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Abstract

Malware plays a key role in attacking critical infras-
tructure. With this problem in mind, we introduce
systems that heal from a broader perspective than the
standard digital computer model: Our goal in a more
general theory is to be applicable to systems that contain
subsystems that do not solely rely on the execution of
register machine instructions. Our broader approach
assumes a dynamical system that performs tasks.

Our primary contribution defines a principle of self-
modifiability in dynamical systems and demonstrates
how it can be used to heal a malfunctioning dynamical
system. As far as we know, to date there has not been
a mathematical notion of self-modifiability in dynamical
systems; hitherto there has not been a formal system for
describing how to heal damaged computer instructions
or to heal differential equations that perform tasks.

1. Introduction

Malware plays a key role in attacking computer
systems [1]. Typically, malware sabotages the purpose
of the machine instructions executing on a digital
computer. Also, there is no computational mechanism
in the register machine model [2, 3, 4]1 for healing (self-
repairing) damaged instructions.

Our goal is to study systems that heal from a broader
perspective than the register machine model so that our
methods may also be applied to systems [5], which have
subsystems that do not solely rely on executing digital
computer instructions. Some systems can be imple-
mented with analog machines such as an Archimedean
screw [6].2

At any moment, a register machine’s state lies in a

1On pages 124-163 of [2], Knuth describes a specific register
machine model, called MIX. Processor architectures, such as the Intel
Core i7 and ARM Cortex-A8, are covered in [4]; these architectures
specify physical realizations of the register machine model.

2Figure 1 shows an Archimedean screw: In [6], equation (10)
models the volume of fluid flow passing through an Archimedean
screw; equation (10) is an analytic equation over the real numbers.

Figure 1. An Archimedean Screw.

countable topological space; on the other hand, some
physical systems [7] are more aptly modelled by a flow
on a metric space [8] that is a continuum.3

We assume a system exists that performs tasks: for
example, the energy system in mitochondria, or an
autonomous transportation system. Our primary goal is
to develop and better understand methods of repairing a
system when the system is malfunctioning. In the field
of biology, a malfunctioning system, in some cases, is
called a disease. With our goal in mind, we ask the
following two questions:

What is self-modifiability?

How can self-modifiability be mathematically
modelled as a means for healing a system?

As far as we know, hitherto there has not been
a notion of self-modifiable differential equations; to
date there has not been a scientific language or formal
system for describing how to heal differential equations
or computer instructions. This is an important notion to
develop so that we can design and improve systems that
protect our critical infrastructure and health: biological
systems, energy systems, GPS, manufacturing systems,
and transportation systems.

3A continuum is often defined as a compact, connected, metric
space or a compact, connected, Hausdorff space [9]. Sometimes a
continuum is not compact. The real numbers are a continuum.
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Our primary contribution defines the principle of
self-modifiability in dynamical systems and demon-
strates how it can be used to heal a malfunctioning
dynamical system. A computational model is described
that can simultaneously execute multiple machine
instructions and a software simulation is provided. The
machine’s simultaneous execution property enables it to
repair instructions that have been damaged or removed;
specifically, this machine uses self-modifiability (via
meta instructions) to help heal damaged instructions.

Another contribution provides examples of how self-
modifiability can be understood in terms of classical
mathematics. Computation is typically implemented
with a dynamical system that performs a task. We define
meta variables and meta operators, and show how to
add or replace variables and differential equations. Meta
variables and meta operators provide a general method
for healing dynamical systems, based on differential
equations.

2. Motivating Healing

Figure 2 shows a doorbell circuit [10]. This system
can be damaged by shorting the two inputs of the
speaker; alternatively, degradation of the insulation
around the speaker leads can lead to a malfunctioning
doorbell system.
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Figure 2. Doorbell Circuit

The circuit can be modelled with a set of differential
equations. When the speaker leads are shorted or cut,
the differential equations have changed. Ideally, we are
searching for methods to repair the equations. Our goal
is to heal them back to differential equations that model
a working doorbell system.

3. The Principle of Self-Modifiability

A computer program can be viewed as a discrete
dynamical system [11]. A set of differential equations
specifies a different type of dynamical system that can
sometimes model analog machines. When a dynamical
system that performs a task is changed so that the task is

no longer adequately performed, it is desirable to have
a process or mechanism to heal the system. This means
that part of the system should detect a change and part
of the system should self-modify the damaged system
back to the original system that adequately performed
the task. A dynamical system that can change itself is
called self-modifiable.

A more concrete way to think about this is to view
a dynamical system as a system that is governed by a
collection of rules. In the case of differential equations,
each equation is a rule; in a computational machine,
each machine instruction is a rule. A dynamical system
is self-modifiable if it can change its own rules: this
means the dynamical system can add new rules to
itself; it can replace current rules with new rules; or it
can delete rules. Usually, a self-modifiable dynamical
system is non-autonomous because the rules governing
its behavior can change as a function of time.

