent some data
exfiltration attacks. The standard host level firewall
utility program for Linux systems (i.e., iptables),
provides traffic-filtering services that can restrict
socket connections to only permitted sites, ports, and
protocols (Rash, 2007). AppArmor, an access control
application that is bundled within many standard Linux
distributions, performs access control for both the local
file system and network connections to external hosts,
on a per-application basis (AppArmor, 2022). It should
be noted that both iptables and AppArmor require
a significant amount of configuration effort. More
importantly, as shown in later sections, the type of
attacks evaluated in this paper – with its ability to
hide data within traffic of host-native applications – can
evade them effectively.

Intrusion prevention systems, such as Snort, provide
another line of defense against data exfiltration attacks.
As presented in later sections, we experimented with
Snort as the representative NIPS and evaluated the
effectiveness of the published rule sets in detecting
exfiltration attacks at the socket layer.

3. Data Exfiltration at the Socket Layer

As discussed in the introduction, the socket layer sits
between the application and transport layers, and thus,
provides an application-transparent point of insertion
for data exfiltration. Furthermore, transport protocols
currently cannot detect and prevent such attacks because
there are no built-in mechanisms for them to seek
validation of individual messages from applications.

This section is divided into three parts. First, we
step into the attacker’s shoes and discuss the main
technical challenges, including the system privileges

Page 6624



required, for implementing and concealing socket layer
data exfiltration attacks. Then, we overview an existing
Layer 4.5 application flow customization framework
from our prior work (Lukaszewski et al., 2022), which
we used to prototype the attacks disclosed in this work.
Finally, we present design details of the Layer 4.5
modules created for our experiments, each of which
can tap into one or more target application sockets and
embed data within selected application message flows.

3.1. Assumptions and Challenges

As socket buffers sit in the kernel space, intercepting
and modifying application messages there requires
kernel-level permissions. Therefore, we assume the
attacker has taken control of the staging host (SH)
and gained persistent kernel-level permissions, while
avoiding detection through a “zero day” root-kit or by
tampering with the supply chain and planting attack
modules within select OS image distributions.

This type of attack requires new heuristics to
correctly isolate a specific socket buffer for a target
application message flow. The conventional 5-tuple
identification (src IP, dst IP, src port, dst port, protocol)
is inadequate for several reasons. First, we should
not limit the attack to only application flows that are
already active since the attacker will likely attempt
to hijack future flow instances before the sockets are
created. Second, multiple different applications (e.g.,
Chrome, Firefox, curl) invoke the same application
protocol (HTTP/S). Last, an application may utilize
outside processes to send traffic. For example, consider
the Linux dig application, which utilizes bind services
to conduct DNS requests and as a result can have a
process ID that is different from the application name.

Finally, the attack must consider application
transparency, i.e., how to minimize interference with the
normal progress of the hijacked application flows. As
shown in Figure 1, the data extraction point (DEP) is
effectively a middlebox and as such, must be carefully
designed on the part of the attacker to not disrupt
the application flows. After extracting exfiltrated data,
the DEP must ensure (i) the new messages will be
deemed properly formed by the server end, and (ii)
the corresponding control messages (e.g., TCP ACK)
sent back to the SH will properly count the bytes of
exfiltrated data.

3.2. Layer 4.5 Software Framework

Layer 4.5 is a Linux based open-source software
framework1 that allows customization of application

1Code available at GitHub: https://github.com/danluke2/software
defined customization

flows per TCP or UDP socket (Lukaszewski et al.,
2022). As illustrated in Figure 2, the software supports
tapping the sendmsg() and recvmsg() system calls
specific to TCP/UDP, loading kernel extension modules
designed to match specific application sockets, and
performing custom logic on outgoing (incoming)
messages before the messages are sent down to the
transport layer (passed up to the socket buffers). We
have chosen this framework because it supports rapid
prototyping of our needed functionality.

The rest of the discussion will focus on how Layer
4.5 leverages the assumed kernel access privilege and
addresses the previously identified challenges.

