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Abstract 
In this paper, a probabilistic machine learning 

method is proposed to predict the indoor temperature of 

an office environment. An IOHMM-based model is 

developed to represent the office environment under 

different circumstances of heating sources. One year of 

time series data is observed and studied to learn the 

dynamics of the indoor thermal states. The uncertainty 

associated with the changing aspects of the indoor 

temperature and its dependence on the outdoor 

temperature is considered in the model development. 

The well-known Baum Welch and forward-backward 

algorithms are adapted to learn the model parameters. 

Then, the Viterbi algorithm is used to predict the 

maximum path of hidden states, leading to predicting 

the most likely future temperatures. A numerical 

application is presented to demonstrate the model 

development steps and the training and testing results. 

Finally, the model's performance is validated using 

leave-one-out cross-validation, which shows that the 

model has a prediction accuracy of about 78%. 

 

Keywords: Building occupancy, data monitoring, 

office action, indoor temperature prediction, HMM 

1. Introduction  

Reaching carbon neutrality goals require that our 

use of office building real-estate become more energy 

efficient. Different studies (Rahaman, 2019; Alrazgan, 

2011; LeMay, 2009) explore how to optimize the use of 

space using digital tools both so occupants require less 

space and to only provide comfort in used spaces to 

more efficiently spend energy. Rahamen (2019) studies 

how to sense the used spaces of people to optimize for 

this and Kahn (2020) explore how to optimize the 

personal comfort of the space used by occupants. 

Another interesting concept is free seating where the 

seating arrangement of occupants are made flexible to 

lower space use. In particular, when many occupants do 

not on a regular basis come to office either because they 

have tasks outside the office or work from home this can 

lower the need for real-estate space. A challenge is hot, 

giving the occupants options to pick a good seating that 

matches their preferences. Sood [2020] have proposed a 

system named space match to help occupants with this. 

This tool and evaluation highlight good opportunities 

for such tools to help the occupants. However, the space 

match only provides a match based on what happens 

previously. In this paper we would like to propose a 

system that also considers the future development of the 

indoor environment to provide better matches. Previous 

work has considered prediction of the indoor 

environment for control systems (Perić, 2021; Tariq, 

2019; Arendt, 2018; Peng, 2016; Ellis, 2003). However, 

previous work has not considered the design of such 

prediction algorithms for free-seating systems. 

This paper presents a thermal predictor based on the 

input-output hidden Markov model (IOHMM). The 

IOHMM structure was proposed by Bengio (1995), and 

the authors developed a training procedure based on the 

expectation maximization (EM) algorithm. The model 

is similar to the Hidden Markov Model, but its advanced 

form supports recursive processing of input and output 

events and allows supervised learning models using 

maximum likelihood estimation. Later, the model was 

used in various applications (Shahin, 2019; Weber, 2016; 

Hu J, 2015; Ourston, 2003).  

In this paper, the IOHMM architecture is adapted to 

predict indoor thermal conditions by monitoring sensor 

data for one year. The training method was designed by 

using the Baum Welch algorithm (Pathak, 2006) which is 

a class of EM algorithms and forward-backward 

algorithms. Afterwards, the model applies the Viterbi 

algorithm and the Markov characteristic to predict 

current events and upcoming events, which specifies 

hidden processes determined by several input 

conditions. Finally, a preference algorithm matches the 

user's preferences with the predicted thermal conditions 

of the indoor environment and suggests desirable 

seating options to the user. 

This paper is organized as follows: Section 2 

represents the current state of the art. Then section 3 

discusses the model structure and the algorithm 
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developments. Section 3 describes the data analysis and 

processing. After that, Section 5 gives a numerical 

application to an open dataset and finally, Section 6 

gives a conclusion. 

2. Related work 

As our collective interpretation of "work" and "the 

workplace" evolves, office space usage becomes even 

more complicated. A dynamic trend in office space 

usage has resulted from new paradigms in working 

culture. Understanding how spaces serve us, seating 

preferences, and estimating demand for those spaces 

allows us to make prompt and informed decisions for 

better space optimization. Jens (2004) investigate the 

trade-offs between open and enclosed spaces and how 

opposing and complementary design aspects influence 

behavior and occupancy seating preferences. Rahaman 

(2020, 2019) discovered that the lack of preferred 

seating arrangements could increase workers' perceived 

stress and impair their focus levels. However, there was 

no way of knowing how various people's preferred seats 

could be characterized.  