In section 5, we describe a computational machine
that can add new rules when a “dynamical event” occurs
during the machine’s execution. Overall, our machine
uses “meta commands” to change its own rules.

4. Related Work

Related work on self-repair and self-modification is
split between biology and computer science. Biology
focuses on understanding biological complexity [12, 13]
and DNA repair [14]. Computer science emphasizes
better implementations of code repair and AI.

DNA repair [15] has been extensively studied for
over fifty years. The models of DNA explain repair at
the biomolecular level [14], but they do not propose a
self-modifiability principle, based on adding new rules
or replacing rules; and they do not provide a mathemat-
ical model of healing a dynamical system.

In [16], self-modifying systems are proposed as a
means for understanding the development of complexity
in biology: “the popular belief is that the increase of
complexity in evolution poses no deep or unsolved
problem.” Subsequently, the author observes, “the
increase of complexity becomes a deep problem”, and
paradoxically states, “We shall see that in a formal
system complexity can never increase at all.”

In [17], a semantic code search method is described
whose goal is to repair register machine programs. The
method uses human-coded fragments in a database to
repair buggy C programs, written by novice students.
It has a 19 percent success rate on benchmarked bugs.
It has no principle of self-modifiability. In [18], “self-
modifiable algorithms” perform AI: explicit time and
quantum randomness [19] are not part of the model.
Self-modifiable differential equations are not proposed.
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5. The Active Element Machine

Dendritic integration [20, 21] inspired the active
element machine (AEM) model [22]. Active elements
compute simultaneously. AEM commands specify time,
while standard compilers [23] and language theory [24]
do not specify time. In native hardware, an AEM can
simultaneously execute 100,000 instructions or more,
and eliminate the von Neumann bottleneck [25].

First, we summarize the AEM.4 Then a small AEM
program is described that computes if a complete
monochromatic graph on 3 vertices exists. Then we
show how self-modifiability can repair a program.

An AEM is composed of computational objects
called active elements or elements. There are three kinds
of elements: input, computational and output active
elements. Input elements process information received
from the environment or another AEM. Computational
elements receive pulses from the input elements and
other computational elements and transmit new pulses
to computational and output active elements. Output
elements receive pulses from input and computational
elements. Every element is active in the sense that each
one can receive and transmit pulses simultaneously.

Each pulse has an amplitude and a width. The width
represents how long the amplitude lasts as input to the
element that receives the pulse. If element Ei simul-
taneously receives pulses with amplitudes summing to
a value greater than Ei’s threshold and Ei’s refractory
period has expired, then Ei fires. When Ei fires, it sends
pulses to other elements. If Ei fires at time t, a pulse
reaches element Ek at time t+τik where τik is the delay
(transmission time) from Ei to Ek.

In section 8.2, a specification of the AEM language
defines four commands and two keywords. An element
command creates a new active element or updates an
element’s parameters: (element (time 2) (name L)

(threshold -3) (refractory 2) (last 0)).5 At
time t = 2, if element L does not exist, then L is
created. Element L’s threshold is set to −3. L’s refrac-
tory period is set to 2, and L’s last time fired is set to 0.
After time t = 2, element L exists indefinitely with the
same threshold and refractory values until a new element
command with name value L executes at a later time.

A connection command connects two elements:
(connection (time 2) (from C) (to L) (amp -7)

(width 6) (delay 3)). At time t = 2, a connection
from element C to element L is created. The pulse
amplitude is set to −7. The pulse width is set to 6. The
transmission time is set to 3.

4A more comprehensive description is in sections 8.1 and 8.2.
5In input element commands, parameters threshold, refractory and

last may be omitted.

A fire command fires an input element and sends
input, by transmitting pulses to other active elements:
(fire (time 3) (name C)) fires element C at t = 3.

In (name v), value v uniquely identifies the active
element in element and fire commands. In expression
(from v) (to w), values v and w uniquely identify a
connection: (connection (time 2) (from v) (to w)

(amp 7) (width 6) (delay 3)).
A meta command can self-modify an AEM program:

(meta (name E) (window 1 5) (C (args a b))). If
element E fires (a dynamical event) during the time
window [1, 5], this meta command executes and creates
command C with arguments a and b.

Suppose an element command is contained in a meta
command and an element command with the same name
value already exists in the AEM program. If the meta
command executes, then the element command in the
meta command replaces the one in the AEM program.
A similar replacement occurs for fire commands if the
name values are the same. A similar replacement occurs
for a connection command in a meta command if the
from and to values are the same.

Keyword dT represents an infinitesimal [26] amount
of time that helps coordinate almost simultaneous
events. dT < q for every rational q > 0, and dT > 0.