Customized Device

Socket Buffer

App1 App2 Appn

Customization
Modules

Transport

sendmsg()
recvmsg()

Figure 2. Layer 4.5 customization of application

flows (Lukaszewski et al., 2022)

Taps of Socket Calls: Layer 4.5 provides a
kernel tap between the socket and transport layers
to allow customization modules to be invoked on
matching application flows, which it accomplishes in
two steps. First, it creates backups of the global
function pointers to TCP/UDP send and receive calls,
such as tcp prot.sendmsg. Then, it replaces the
global pointer with a pointer to a new function
with necessary logic to hand application flows off
to matching customization modules for intermediate
processing before resuming TCP/UDP calls through the
backup pointers.

Application Flow Isolation: The Layer 4.5
customization modules must specify the matching
application flow parameters, which include the standard
5-tuple plus the target application name, such as curl.
Recall that we assume an attacker will target future
application flows. This means the entire 5-tuple is
likely unknown when the attack modules are loaded
due to dynamic port assignments. For this reason,
the customization may use wildcard values in place
of unknown parameters. Additionally, the target
application name can be used to identify flows that
have not established a full 5-tuple. After a Layer 4.5
customization module is loaded, the socket-transport
tap will automatically identify new sockets and match
them against customization modules using the specified
parameters.
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Transparency to Applications: Layer 4.5 is
designed to be application transparent (Lukaszewski
et al., 2022). Each flow customization requires
deploying a pair of extension modules, at the send
and receive end, respectively. The receive-end
module is responsible for returning messages to their
pre-customization forms before passing them up to the
socket buffer.

When the SH’s target application sends a message
to the socket, Layer 4.5 will redirect the flow to
the matching customization module and report to the
application that the amount of data transported matched
what the application expected. When the DEP receives
the custom traffic, Layer 4.5 will again redirect the flow
to the customization module for processing. Note, this
redirection occurs after the transport layer received the
data, thus any TCP acknowledgements including the
customized data have already been sent. Similar to the
send path, Layer 4.5 will perform the required changes
to the application buffer to prevent mismatches between
the amount of data reported by the transport layer and
what the application received.

3.3. Exfiltration and Extraction Modules

Two distinct Layer 4.5 customization modules were
developed for this research: an “exfiltration module”
deployed to the SH and an “extraction module” for
the DEP. Both modules followed standard Layer 4.5
module design requirements and differed only in the
send and receive customization logic to accommodate
the embedding or extraction of data, respectively.

To streamline evaluating a range of application
protocols as potential hijacking targets, the two modules
were designed to be general purposed (especially,
protocol agnostic) by using the configurable parameters
presented in Table 1. The 5-tuple and app name
parameters were used to designate the socket connection
to hijack at the SH and to extract data at the
DEP, with the exfiltration source port and extraction
destination port set as wildcard values to account
for dynamic port assignments. The bytes total,
bytes per message, and insert pos were used to
infer the end of exfiltration and specify how the data
exfiltration and extraction should be processed per
application message. The insert pos could be set
to either the front, end, or a specific offset into the
application message.

Furthermore, the modules were designed to be
extensible to allow protocol specific logic. For example,
after initial testing we discovered that hijacking VoIP
flows necessitates a check of the message size in the
exfiltration module to avoid creating messages that the

Table 1. Configurable parameters for modules
Exfiltration Extraction

5-tuple −src port −dst port
app name ✓ ✓

bytes total ✓ ✓
bytes per msg ✓ ✓

insert pos ✓ ✓

IP layer will fragment due to exceeding the MTU size
restriction. Exceeding this MTU threshold is possible,
but we chose to emulate an attacker that would avoid
causing IP fragmentation in an effort to avoid detection.

4. Design of Experiments

In this section we describe the tests performed,
configurations for each test, and the criteria used to
determine if each test passed. We begin with a
description of the testbed and machine settings used for
the experiments to aid in reproducing each experiment.

4.1. Testbed Design

To simplify the scenario of Figure 1, we designed the
experimental testbed shown in Figure 3 to combine the
DEP and ES into a single machine and did not include
the commercial server. This simplified setup allows for
analysis of the exfiltration method’s ability to bypass
typical security controls, without the variability of more
realistic inter-network transmissions influencing results.