Chafi (2020) conduct similar research in Swedish 

Municipalities to identify workspace preferences in 

flexible offices. He also investigates whether 

employees' workstation selections endorse their 

activities and align with their preferences. This study 

emphasized the competition for desirable workspaces 

using 27 semi-structured interviews and annotations on 

architectural drawings to obtain data. A variety of 

factors influenced preferences, including functional, 

social, emotional, and symbolic considerations. 

According to the findings, interviewees preferred 

workstations that were both favorable and functional, 

while ignoring workstations that were neither desirable 

nor functional. This was due to the geometry and 

architecture of the physical space being influenced by 

various stimuli. The authors concluded that the 

characterization of underutilized spaces can help 

improve space configuration. Flexible office layout can 

be improved by characterizing and replacing 

undesirable workspaces with more advantageous and 

appealing alternatives. This method can be used both 

during the design process and after the relocation to 

identify and replace undesirable workstations with 

desirable ones, as well as to alleviate the stress affiliated 

with finding a suitable workstation in office buildings. 

Another interesting study by Sood (2020) depicts the 

implementation and testing of the Space match 

platform, which was intended to optimize workspace 

allocation and management. Using a web-based mobile 

application, this methodology associates’ occupants 

with a listing of available work desks and allows them 

to provide real-time environmental feedback. Over the 

course of a 30-day study, this case study implementation 

collected 1,182 responses from 25 field-based research 

participants. The findings reveal that based on their 

gathered preference data, occupants may be split up into 

distinct sorts of users, and matching preferences can be 

generated to develop a recommendation platform using 

this initial data set. The shortcoming of this 

investigation is that the representative sample size of 

participants is insufficient to provide more generalizable 

categorizations of the different sorts of comfort and the 

wide range of behavior that occupants can display. In 

this paper, we offer a method that takes into account the 

indoor environment's future development in order to 

deliver better matches. The method also offers the 

advantage of an open dataset to solve data scarcity 

issues. 

Prediction of the indoor environment for control 

systems has been studied in the past (Huang, 2020; 

Alawadi, 2020; Hietaharju, 2018; Sanandaji, 2014). 

Previous research, on the other hand, has not taken into 

account the design of such prediction algorithms for 

free-seating systems. Lu (2019) uses machine learning 

techniques such as k-nearest neighbor (KNN), random 

forest (RF), and support vector machine (SVM) to 

construct a thermal comfort model for three major 

climate zones utilizing RP884 (open dataset). The 

statistical thermal comfort model was then used to 

simulate a tabular Q-learning temperature set-point 

control system. According to the findings, the statistical 

thermal comfort model has the best recall of 49.3 

percent, which exceeds Predicted Mean Vote's recall of 

43 % based on a 7-point thermal sensation scale. 

Furthermore, regardless of the initial temperature set-

point, the Q-learning reliant temperature control can 

reach pleasant temperature ranges for occupants. Ma 

(2021) applied a Bayesian neural network (BNN) 

algorithm to build a predictive model for occupant 

thermal preference using the ASHRAE Global Thermal 

Comfort Database II. The findings imply that coupling 

occupants' subjective evaluations and window 

opening/closing behavior with thermal comfort 

modelling enhances predictive performance 

significantly. Fang (2021) used an LSTM-based 

seq2seq model for accurate indoor temperature 

forecasting. When compared to Prophet and a seasonal 

naive model, the LSTM model proved to be 

significantly more competent and accurate in extremely 

short-term predicting. To enable multi-zone indoor 

temperature forecasting with a more generalized model, 

a cross-series learning technique was used. To measure 

the uncertainty in model parameters, the Monte-Carlo 

dropout (MC-dropout) technique was applied. 

This under-researched subject of not taking into 

account the design of such prediction algorithms for 

free-seating systems inspired the authors to propose a 
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system that considers the indoor environment to produce 

better matches for occupant seating. The approach in 

this research paper is interesting as it uses IOHMM to 

combine grouping occupants based on their preferences 

with indoor temperature prediction for short- and long- 

term temporal resolution. The IOHMM model is better 

suited for our use-case, and it is evaluated against a 

baseline HMM model. IOHMM has low-overhead and 

low-complexity advantages for training purposes as 

compared to other ML models. 