5.1. A Simple AEM Program

We define a program with 4 input active elements A,
B, C, and D and one computational element E.
(element (time -dT) (name E) (threshold 9)

(refractory 4) (last 0) )
(element (time -dT) (name A))
(element (time -dT) (name B))
(element (time -dT) (name C))
(element (time -dT) (name D))

(connection (time -1) (from A) (to E) (amp 5)
(width 4+2dT) (delay 3-dT))

(connection (time -1) (from B) (to E) (amp 9)
(width 6) (delay 2+dT))

(connection (time -1) (from C) (to E) (amp -4)
(width 5) (delay 5-dT))

(connection (time -1) (from D) (to E) (amp 2)
(width 4+2dT) (delay 6-dT))

(fire (time 0) (name A)) (fire (time 0) (name B))
(fire (time 0) (name C)) (fire (time 0) (name D))
(fire (time 0) (name E))

The fire commands cause elements A, B, C, D and E
to fire at t = 0. The parameters of the elements and their
connections are shown in tables 1 and 2.

Table 1. Element Parameter Values

element threshold refractory last firing time

E 9 4 0

Figure 3 shows the resulting pulses sent from input
elements A, B, C, D to element E. The pulse sent from
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Table 2. Connection Parameter Values

name from to amplitude width delay

AE A E 5 4 + 2dT 3−dT
BE B E 9 6 2+dT
CE C E −4 5 5−dT
DE D E 2 4 + 2dT 6−dT

(Connection (Time -1) (From A) (To E) (Amp 5) (Width 4+2dT) (Delay 3-dT)

(Connection (Time -1) (From B) (To E) (Amp 9) (Width 6) (Delay 2+dT)

(Connection (Time -1) (From C) (To E) (Amp -4) (Width 5) (Delay 5-dT)

(Connection (Time -1) (From D) (To E) (Amp 2) (Width 4+2dT) (Delay 6-dT)

(Fire (Time 0) (Name A))                                              B                                    

(Fire (Time 0) (Name B))  

(Fire (Time 0) (Name C))                                               A

(Fire (Time 0) (Name D))                                                 

 Time     Sum of Input to E                                                   D

    2                  0

    3                14         

    5                10                                                 

   10                 2                                                            C

                                               

AEM computation - Input Pulses

1

Figure 3. Pulses Sent to Element E.

element B reaches element E at time 2+dT. The pulse
sent from A reaches E at time 3−dT. Figure 3 also shows
a time geometry of the pulses sent to element E.

Table 3 shows the sum of the pulses received by E at
various times. At time t = 3, E does not fire because E’s
refractory period is 4 and the last time E fired was t = 0.

Table 3. Sum of Input Pulses to E

Time 2 3 4 5 8 9 12
Sum of Pulses 0 14 14 10 7 −2 0

At t = 4, E fires because the sum of E’s input is 14 and
14 is greater than E’s threshold of 9. Since E fires at
t = 4, E cannot fire again until t = 8 or afterward. At
time t = 8, the sum of E’s input is 7, and 7 is less than
E’s threshold. Hence, E does not fire a second time.

5.2. An AEM that Computes Colorings of K5.

We describe an AEM program that computes a
simple graph theory problem. In section 5.3, we show
how to use meta commands to help repair commands
that have been removed from a valid AEM program.

K5 is the complete graph on 5 vertices,
{1, 2, 3, 4, 5}. In figure 4, each edge {j, k} is colored
red or blue. The red edges are {1, 2}, {2, 3}, {3, 4},
{4, 5}, and {1, 5}. The blue edges are {1, 3}, {1, 4},
{2, 4}, {2, 5}, and {3, 5}.

We specify an AEM program that determines
whether a coloring of K5 contains a complete
monochromatic subgraph on 3 vertices (triangle).
Monochromatic means the subgraph has only blue edges
or only red edges. In figure 4, the coloring does not

.
.

..

.

1

2

34

5

Figure 4. A Red-Blue Coloring of Graph K5

contain a monochromatic subgraph on 3 vertices.
This graph problem comes from Ramsey theory

[27], which has extensive applications [28] in computer
science, ergodic theory, information theory, logic, and
number theory. Ramsey number r(j, l) is the least
integer n such that if the edges of the complete graph
Kn are colored with only red and blue, then there always
exists a complete subgraph Kj containing only red
edges or there exists a complete subgraph Kl with only
blue edges. Computing r(j, l) is an NP-hard problem
[29]. r(j, l) grows so fast that r(5, 5) is unknown.