Figure 3. High level testbed design

The experiments in this section were performed
under a testbed consisting of up to four Ubuntu
20.04/5.13 VMs running on a Quad-Core Intel Core
i7 MacBook Pro with 16GB of RAM. Each VM was
allocated 1 CPU, 4GB RAM, and configured to use an
internal network with a 1000Mbps capacity.

4.2. Test Objectives

Experimentation will be conducted in three phases
to test the following objectives: Exfiltration Feasibility,
Host-Based Detection, and Network Detection. First,
we focus on verifying the ability of socket layer
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customization to be adapted to any application
or protocol. More specifically, we identify the
characteristics of application protocols that are more
conducive to obfuscated data exfiltration via socket layer
protocol customization. This phase is also used to
determine which protocols can be customized using
Layer 4.5, without causing application disruptions.

Next, we evaluate the exfiltration module’s ability to
access restricted files and perform customization against
a host-based IPS (HIPS). The HIPS will primarily
be configured on the SH and restrict file access
permissions. This phase is designed to detect if we can
reliably restrict application-based access permissions to
the targeted files to prevent data exfiltration.

Last, we expand detection to include more
sophisticated network-based security controls. In this
phase, we include a NIPS inline between the SH and
DEP to provide alert generation, logging, deep packet
inspection, and the ability to filter and drop traffic. This
phase assumes the exfiltration attack is able to bypass
the HIPS and requires detection within the network.

4.3. Test Configurations

For each test, the SH represents the client machine
and is the target host located on a proprietary
network that contains the files to be exfiltrated.
The DEP is configured to host all of the relevant
services corresponding to the application protocols
in Table 2. We include the client/server applications
used as well since applications may exhibit different
behavior when sending/receiving data, such as
multithreading/multiprocessing. Note that since we
target the SH with the exfiltation module, we may need
multiple connections to occur to exfiltrate the entire file.

Table 2. Application protocols tested
Protocol Client Server Transport Port
HTTP curl python3 TCP 80
HTTPS curl python3 TCP 443
SMTP postfix postfix TCP 25
DNS dig dnsmasq UDP 53
NTP ntpdate ntpd UDP 123
VOIP linphone linphone UDP 9078

Table 3 lists the exfiltration configurations used for
each test phase. The targeted files for exfiltration
consist of a small text file (E1: constitution.txt) and a
larger image file (E2: penguin.tif ). The embedded-byte
sizes are slightly different for each file and were
chosen to both determine any variability of metric data
between larger and smaller byte sizes and to avoid IP
fragmentation, while also being whole number factors
of the total file size to simplify the logic required
to embed/extract data and determine when exfiltration

is complete. When varying the insert positions, the
position is chosen based on the size of the payload and
the header fields available for the specific application
protocol being tested.

Table 3. Exfiltration configuration
File size Bytes/msg Insert pos.

E1 44.84 KB 10, 118, 236 Variable
E2 459.5 KB 10, 125, 250 Variable

During the HIPS and NIPS detection phases, we
utilize the security controls of Table 4. For HIPS,
we utilize AppArmor and configure it on the SH to
restrict access permissions to the targeted files using
flexible profiles that can be applied to individual
applications (AppArmor, 2022). We implement specific
AppArmor profiles and configure them to limit the
ability of the targeted applications to access files for the
purpose of data transmission.

Table 4. Security control configuration
Control Software Version Rule-set
HIPS AppArmor 2.13 Cust. Profiles
NIPS Snort IPS 2.9 Talos v2.9.19

When testing against the NIPS, we utilized Snort
with both default and custom configurations. Data
exfiltration test runs are completed in two distinct
rounds using various dynamic module configurations
that are chosen based on the results of the exfiltration
feasibility tests. The first round tests various module
configurations against the default configuration and
registered rule set of Snort. The second round consists
of test runs that include additional custom Snort rules
with content modifiers designed to detect attempts to use
any application protocol to exfiltrate the specific target
files. With regards to the custom Snort rules, the content
modifiers within each rule are designed to identify
specific byte sequences within the two files present in
a transmitted packet and drop detected packets.