It can also consider pre-decided input settings 

(time, heating conditions, etc.) to predict the 

corresponding future events for flexible user 

preferences. One of the major advantages of IOHMM 

can be addressed as its capability of handling multiple 

observations along with the input conditions. It is 

capable of study several observations (sensor readings: 

indoor-outdoor temperature, humidity, air pressure, 

etc.) separately and together (with the dependency 

between them) which can be extended to the next 

developments for more efficient predictions (Shahin, 

2020).  

3. Input-Output Hidden Markov Model 

The Input-Output Hidden Markov Model is a 

stochastic model, which is an advanced version of the 

Hidden Markov Model (HMM). While HMM provides 

a single model-version for all conditions to predict a 

mean value, IOHMM is capable of predicting different 

values for different conditions, e.g., multiple room 

temperatures can be modelled by a single IOHMM 

applying input indexes. It can also anticipate multiple 

outputs corresponding to the same input(s). 

IOHMM was previously used to develop a 

predictive model for time series data (Shahin, 2020). It 

is introduced in the current contribution to model a 

different dataset to predict temperature considering 

different conditions. One of the major advantages of 

using IOHMM is its training method. For example, it 

can use multiple data subsets in one training session to 

learn multiple versions of the model representing the 

corresponding conditions. On the other hand, the HMM 

would be trained separately for the same conditions.  

3.1 Model property 

The general properties of an IOHMM are described 

in detail in (Shahin, 2020). Here, the structure of the 

model is defined (Figure 1) according to the given data 

and the problem formulation. 

 

Figure 1. Input Output HMM 

- The Y node represents the observation sequence(s) or 

in this case the indoor temperature measurements 

converted from continuous to discrete format (see 

Figure 2) in accordance with the IOHMM properties. 

 

Figure 2. Example: continuous to discrete conversion  

Five discrete symbols are used to convert the continuous 

sequence into discrete format. However, the number of 

discrete symbols can be less or more than five based on 

the number of changing events between these symbols. 

A symbol with no (or not enough) transitions holds 

emission parameters with poor probability which may 

leads false predictions.  

- The X node is the sequence of hidden states (e.g., 

representing different scenarios of indoor temperature).  

- The U node is for the input conditions.  

- k is the sequence length.  

- Transition matrix: it represents the transition 

probabilities (𝑎𝑖𝑗) from state 𝑖 to state 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑁; 

where 𝑁 is number of hidden states. If the number of 

hidden states is 4 then the size of this matrix is 4 by 4 

square. 

- Emission matrix: it represents the emission probability 

(𝑏𝑗𝑙) from state 𝑗 to observable symbol 𝑙 1 ≤ 𝑙 ≤ 𝑀; 

where 𝑀 is the number of discrete symbols. Let’s 

assume the number of symbols is 5. So, the size of this 

matrix is 4 by 5 (number of discrete symbols by number 

of hidden states).  
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3.2 Model Training 

IOHMM uses the Baum Welch algorithm and the 

Forward-Backward algorithms to be trained and learn its 

parameters (Rabiner, 1989). The adapted version of the 

algorithms to IOHMM which originally dedicated to 

HMM are given below.  

The forward backward algorithm: 

Forward part:  

Basis: 𝛼(𝑋1) = 𝑃(𝑌1|𝑋1)𝑃(𝑋1) 

Recursion: 𝛼(𝑋𝑘) =
∑ 𝛼(𝑋𝑘−1)𝑃(𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1)𝑃(𝑌𝑘|𝑋𝑘)𝑠𝑁

𝑋𝑘−1=𝑠1
, here 

𝛼(𝑋𝑘)is the forward auxiliary variable =  𝑃(𝑋𝑘 , 𝑌1:𝑘), 

and k is the length of the observation sequence. 

Backward part:  

Basis: 𝛽(𝑋𝐾 = 𝑠𝑖) = 𝑎𝑙𝑙 1. 

Recursion: 𝛽(𝑋𝑘) =

∑ 𝛽(𝑋𝑘+1)𝑃(𝑋𝑘+1|𝑋𝑘, 𝑈𝑘)𝑃(𝑌𝑘+1|𝑋𝑘+1)𝑠𝑁
𝑋𝑘+1=𝑠1

  

here 𝛽(𝑋𝑘) is the backward auxiliary variable =

 𝑃(𝑌𝑘+1:𝐾|𝑋𝑘). 