Below are 5 red edge input element commands. The
one named R12 represents that edge {1, 2} is red.
(element (time 0) (name R12) (threshold 1)

(refractory 1) (last -1))
(element (time 0) (name R23) (threshold 1)

(refractory 1) (last -1))
(element (time 0) (name R34) (threshold 1)

(refractory 1) (last -1))
(element (time 0) (name R45) (threshold 1)

(refractory 1) (last -1))
(element (time 0) (name R15) (threshold 1)

(refractory 1) (last -1))

Below are 5 blue edge input element commands, where
Bij ranges over {B13, B14, B24, B25, B35}.
(element (time 0) (name Bij) (threshold 1)

(refractory 1) (last -1))

Below are 5 commands that fire the red edge elements,
and 5 commands that fire the blue edge elements.
(fire (time 0) (name R12)) (fire (time 0) (name R23))
(fire (time 0) (name R34)) (fire (time 0) (name R45))
(fire (time 0) (name R15)) (fire (time 0) (name B13))
(fire (time 0) (name B14)) (fire (time 0) (name B24))
(fire (time 0) (name B25)) (fire (time 0) (name B35))

For each red edge {j, k}, there is a meta command
(meta (name Rjk) (window 0 1) (connection

(time 0) (from Rjk) (to Rjk)
(amp 2) (width 1) (delay 1)))

where Rjk is one of R12, R23, R34, R45, R15.

For each blue edge {j, k}, there is a meta command
(meta (name Bjk) (window 0 1) (connection

(time 0) (from Bjk) (to Bjk)
(amp 2) (width 1) (delay 1)))

where Bjk is one of B13, B14, B24, B25, B35.
For each 3 distinct vertices {i, j, k} in {1, 2, 3, 4, 5},
create red element R_ijk and blue element B_ijk.
(element (time 0) (name R_ijk) (threshold 5)

(refractory 1) (last -1))
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(element (time 0) (name B_ijk) (threshold 5)
(refractory 1) (last -1))

For each set of 3 distinct vertices {i, j, k}, compute if all
three edges {i, j}, {i, k}, {j, k} are blue.
(connection (time 0) (from Bij) (to B_ijk)

(amp 2) (width 1) (delay 1) )
(connection (time 0) (from Bjk) (to B_ijk)

(amp 2) (width 1) (delay 1) )
(connection (time 0) (from Bik) (to B_ijk)

(amp 2) (width 1) (delay 1) )

For each set of three distinct vertices {i, j, k},
compute if all three edges {i, j}, {i, k}, {j, k} are red.
(connection (time 0) (from Rij) (to R_ijk)

(amp 2) (width 1) (delay 1) )
(connection (time 0) (from Rjk) (to R_ijk)

(amp 2) (width 1) (delay 1) )
(connection (time 0) (from Rik) (to R_ijk)

(amp 2) (width 1) (delay 1) )

5.3. Simulating an AEM that Self-Repairs

We built a software tool that simulates the active
element machine. We compiled our C code [30] to a
dynamic library (59,552 bytes), named AEM.dylib.
Library AEM.dylib runs on macOS Big Sur, and can
execute all four AEM commands.

The AEM can simultaneously execute multiple
commands, while C code compiles to register machine
instructions that can only execute sequentially. By
finessing the use of dT in our AEM programs, we
can avoid simulations that produce different computing
results than an actual AEM program, implemented in
hardware, would produce. Before demonstrating self-
repair, we describe two software simulations of our
AEM program defined in section 5.2.

During the first simulation, the following firing
activity occurs. At time 0, elements B13, B14, B24

B25, B35, R12, R15, R23, R34, and R45 fire.
None of the elements B_ijk or R_ijk ever fire: thus,
K5’s coloring does not contain a blue or red triangle.

If {3, 5} is colored red instead of blue, command
(fire (time 0) (name R35)) replaces (fire (time 0)

(name B35)). Also, (element (time 0) (name R35)

(threshold 1) (refractory 1) (last -1)) replaces
(element (time 0) (name B35) (threshold 1)

(refractory 1) (last -1)).
During the second simulation, the new AEM

program produces the following firing activity. At time
t = 0, elements B13, B14, B25, B24, R12, R15

R23, R34, R35 and R45 fire. Also, element R_345
fires at t = 1: This means that the new coloring of K5

has a red triangle {3, 4, 5}.
Now we show how the new AEM program can be

protected. Suppose the new AEM program is sabotaged
by removing the connection command:
(connection (time 0) (from R35) (to R_345)

(amp 2) (width 1) (delay 1) )

When element R35 fires, the pulse of amplitude 2
is not sent to R_345 and the input sum to R_345 never
goes above 4, so R_345 never fires even though the new
coloring of K5 contains the red triangle {3, 4, 5}.