4.4. Performance Metrics

The specific metrics used for each test phase are
included in Table 5. The throughput captures the
amount of file data exfiltrated in KBps, and the overhead
captures the number of packets transmitted per KB of
exfiltrated file data. These measurements are useful
for a relative comparison between protocols because
they detail each application protocol’s performance as
a function of the total size of the exfiltrated data. In
short, they show exactly how much data each application
protocol is able to exfiltrate per second and how much
overhead is incurred for each KB of exfiltrated data.
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Table 5. Application performance metrics
Metric Unit Test
Throughput KBps Feasibility
Overhead Packets per KB Feasibility
Application
Transparency

Number of
Errors Feasibility

Intrusion
Detection

Number of
Detections HIPS/NIPS

Successful data exfiltration occurs when the target
application does not encounter any errors and the
HIPS/NIPS do not detect the exfiltration. If HIPS
or NIPS detection occurs, we will analyze and
evaluate the detection to determine what signature
or rule-set was able to detect or prevent the data
exfiltration attempt. Additionally, we verify the file was
successfully exfiltrated by comparing the MD5 hash of
the reconstructed file at the DEP to the file on the SH.

5. Experimental Results

In this section we present the results of the
exfiltration feasibility, host-based detection, and
network detection experimentation. We then discuss
complications experienced when attempting to exfiltrate
data over TLS encrypted application flows.

5.1. Feasibility

The first test loaded exfiltration and extraction
customization modules to determine the throughput,
overhead, and successful exfiltration of specific file data
to completion. We begin by analyzing the throughput
achieved for each protocol in Figure 4. Note that the E1
and E2 exfiltration experiments with intermediate byte
sizes showed similar trends.

We see that all protocols, except NTP and HTTPS,
were able to achieve relatively high throughput values.
The DNS protocol resulted in the best throughput
performance, while the VoIP protocol displayed the
most flexibility in insert position and embedded-byte
size for data exfiltration. We attribute the low
throughput performance of NTP to using a deprecated
client application with outdated algorithms (Network
Time Foundation, 2022).

HTTPS throughput was not able to be measured
due to application transparency failure during the
experiment. This complication arose from the inability
of the extraction module to properly handle the data
buffers of application protocols that utilize TLS. In
the case of HTTPS, TLS is implemented immediately
upon a client-initiated request making it infeasible to
perform extraction at the server without errors. SMTP
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Figure 4. Data exfiltration throughput in KBps.

Protocols ordered best to worst throughput.

transactions, however, incorporate several messages
between hosts before initiating a TLS session. Thus,
we successfully targeted these initial packets only and
avoided errors associated with the TLS data buffers. We
further expand on this TLS limitation in Subsection 5.4.

Application protocols that achieve a high throughput
for data exfiltration may have unacceptable overhead.
For this reason, we analyzed the overhead of
exfiltrating data using each protocol. Figure 5
provides representative overhead results using E1 and
E2 configurations.
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Figure 5. Data exfiltration overhead in packets/KB.

Protocols ordered lowest to highest overhead.
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From Figure 5 we see that even though HTTP and
SMTP performed comparably to the UDP protocols
in terms of throughput, the overhead experienced by
these TCP protocols was significantly higher. The
additional overhead of establishing the TCP connection
and acknowledging the receipt of data resulted in an
increase to the total number of packets sent before
completely exfiltrating the target file.

Overall, the feasibility test results were largely
unaffected by embedded-byte size and total file size.
This result implies that the process of customization
has a minimal effect on overhead or the total time of
exfiltration regardless of how many customizations are
required to exfiltrate an entire file. Additionally, it shows
that data exfiltration via socket layer customization
can be performed with any of the tested application
protocols with predictable results despite varying
embedded-byte sizes and increasing file sizes.

5.2. Host Based Detection

The results for Phase Two tests are summarized in
Table 6. Across 26 test runs, there were only two
instances where exfiltration was detected and prevented
by AppArmor host-based access controls. Even though
HTTPS failed feasibility testing, this may not always be
the case. Therefore, we included it when testing host
and network detection capabilities.