The Baum Welch algorithm: 

The Baum-Welch algorithm uses 𝛼(𝑋𝑘) and 𝛽(𝑋𝑘) 

to update the parameters repeatedly in three steps:  

Step 01: Initial state probability: 𝜋𝑖 = 𝜀1(𝑖, 𝑗),  

where 1 ≤ 𝑖 ≤ 𝑁 

Step 02: Transition probabilities: �̂�𝑝
𝑖𝑗 =

∑ 𝜀𝑘(𝑖,𝑗).
𝐾−1
𝑘=1 1𝑿𝒌(𝑼𝒌=𝒑)

∑  𝐾−1
𝑘=1 𝜔𝑘(𝑗).1𝑿𝒌(𝑼𝒌=𝒑)

 ; where 1𝑋𝑘(𝑈𝑘=𝑝) = {0 𝑜𝑡ℎ𝑒𝑟𝑠
1 𝑖𝑓 𝑋𝑘(𝑈𝑘=𝑝)

, 

𝑝 is the number of hidden states 

Step 03: Emission probabilities: �̂� 
𝑗𝑘 =

∑  𝐾
𝑘=1 𝜔𝑘(𝑗).1𝑌𝑘=𝑣𝑚

∑  𝐾
𝑘=1 𝜔𝑘(𝑗)

 ; where 1𝑌𝑞
𝑘=𝑣𝑚

= {
 1 𝑖𝑓 𝑌𝑞

𝑘 = 𝜈𝑚

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Here 𝜔𝑘(𝑗) is the probability of being in state 𝑗 at 

time 𝑘 given the sequences 𝑌, and 𝜀𝑘(𝑖, 𝑗) is the 

probability of being in states 𝑖 and 𝑗 at time 𝑘 and 𝑘 + 1 

given the sequences 𝑌. 

3.3 Prediction 

The given data provide only the observation 

sequences, but not the (hidden) state sequence. This is a 

sequence of unknown states or situations producing the 

temperature which is recorded in a regular time interval. 

This is why the state sequence has the same length as 

the observation sequence. 

Since the state sequence is hidden or unknown it is 

needed to be predicted which let the model to predict the 

future state evolution and the corresponding emissions 

at the current time given the current observations.  

The IOHMM uses the Viterbi algorithm, which is a 

popular algorithm to predict the maximum path of the 

hidden states given the observation sequence. The 

maximum path characterizes the sequence of states used 

to predict the future hidden states and their output 

temperature applying the Markov property. This 

algorithm is adapted to IOHMM [25]. 

The adapted Viterbi algorithm: 

Basis: 𝛾(𝑋1)  =  𝑃(𝑋1, 𝑌1
 );  

Recursion: 𝛾(𝑋𝑘)  =

𝑚𝑎𝑥(𝑋𝑘−1) 𝑃(𝑌𝑘
 |𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1𝑈𝑘−1)𝛾(𝑋𝑘−1, 𝑈𝑘−1)𝛾(𝑋𝑘−1)

, here 𝛾(𝑋𝑘)  =  𝑚𝑎𝑥(𝑋1:𝑘) 𝑃(𝑋1:𝑘 , 𝑌1:𝑘). 

This algorithm computes the maximum likelihood 

path as 𝑃(𝑋1:𝑘|𝑌1:𝑘, 𝑈1:𝑘). It contains the probability of 

𝑃(𝑋𝑘|𝑌1:𝑘, 𝑈1:𝑘) which is the current state distribution at 

time 𝑘. Then the transition probability (transition 

matrix) is used to predict the state at time k+1 as 

𝑃(𝑋𝑘+1|𝑋𝑘). Finally, the maximum probability of 

emitting the temperature at time k+1 is calculated using 

the emission probability (emission matrix) as 

𝑃(𝑌𝑘+1|𝑋𝑘+1). 

The last two steps are then repeated until the 

IOHMM reaches a given time at which the prediction 

should stop. Normally this is the office closing time, 

e.g., 4 pm. 

4. Data analysis 

The proposed method is designed to predict the 

indoor thermal condition of an open office space. A total 

of 365 days of observed data (from 2013-1-1 to 2013-

12-31) are analyzed and evaluated in order to make the 

prediction under similar conditions. This is an open 

dataset that can be used for a variety of purposes, 

including the development and validation of occupancy-

related models. 

4.1 Office environment 

The office layout (Figure 3) consists of several 

semi-enclosed (O2, O4), enclosed (O3), meeting rooms 

(MR), kitchen (KI) and a multi-person room (O1). 