We can heal the removal of this connection with the
following meta command:
(meta (name R35) (window -dT 1)

(connection (time 0) (from R35) (to R_345)
(amp 2) (width 1) (delay 1) )

Similarly, for each connection from Rij to R_ijk,
we can heal the removal with the meta command:
(meta (name Rij) (window -dT 1)

(connection (time 0) (from Rij) (to R_ijk)
(amp 2) (width 1) (delay 1) )

We can add a similar meta command for each
connection from Rjk to R_ijk and for each connec-
tion from Rik to R_ijk. We can also protect the
blue connections by adding a meta command for each
connection from Bij to B_ijk.
(meta (name Bij) (window -dT 1)

(connection (time 0) (from Bij) (to B_ijk)
(amp 2) (width 1) (delay 1) )

We can add a similar meta command to heal broken
connections for each connection from Bjk to B_ijk
and for each connection from Bik to B_ijk.

5.4. Healing Principle for AEM programs

A Turing computable property is a property that
can be computed by a register machine. Since AEM
programs can execute Turing computable algorithms
[22], the healing examples demonstrated in 5.3 can be
extended with more general methods. For example,
a new output active element Oc can be adjoined to
an AEM program for the sole purpose of detecting
some Turing computable property c has changed in
the damaged AEM program. One can adjoin meta
commands of the form (meta (name Oc) h) where
if active element Oc fires, the firing of Oc indicates that
property c is awry. Hence, command h self-modifies
the AEM program so that adjoining command h at least
partially heals the damaged AEM program.

Before we provide a formal definition, we give two
examples of properties, named ϕ1 and ϕ2.

ϕ1 : The number of non-zero connections in program
P that contain expression (to A) is 7.

ϕ2 : Suppose P is the AEM defined in section 5.1. If
elements A, B, C, and D all fire at time s, then
element E will fire before or at time s+ 4.

Let P be the set of all AEM programs. A property
of all programs P is defined as a characteristic function
ϕ : P → {0, 1}. When ϕ(P) = 1, then property ϕ holds
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on program P. If ϕ(P) = 0, then property ϕ is violated
on P. ϕ is a Turing computable property if ϕ is Turing
computable on P . For a finite set of programs F ⊂ P , a
restriction ϕ|F : F → {0, 1} can be Turing computable,
yet ϕ is not necessarily Turing computable on P .

A subprogram S of an AEM program P is any subset
of commands selected from P. An extension program of
S is a finite set of AEM commands adjoined to S.
Theorem 1. AEM Healing Theorem

Let P be an AEM program. Suppose ϕ is a Turing
computable property of program P. Suppose that a
subprogram S of P can compute whether ϕ holds on P
or is violated. Then there is an extension program H of
S such that if P is damaged and H is not damaged, then
H can restore program (heal) P, and S can verify that ϕ
has the same value on the original program P.

Proof. Starting with program S, we explain how to build
program H that can restore program P. Add a new unique
active element with name value X (not in P) to program
S. (The name value X must not occur in P because
any firing activity of X must not interfere with firing
activity of other elements in P.) For each command C
in P, adjoin the following meta command to program S:
(meta (name X) C).

Command (fire (time t0) (name X)) is also
adjoined to S, where t0 is the time that program H loads
and starts executing. When X fires, the commands in
P are restored by the meta commands in H that were
adjoined to program S. Trivially, ϕ has the same value
on the restored program as the original program P.

The proof shows that the meta command can help
restore a damaged program; and self-modifiability of
AEM programs plays a fundamental role. In some cases,
a Turing computable property ϕi can be the ith bit of a
one-way hash function [31] applied to program P that
checks if tampering of P has occurred.

6. Self-Modifiable Differential Equations

Before we show how to self-modify a differential
equation, we describe some ordinary differential equa-
tions. Then we develop a formal language for building
differential equations. Finally, we show a damaged one
and illustrate how to heal it.

6.1. ODEs that Compute OR, AND, NOT

We define ordinary differential equations that can
compute the Boolean operator OR, where OR(1, 0) =
OR(0, 1) = OR(1, 1) = 1, and OR(0, 0) = 0. Consider
equations dx

dt = 0; dy
dt = 0; and dz

dt = x+ y − xy − z.
The initial values x0 and y0 are Boolean inputs 0 or

1. Variable z computes the output. z’s initial value
is always z0 = 0. We tested that z converges to the
correct Boolean output for all 4 pairs of initial values
x0, y0 ∈ {0, 1}, using Julia [32]. For example, table 4
assumes initial conditions x0 = 0; y0 = 1; and z0 = 0.

Table 4. dx
dt

= 0. dy
dt

= 0. dz
dt

= x+ y − xy − z.

t 0 .25 .49 .81 1.22 2.34 3.07 4.0

x(t) 0 0 0 0 0 0 0 0
y(t) 1 1 1 1 1 1 1 1
z(t) 0 .22 .56 .71 .82 .90 .95 .98

If x0 = 0, y0 = 1 and z0 = 0, then dz
dt |t=0 = 1

and dz
dt = 1 − z when t > 0. Thus, dz

dt > 0 when
z < 1, and lim

t→∞
z(t, x0 = 0, y0 = 1, z0 = 0) = 1.