Table 6. AppArmor detections
Protocol Number of Detections

HTTP 1
HTTPS 1
SMTP 0
DNS 0
NTP 0
VoIP 0

Out of all the protocols tested, AppArmor only
detected HTTP and HTTPS. The first detection
occurred when utilizing HTTP and resulted from
the customization module executing a system call
to open and read a restricted file in preparation
for exfiltration. The first detection was nullified
by modifying the exfiltration module to access the
targeted file during initialization when the module
has root permissions instead of during customization
where the module executes with application privileges.
The second detection occurred when the exfiltration
module targeting HTTPS embedded the file data within
encrypted application data. By placing file data within
only the first packet of the TLS handshake, this detection
is no longer triggered. Once these changes were
implemented, no further HIPS detections occurred.

The results show that the advantage associated with
the kernel-level privileges of the exfiltration module
can be negated by host-based access control measures
if the module runs with privileges of the application
once the socket has been identified for customization.
However, it also demonstrates the ability of socket
layer customization to bypass basic host-based access
controls by executing functions associated with file
access outside customization-specific functions.

5.3. Network Detection

Table 7 presents the results for 26 exfiltration test
runs against Snort’s baseline configuration, which only
produced alerts for exfiltration attempts over HTTP.
These alerts were triggered by a preprocessor rule that
detected irregular traffic with POST requests when the
E1 configuration insert position was not at the end of
the message. These alerts did not occur during E2
configuration testing over HTTP, regardless of insert
position. No other alerts were generated by Snort’s
baseline configuration and registered rule set for any of
the remaining application protocols.

Table 7. Snort IPS baseline configuration detections
Protocol Number of Detections

HTTP 10
HTTPS 0
SMTP 0
DNS 0
NTP 0
VoIP 0

Table 8 presents the results for exfiltration testing
against a customized rule set. Snort was able to detect
and block E1 data exfiltration attempts for every tested
application protocol when the larger embedded-byte
sizes of 118 and 236 were used. This was because
with these byte sizes the content modifiers were always
included within the embedded data. Snort was unable
to detect E1/E2 data exfiltration for test runs utilizing
the 10 byte size, which was less than the content byte
size specified in the custom rules. Consistent detection
across applications as a result of the customized rule
set indicates that obfuscated data exfiltration via socket
layer protocol customization can be defeated by robust
content-filtering.

Unexpectedly, Snort was unable to detect any
E2 data exfiltration attempts. Investigation revealed
that the xxd program utilized to encode the original
file provided hexadecimal output in big-endian format
while hexdump, which was utilized to develop the
Snort content-modifier rules, output the file contents
in little-endian format. Although unintentional, these
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Table 8. Summary of Snort detection results
HTTP HTTPS SMTP NTP VoIP DNS

File Data Size Byte Position Detected Byte Position Detected Byte Position Detected Byte Position Detected Byte Position Detected Byte Position Detected

E1

10 END FALSE END FALSE END FALSE END FALSE END FALSE END FALSE
118 45 TRUE 320 TRUE 5 TRUE 12 TRUE 5 TRUE 47 TRUE
236 32 TRUE 375 TRUE END TRUE 35 TRUE 11 TRUE 50 TRUE
10 END FALSE 310 FALSE 18 FALSE 35 FALSE 3 FALSE 49 FALSE
118 END TRUE END TRUE 8 TRUE END TRUE 6 TRUE END TRUE
236 END TRUE END TRUE 13 TRUE END TRUE END TRUE END TRUE

E2

10 END FALSE END FALSE END FALSE END FALSE END FALSE END FALSE
125 58 FALSE 376 FALSE 5 FALSE 3 FALSE 3 FALSE END FALSE
250 32 FALSE 450 FALSE 11 FALSE 8 FALSE 13 FALSE 47 FALSE
10 58 FALSE 376 FALSE 6 FALSE 35 FALSE 5 FALSE 47 FALSE
125 END FALSE 415 FALSE END FALSE END FALSE 7 FALSE 49 FALSE
250 END FALSE 320 FALSE END FALSE END FALSE 15 FALSE END FALSE
10 32 FALSE 450 FALSE 15 FALSE 22 FALSE 7 FALSE 49 FALSE

results emphasize that while in-line content filtering and
signature detection can be effective tools against data
exfiltration, the advantage still lies with the malicious
actor. For completeness, we performed the experiments
again after changing the associated custom rules to
account for the correct encoding to verify Snort was
able to detect the exfiltration. As with E1, Snort was
able to detect and block the E2 data exfiltration attempts
for every tested application protocol, but only when the
larger embedded-byte sizes of 118 and 236 were used.