 

Figure 3. Layout plan of the office floor 
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A total of eight workstations (C1 - C8) is available 

in the layout, with all desks close to (at least) one 

window. Staff may have different access facilities 

(electrical switch control or close to fire-exit, etc.) 

depending on their desk position. It is also possible that 

the occupant may feel colder/warmer than others due to 

the distance to the heater and/or different heating 

scenarios (Table 1). 

Table 1: Example of different heating states 

Season Heater Window No. Of machines 

Winter On Close Fixed 

Spring On/Off Close Fixed 

Autumn Off/On Close Fixed 

Summer Off Open Fixed 

This is an example of looking into the indoor 

situation considering only two variables (heater and 

window) based on different seasons. For the sack of an 

easy computation and less complexity, all the other heat 

sources (number of machines, human beings, etc.) are 

assumed to be unchanged which can be introduced into 

the model upon to the context. Since more variables can 

make the model construction more complex, we 

considered these four combinations which lead to 

having a 4 state-IOHMM. A feasible number of states 

should be considered according to with the data amount. 

Otherwise, the performance of the model may be 

affected.  

Thermal condition: If there is nothing to predict in 

order to suggest users for their preferable workstation 

then only a preference database query would be enough. 

Such as all the information is pre-defined and fixed (as 

shown by Figure 4). 

 

Figure 4. Layout plan of the office floor 

[Here W is for window seat, Shrd is for shared room, 

Cont. is for controller access, F.exit is for fire exit. The 

office time is assumed as 8:00 – 16:00] 

However, it becomes a challenge when a user seeks 

a thermal conditioned (cooler or warmer) desk not only 

at the current time but also for the near future. Since the 

upcoming temperature is unknown and can be 

influenced by different uncertainties (number of 

presence in the room, number of machines on/off in the 

room, environment conditions, etc.) over the time it is 

very important to predict temperature efficiently. Now 

the question is how much efficiency is efficient enough? 

Well in this study, we considered two observations 

(indoor and outdoor thermal conditions). More 

observations may increase the prediction efficiency but 

with the cost of more complexity. 

4.2 Data processing 

The training set (indoor temperature 

measurements) is prepared by extracting each day of 

observations as a single sequence. Therefore, the one-

year data became 365 independent sequences (see 

Figure 5). After that, a pattern between the indoor and 

outdoor temperatures is acknowledged by analyzing the 

dynamics of the temperature (see Figure 6).  

 

Figure 5. Indoor data sequences 

 

Figure 6. Outdoor temperature 
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First, the sequences are classified based on the level 

of the outdoor readings from low to high (see Table 2). 

Then, the days having the temperature within these 

ranges are marked-out in different classes. On this basis, 

indoor temperature measurements are classified into 

four training subsets, which represent four types of 

behavior in the data. An IOHMM with four inputs is 

developed by using these subsets, where each input 

represents one of the four temperature classes (from 

coldest to hottest). Each subset containing as many 

observation sequences as the number of days. 

Table 2. Data classification 

Id Class 

name 

Outdoor temp. 

Range 

Days Corresponding 

indoor readings 

1 Coldest [-7.4 to 7.00] 104 Subset 1 (104 seq.) 

2 Cold [7.01 to 15.1] 86 Subset 2 (86 seq.) 

3 Hot [15.11 to 22] 93 Subset 3 (93 seq.) 

4 Hottest  [22.01 to 38.8] 82 Subset 4 (82 seq.) 

This classification is done not only by matching 

with the seasons, but also by balancing the amount of 

data for each subset. Table 2 shows that class 1 typically 

represents the winter readings and class 4 the summer. 

The other two classes (class 2 and class 3) represent 

mainly from the spring and autumn seasons. However, 

depending on the dynamics of the data, the class or 

outdoor temperature range can be set to different 

numbers.  

5. Numerical application  

IOHMM uses the transition probability to predict 

the future events. Therefore, the training sequences 

should have information on transitions between one 

state to another state. Otherwise, the transition matrix 

cannot be learned correctly and will not work 

effectively. Therefore, all the sequences that do not have 

any/enough transitions are removed from the training 

set.  

5.1 Training result 

IOHMM training delivers four transition matrices 

according to four inputs. The inputs are already 

mentioned earlier which represent four different classes. 