By symmetry, lim
t→∞

z(t, x0 = 1, y0 = 0, z0 = 0) = 1.

Also, lim
t→∞

z(t, x0 = 1, y0 = 1, z0 = 0) = 1. Lastly,

the relevant fixed points6 (x, y, z) of dx
dt = 0; dy

dt = 0;
dz
dt = x + y − xy − z are (0, 1, 1), (1, 0, 1), (0, 0, 0),
(1, 1, 1), and have the same input-output values as OR.

Equations dx
dt = 0; dy

dt = 0; and dz
dt = xy − z

compute AND(0, 0) = AND(1, 0) = AND(0, 1) = 0,
and AND(1, 1) = 1. Relevant fixed points are (0, 1, 0),
(1, 0, 0), (0, 0, 0), (1, 1, 1). With input x and output z,
dx
dt = 0 and dz

dt = 1 + xz − (x+ z) compute NOT.

6.2. Generalizing the Meta Command

In the AEM, the firing of an element in a meta
command adds a new connection or new element, or
replaces some of the parameters in an existing element
or connection. When meta commands create new
elements and connections, these new computational
objects are representable by one or more new variables.
This is evident from the machine architecture definition
in 8.1 of the appendix. In short, we identify two notions
that are critical to self-modifying a differential equation.

1. A formal language specifies how to self-modify a
differential equation. Meta operators are formal
objects that self-modify an equation.

2. A meta variable helps detect an event. A
detectable event triggers an execution of a meta
operator. A meta operator alone is not sufficient
for defining self-modification. A self-modifiable
dynamical system must also know at what time a
meta operator executes.

6The fixed points are all (x, y, z) such that dx
dt

= dy
dt

= dz
dt

= 0,
e.g. (2, 2, 0). Sometimes fixed points are called equilibrium points.
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6.3. Meta Variables

We define a meta variable, a detectable event, and
a meta execution time. Standard variables are variables
that occur in an ordinary differential equation. In dz

dt
= 1 + xz − (x + z), x and z are standard variables.
Define ω1, . . . ωn as meta variables. Define x1, . . . , xn

as standard variables.7 Each fi is a function. dωi

dt =
fi(x1, . . . , xn) is a meta equation.

Let X be a topological space, where derivatives can
be defined. At any time t, a standard variable’s value
xi(t) and a meta variable’s value ωi(t) both lie in X .
Let A be a Lebesgue measurable [33] subset of X .8

A signed characteristic function on A is χA : X →
{−1, 1}. If x is in A, then χA(x) = 1; if x is not in A,
then χA(x) = −1. X is the domain of χA, and {−1, 1}
is the range. Let θω be a threshold. Composing χA and
meta variable ω, a detectable event occurs when

t=s∫
t=0

χA(ω(t)) dt ≥ θω for some time s. (1)

Define meta execution time τω as the infimum9 of all
times s that satisfy inequality (1). A meta operator Mω ,
bound to meta variable ω, executes at time τω .10

6.4. Meta Operators

Meta operators enable us to build self-modifiable
differential equations. A system of differential equa-
tions is a set of differential equations. For example, S =
{dx
dt = 0, dy

dt = 0, dz
dt = x+ y − xy − z} is a system.

Our formal language for meta operators works as
follows. A create operator C creates an empty system,
and assigns a name with syntax C(time, name). C(0,S)
creates an empty system S = {} at time 0.

An initialize operator I declares a variable with
a name and its type; assigns an initial value; and
places the variable in a system. I’s syntax is I(time,
variable_name, variable_type, initial_value,
system_name). For example, I(0, x, standard, 0, S)
creates x at time 0; defines x as a standard variable; and
assigns x the initial value of 0 (i.e., x0 = 0). Argument
S indicates that x is a variable in a system named S.

An adjoin operator A adjoins a new differential
equation to a system. A’s syntax is A(time, equation,

7Variables have type standard or type meta.
8Set A is measurable so that an integral is well-defined.
9The infimum of a set of real numbers is the greatest lower bound.

10Integrating ω(t)’s orbit and executing Mω is analogous to a meta
command executing when an active element A fires, due to the sum of
A’s input pulses exceeding A’s threshold.

system_name). A is executed at a time specified by
the first argument. In simpler cases, the time is explic-
itly stated. In other cases, the time is the greatest lower
bound of all times s which satisfy integral inequality (1)
in section 6.3. For example, execute 7 meta operators
shown below: C(−1, S) I(0, x, standard, 0, S)
A(0, dx

dt = 0,S) I(0, y, standard, 0, S)

A(0, dy
dt = 0,S) I(0, z, standard, 0, S)

A(0, dz
dt = x+ y − xy − z,S). Afterward, system S =

{dx
dt = 0, dy

dt = 0, dz
dt = x+ y − xy − z}.