5.4. TLS Receiving Failures

The most notable limitation experienced throughout
testing was the inability of the extraction module to
work correctly with applications that implement TLS
(i.e., to properly handle exfiltrated data embedded
into the TLS data buffers). To determine why TLS
caused errors, we need to understand the receive-side
processing of TLS and Layer 4.5.

TLS messages, in general, follow a length-data
pattern where the length specifies the amount of data
expected for the current message. Since TLS is
implemented above Layer 4.5, this length value is
calculated before data is embedded by the exfiltration
module. Embedding data, therefore, results in a
transmitted payload length that is larger than indicated
in the length record, which leads to a decode error
on the server-side that indicates a message could
not be decoded because of a field error or incorrect
length (Dierks et al., 2008). The root cause of this error
is the result of Layer 4.5 leveraging the application’s
buffer to receive potentially customized messages in an
effort to minimize the customization memory footprint.
Thus, customization modules may be restricted by the
size of the allotted application buffer and the requested
bytes from the transport layer.

Figure 6 provides an example illustration of a TLS
processing failure caused by customization. The SH
begins by sending a 517 byte payload to the DEP (1).
Layer 4.5 intercepts the transmission and the exfiltration

TLS Client
(SH)

Exfiltration
Module

TCP Recv Buffer

Extraction
Module

TLS Server
(DEP)

(1)
517 bytes

(2)
517 + 10 bytes

(3)
5 bytes

(request)

(4)

(5)
(6)

512 bytes
(request)

(7)
512 bytes

(8)
512 - 10 bytes

Figure 6. Example of TLS processing failure with

numbers in () indicating flow order

module embeds 10 bytes of data into the TLS payload
(2) prior to sending to the DEP. When the DEP receives
the data, the application first requests the five-byte
record layer (3), which is intercepted by Layer 4.5 and
sent through the extraction module (4) prior to returning
to the application (5). These first five bytes are not
customized, so the extraction module does not modify
their contents. The application then requests the 512
byte payload, based on the record layer length field,
from the TCP buffer (6). Before these bytes reach
the application, the extraction module removes the 10
embedded bytes (7), which results in the application
only receiving 502 bytes (8). Since the application
did not receive the correct number of bytes, payload
decryption fails and the TLS connection is terminated.

6. Extension of Layer 4.5 for TLS Traffic

To overcome the TLS receive side processing
problem observed in our experiments, we extended the
Layer 4.5 software to allow a customization module
(such as the extraction module) to request data beyond
what was requested by the application. Now the
module is capable of holding enough data to allow
processing the customization, but this requires modules
to potentially buffer data instead of delivering all data to
the application as previously done.

For example, consider the example in Figure 6.
Using the extended prototype, when the DEP
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application requests the first 5 bytes (3), Layer 4.5
will instead request all 527 bytes from the TCP buffer
and deliver them to the extraction module (4). The
extraction module will remove the embedded 10 bytes,
buffer the 512 byte payload, and return the requested 5
bytes to the application (5). Now when the application
requests the 512 byte payload (6), the extraction module
returns the bytes without causing a decode error.

Using this Layer 4.5 extension on the DEP, we
refined the HTTPS extraction module and repeated
the previously failed feasibility experiments. The
representative E1 and E2 throughput and overhead
results are shown in Figure 7 and Figure 8, respectively.
Since TLS adds additional server packets to the HTTPS
connections, both the throughput and overhead of
HTTPS are worse than the unencrypted HTTP protocol.

Figure 7. Data exfiltration throughput including

HTTPS. Protocols ordered best to worst throughput.

Figure 8. Data exfiltration overhead including

HTTPS. Protocols ordered lowest to highest

overhead.