For example: 

Class 1 is represented by the first estimated transition 

matrix: 

(

0.000 0.467 0.164 0.369
0.031 0.969 0.000 0.000
0.001 0.001 0.285 0.713
0.000 0.025 0.476 0.499

), and 

The correspondant emission matrix: 

(

0.505 0.000 0.494 0.000 0.000
0.693 0.000 0.245 0.058 0.004
0.001 0.999 0.000 0.000 0.000
0.001 0.999 0.000 0.000 0.000

) 

These two matrices represent the complete 

parameters of IOHMM given the input U = 1. The 

training method gives three more sets of (transition, 

emission) parameters for U = 2, 3, and 4. 

5.2 Testing result: on a single test sequence 

The selected test sequence is converted to an 

incomplete sequence. Only the first half of the sequence 

is given to the model to predict the second half. The 

result is then compared to the original sequence (see 

Figure 7). 

 

Figure 7. Comparison between predicted and original 

emitted (temperature) sequence  

The Viterbi algorithm is used to predict the 

maximum path given the half (test) sequence, after 

which the model uses the transition and the emission 

matrices to predict the rest of the sequence elements 

following the Markov property. 

The details result: 

Test sequence length: 47; Number of predicted 

elements: 49; Wrong prediction: 8; Performance: about 

83.67% accuracy 

5.3 Cross validation: Leave one out (LOO)  

One sequence is just one instance of the reality 

which does not justify much of the model performance. 

Therefore, a cross validation can be useful and more 

trustworthy approach to validate the model performance 

on the dataset.  

The Cross-validation is an experiment to analyze 

whether the predictive performance of a model declines 

significantly or does not when applies to new relevant 

data (Berrar, 2019). There are several popular cross-
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validation methods used in literature articles. In this 

paper, the leave-one-out (LOO) method is used to show 

the belief over the model performance. 

LOO is such a validation technique where a random 

data sample is set aside for testing, and the rest is used 

to train the model (Figure 8). The data samples 

(sequence for each day) are assumed as independent 

entities.  

 

Figure 8. Leave-one-out cross validation [4] 

This method is illustrated on a dataset with n = 30 

cases. Each case is used in turn as a single retained test 

case. The model was built using the remaining n - 1 

cases. 

The details LOO result: 

It follows the similar technique as 4.1, only with 30 

times: 

Number of sequences = 30; Number of trainings = 

30; Number of tests = 30; Prediction performance = 

78.4%; The error rate = 21.6% 

5.4 Performance Comparison  

Two performance tables (Tables 3 and 4) are 

presented, which are calculated by applying the LOO 

cross-validation method.  

Table 3 represents the impact of different number 

of parameters of IOHMM on the performance with the 

same training and testing sequences. Choosing the right 

number of hidden states and discrete symbols is always 

a challenge for IOHMM-based model (Shahin, 2020).  

We conducted an experiment where the number of 

hidden states was set as 3 to 5 and discrete symbols as 3 

to 6. This experiment could be extended to more 

parameter variations but based on the amount of data 

and model performance, we decided to go with such 

numbers. 

There is a relationship between the number of 

hidden states and the number of transitions between 

discrete symbols that can be observed. Sometimes, 

fewer hidden states can move quickly from one 

temperature level to another by skipping several 

transitions, or sometimes more hidden states can be 

cause of misleading predictions because there are not 

enough transitions dedicated to each hidden state in the 

dataset. For example, version numbers 1 and 5 (Table 3) 

show the lowest performance because the observations 

have only three discrete symbols. When the number of 

hidden states increases to 4, the error rate increases 

because the additional hidden states do not have enough 

transitions in the discrete form of the data (with only 

three symbols).  

On the other hand, when the number of discrete 

symbols increases to 5 or more (versions 7 and 8) with 

4 hidden states, the model performs well because in this 

case there are sufficient transitions between symbols for 

all 4 hidden states. 

However, IOHMM sometimes performs well with 

a high number of parameters, but this also increases the 

complexity of building and processing the model. For 

example, adding one discrete symbol to version 8 

(compared to the version 7) is equivalent to adding 4 

symbols (for four model inputs). Therefore, it needs to 

be carefully decided whether it is worth adding four 

additional parameters to improve the accuracy of (79.03 

- 78.4) 0.63%.  

Another example can be given here in relation to 

more parameters that can badly influence the model 

performance is version 9. Even though, it has more 

states and discrete variables but does not perform well. 

The reason behind this is the lack of data amount and 

poor model training. There are not enough transition and 

emission events exists in the data that support the extra 

parameters for version 9. So, it could be tricky to raise 

the number of parameters. 