A replace operator R replaces a variable with an
equation or variable, or R replaces an equation with
another equation. R’s syntax is R(time, old_exp,
new_exp, grammar, system_name). The argument
time behaves the same as time in the adjoin operator.
Sometimes the 2nd argument old_exp represents the
current variable that will be replaced by a new variable
or equation, indicated by the 3rd argument new_exp.
Sometimes old_exp represents an equation that will be
replaced by a new equation new_exp. The 4th argument
grammar is a pattern matching scheme. For replacement
to occur, an expression in old_exp, must be accepted
by a grammar, specified in grammar. It may be a semi-
Thue grammar [34].11 If grammar is ∅ or omitted, a
replacement occurs at time specified by time. Overall,
R plays a similar role to a meta command in an AEM.

6.5. Repairing a Damaged Equation

Adding a small amount of noise to the OR ODE so
that dx

dt = 0.1 and dy
dt = 0.1, a Julia simulation is shown

in table 5 with initial values x0 = y0 = 0. Table 5 shows
that z moves to an incorrect output value because x and
y move away from their initial values x0 = y0 = 0.

Table 5. dx
dt

= 0.1. dy
dt

= 0.1. dz
dt

= x+ y − xy − z.

t 0 .86 1.72 3.11 5.43 8.12 10.0

x(t) 0 .086 .17 .31 .54 .81 1.0
y(t) 0 .086 .17 .31 .54 .81 1.0
z(t) 0 .055 .17 .38 .68 .91 .98

Define equation dω
dt = dx

dt with meta variable ω. Set

A = R. Set initial value ω(0) = 0. Then
s∫
0

χA(ω(t)) dt

=
s∫
0

ω(t) dt. Also, ω(s) = ω(0)+
s∫
0

dω
dt dt =

s∫
0

dx
dt dt.

Now
s∫
0

χA(ω(t)) dt =
s∫
0

s∫
0

dx
dt dt.

11Also, see pages 220-223 in [24].
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Set θω = 10−6. Define Rω(inf
s>0

s∫
0

ω(t)dt ≥ θω,

dx
dt = 0, dx

dt = x(1 − x), ∅, S). If there is physical

noise dx
dt = δ > 0, noise accumulates so that

s∫
0

ω(t) dt

first reaches θω at time s. At time s, Rω self-modifies to
S = {dx

dt = x(1− x), dy
dt = 0, dz

dt = x+ y − xy − z}.

This change repairs noise in equation dx
dt near x = 0.

Rω will not repair noise near x = 1. One can repair
noise around both x0 = 0 and x0 = 1, by splitting A, for
some ϵ > 0, into A0 = (−ϵ, ϵ) and A1 = (1− ϵ, 1 + ϵ),
and creating two replacement operators Rω0

and Rω1
.

7. Summary & Research Questions

By studying the AEM model, simulating the AEM
with some simple programs, and extrapolating the use
of meta commands to differential equations, we defined
a principle of self-modifiability in computation and
in differential equations. We also demonstrated self-
modifiable dynamical systems that heal.

Long-term research should address these questions:

• How does a system self-reflect so that it detects
a deleterious change? (For example, put a micro-
phone in the doorbell system.12)

• Can we build self-reflection into a mathematical
theory so that it becomes a general principle on
how to heal a malfunctioning system?

• Assuming that information theory [35, 36] will
play a fundamental role in self-reflection, when
is a broken system beyond self-repair? That is,
when, if ever, has too much information been lost
so that healing is impossible?

• How can self-repair be designed to adequately
function while actively being attacked by a
sentient adversary?
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8. Appendix

8.1. Active Element Machine Architecture

Let Z be the integers, and fix infinitesimal dT [26].
Define extended integers Z = {m + k dT: m, k ∈ Z}.
In 8.2, keyword dT is described, which establishes an
order on Z: for example, 3− 5dT < 3− 4dT.
Definition 1. Machine Architecture

Γ, Ω, and ∆ are index sets that index the input,
computational, and output active elements, respectively.
Intersections Γ ∩ Ω and Ω ∩ ∆ can be empty or non-
empty. A machine architecture, denoted as M(I, E ,O),
consists of a collection of input active elements, denoted
as I = {Ei : i ∈ Γ}; a collection of computational
active elements E = {Ei : i ∈ Ω}; and a collection of
output active elements O = {Ei : i ∈ ∆}.