The experiments conducted in Phase 2 and 3 were
not repeated for HTTPS utilizing this extension since
the security controls implemented are designed to detect
exfiltration at the SH and during data transmission.
Thus, the extension implemented at the DEP would not
have any effect that would change the original results.

7. Discussion

In this section we first present potential strategies to
counter the type of attacks exposed in this paper. Then,
we discuss some future extensions to this research.

7.1. Mitigation

Fundamentally, the customization module is similar
to a traditional rootkit. There are known methods
to prevent and detect rootkits (Joy et al., 2011), but
within the scope of this paper there are a few specific
mitigations that might prevent or detect this particular
method from exfiltrating data if a module does get
installed on a host system.

One mitigation would be to provide priority event
alerts if unregistered or restricted kernel-level modules
are loaded onto a system. These alerts are already
generated locally on a Linux host via the kernel log,
but tamper-resistant features and other refinements are
needed to ensure reliable delivery of these alerts to
the operator in real time. A more comprehensive
network-based management solution could involve the
implementation of a security information and event
management (SIEM) system, which could automate the
process of detecting and responding to these types of
events, from alerting the operator to isolating the host
from the rest of the internal network (Bhatt et al., 2014).

Another mitigation would be to enforce protocol
specific filtering rules at a NIPS. As shown in our
experimentation, attackers can leverage the format of
a protocol payload to perform data exfiltration. For
example, the byte space allocated for domain names in
a DNS query can be used to exfiltrate data since it is
not common to use the entire space for most queries
(Born, 2010). Snort and other NIPS solutions provide
the capability to determine the size of such fields for
DNS and other protocols and drop traffic that exceeds an
acceptable threshold. The threshold can be configured to
match common network traffic patterns of a network.

The Layer 4.5 architecture (Lukaszewski, 2022;
Lukaszewski et al., 2022) could also be used to detect
unauthorized customization modules being used within
the network. For example, the architecture includes
a central customization orchestrator responsible for
the distribution and continuous management of all
customization modules. If a rogue Layer 4.5
customization module is being used to exfiltrate data
on the network, then the orchestrator would detect
the presence of the module and either remove it
automatically or generate an alert. However, if an
attacker installs the customization module outside the
Layer 4.5 architecture, then it would likely not be
discovered by the orchestrator.

Finally, some networks utilize TLS interception
software (i.e., proxy) to allow inspecting encrypted
traffic within the network (de Carnavalet et al., 2016).
The presence of this proxy in the exfiltration network
could inhibit an attacker’s success based on the
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limitations of TLS customization processing discussed
in Subsection 5.4. If the attacker successfully infiltrated
the SH, but did not also compromise the TLS proxy, then
the exfiltrated data will cause the same decode error we
experienced during feasibility testing.

7.2. Future Extensions

Several extensions to this research to further evaluate
the risk of socket layer exfiltration attacks are worth
mentioning. First, our work is limited in scope
due to using a simulated network environment. It
would therefore be of value to measure the ability
of this method to perform exfiltration across real
network infrastructure where data must pass through
multiple network devices and navigate typical routing
configurations such as NAT to see if these conditions
have any significant effects.

Extensions could also include testing against more
capable and varied security controls, particularly at the
SH. While AppArmor is a capable host-based control,
it would be valuable to test against commercial and
open-source alternatives that have more specialized
suites of host-based security controls. Additional
network-security controls, such as an inline proxy
solution should also be considered.

Finally, more research should be performed with
respect to emerging protocols that are becoming more
prominent in everyday network traffic, such as DNSSEC
and QUIC. Furthermore, testing various applications
that utilize the same protocol, such as web browsers and
their command line variants, could further assess the
complexity and generality of the attack methodology.
Our initial tests reveal that applications that use
many concurrent communication processes, such as the
Apache web server, may require additional capability to
be programmed into the attack modules.

8. Concluding Remarks

This paper has exposed and evaluated practical
implications of a new type of data exfiltration
attacks that gain application transparency by hijacking
background application flows at the socket layer. Our
results indicate that the new attacks can be hard to
detect and more research still is required to understand
their full impact on network security. In particular,
open questions arise as to if and how operating systems
should be upgraded to support validation of application
messages at the transport layer.
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