Therefore, this experiment (Table 3) is performed 

on the same dataset in order to find an appropriate model 

version. In this case, IOHMM version 7 (with 4 hidden 

states and 5 discrete symbols) seems to be the most 

suitable model version for the given dataset.  

Table 3. Model Performance for Different Settings 

Version 

No 

Number 

of 

Hidden 

States 

Number 

of 

Discrete 

Symbols 

Accuracy 

rate 

Error 

rate 

1 3 3 61.38% 38.62% 

2 3 4 69.21% 30.79% 

3 3 5 68.00% 32.00% 

4 3 6 71.05% 28.95% 

5 4 3 56.98% 43.02% 

6 4 4 76.65% 23.35% 

7 4 5 78.4% 21.6% 

8 4 6 79.03% 20.97% 

9 5 6 74.01% 25.99% 
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Once the model structure is fixed, the next 

experiment compares the performance of proposed 

version of IOHMM with an HMM-based predictor.  

Table 4 shows the performance of the proposed 

IOHMM compared to the HMM as the baseline 

prediction point. The HMM uses the normal ML 

algorithm that uses all the data for model training, and it 

predicts the average temperature of all the dynamics on 

the dataset. On the other hand, IOHMM uses an adapted 

ML algorithm that considers the inputs in model 

development. Thus, it predicts the exact temperature for 

a given input signal that represents different classes 

mentioned in Table 2. 

Table 4. Average temperature prediction vs IOHMM 

prediction 

Model Number  

of 

Sequence 

Number 

of 

Training 

and 

testing 

Accuracy 

rate 

Error 

rate 

HMM 30 30 69.07% 30.93

% 

IOHMM 30 30 78.4% 21.6% 

IOHMM first obtains inputs to index which class 

the test sequence comes from. It then applies the 

corresponding model parameters to predict the 

temperature. It provides more efficient and plausible 

results compared to a common ML-based predictor (see 

Table 4). 

The model performance can be improved by more 

precise data along with the data uncertainty handling 

approach.   

5.5 Example: The preference algorithm   

Suppose an employee comes to the office at 9:00 

a.m. He wants to find a cooler space for a few hours e.g., 

5 hours, and then he leaves the office for the day. The 

proposed method starts with obtaining preferences from 

the employee and then gives the solution in four steps.  

Step 01: Predict the current thermal conditions at all 

available workstations (including different rooms).  

Step 02: Identify the workstations that match the 

preferred temperature (or relatively cooler space).  

Step 03: Predict the temperature of each selected 

workstation for the next five hours and checks if they 

remain cooler until then. If not, then it suggests the 

closest available option to the employee.  

Step 04: Finally, when a workstation is occupied, the 

method sends a signal to the database by indexing the 

workstation to be occupied.  

Noted that, if there is no available workstation, the 

method notifies the employee immediately that all 

workstations are occupied, or it asks to change the 

preferences. 

6. Conclusion  

In this paper, a probabilistic input-output Hidden 

Markov Model is proposed to predict indoor thermal 

conditions which allow choosing the desirable seating 

spaces based on past and the most probable future 

events. In the context of the IOHMM, the proposed 

approach currently considers multiple input modes, 

representing different dynamics of outdoor temperature 

and the corresponding effects on indoor thermal 

conditions. The model not only predicts the next events 

but also simulates the most probable (upcoming) 

thermal conditions until a given time considering the 

inputs. Multiple combinations between different 

variables of the indoor environment are handled as 

inputs of the model for predicting the future events that 

are close to reality which later compared to the original 

reading in the performance validation. A numerical 

application is implemented to demonstrate the 

functionality of the model. A benchmark is presented 

where the model is executed with different number of 

parameters but on the same data set to determine the 

appropriate number of hidden states and discrete 

symbols for the proposed IOHMM. The performance of 

the model is demonstrated by leaving one out a cross-

validation technique.  

By adding more inputs and corresponding 

parameters, the proposed IOHMM can be used to 

simulate multiple dynamics of thermal conditions 

arising from different causes in the same room or even 

an entire office. The model also allows to monitor an 

entire floors or small buildings with only a single 

version of it. The training and testing algorithms are 

suitable for considering multiple observable outputs in 

model development, enabling the study of multiple 

observations (barometric pressure, humidity, etc.) in the 

prediction methods. This not only ensures the efficiency 

of the results, but also provides the opportunity for 

future work with multiple input and output 

transformations. 
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