Each computational and output active element, Ei,
has the following components and properties:

• A threshold θi

• A refractory period ri where ri > 0.
• A collection of pulse amplitudes {Aki : k ∈ Γ ∪ Ω}.
• A collection of transmission times {τki : k ∈ Γ ∪ Ω},

where τki > 0 for all k ∈ Γ ∪ Ω.
• A function of time, Ψi(t), representing the time active

element Ei last fired. Ψi(t) = sup{s : s < t and
gi(s) = 1}, where gi(s) is the output function of active
element Ei and is defined below. The sup is the least
upper bound and is always defined here, whence Ψi is
well-defined.

• A binary output function, gi(t), representing whether
active element Ei fires at time t. The value of gi(t) = 1

if
∑

Aki(t) > θi where the sum ranges over all k ∈
Γ∪Ω and t ≥ Ψi(t)+ri. In all other cases, gi(t) = 0.
For example, gi(t) = 0, if t < Ψi(t) + ri.

• A set of firing times of active element Ek within active
element Ei’s integrating window, Wki(t) = {s : active
element Ek fired at time s and 0 ≤ t− s− τki < ωki}.
Let |Wki(t)| denote the number of elements in the set
Wki(t). If Wki(t) = ∅, then |Wki(t)| = 0.

• A collection of input functions, {ϕki : k ∈ Γ∪Ω}, each
a function of time, and each representing pulses coming
from computational active elements, and input active
elements. The value of the input function is computed
as ϕki(t) = |Wki(t)|Aki(t).

• The refractory periods, pulse amplitudes and thresholds
are integer valued. At any moment, transmission times
and pulse widths are extended integers ≥ 1. These
parameters are a function of time: θi(t), ri(t), Aki(t),
ωki(t), τki(t). Time t is an extended integer.

Input active elements that are not computational
have the same properties as computational elements,
except they receive no inputs ϕki from elements in
this machine. Input elements are externally firable, by
an external source from the environment or an output
element from a distinct machine M(I ′, E ′,O′). An
input element can fire at any time after its refractory
period has expired. An element can be an input and
computational element; an element can be an output and
computational element. When an output element Ei is
not a computational element (i ∈ ∆− Ω), then Ei does
not send pulses to elements in this machine.

If gi(s) = 1, then active element Ei fired at time
s. Refractory period ri is the amount of time that must
elapse after Ei just fired before Ei can fire again. τki
is the transmission time: If element Ek fires at time t,
a pulse sent from Ek reaches Ei at time t + τki. Pulse
amplitude Aki is the height of the pulse that Ek sends to
Ei after Ek has fired. After this pulse reaches Ei, pulse
width ωki indicates how long the pulse lasts as input to
Ei. If Aki = 0, no connection exists from Ek to Ei.

8.2. Active Element Machine Language

A minimal programming language defines four
commands: element, connection, fire, and meta.

Syntax 1. AEM Program
An AEM program is defined with Backus-Naur syntax.
ϵ indicates a blank string that terminates an expression.
<AEM_program> ::= <aem_cmds>

<aem_cmds> ::= ϵ | <cmd><aem_cmds>

<cmd> ::= <e_cmd> | <c_cmd> | <f_cmd> | <m_cmd>

Syntax 2. AEM Symbols & Extended Integers
<ename> ::= <int> | <symbol>

<symbol> ::= <char><str> | (<ename> . . . <ename>)

<str> ::= ϵ | <char><str> | 0<str> | <pint><str>

<char> ::= <letter> | <special_char>

<letter> ::= <lower_case> | <upper_case>
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<lower_case> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
n | o | p | q | r | s | t | u | v | w | x | y | z

<upper_case> ::= A | B | C | D | E | F | G | H | I | J | K | L | M |

N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<special_char> ::= _

The rules below cover extended integer arithmetic.
<int> ::= <pint> | <nint> | 0

<nint> ::= - <pint>

<pint> ::= <nonzero><digits>

<digits> ::= <numeral> | <numeral><digits>

<nonzero> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<numeral> ::= ϵ | <nonzero> | 0

<aint> ::= <aint><sgn><d> | <d><sgn><aint> | <d>
<sgn> ::= + | -
<d> ::= <int> | <char><str> | <infinitesimal>
<infinitesimal> ::= dT

Command 1. element
An element command specifies the time when an

active element is created or its parameter values are
updated. Its Backus-Naur syntax is shown below.
<e_cmd> ::= (element (time <aint>)

(name <ename>) <eth> <ere> <ela>)

eth ::= ϵ | (threshold <int>)

ere ::= ϵ | (refractory <pint>)

ela ::= ϵ | (last <int>)

Keyword time tags a time value s (extended
integer) when the element is created or updated. If the
name value is E, keyword name tags name E of the
active element. Keyword threshold tags a threshold
θE(s). Keyword refractory tags a refractory value
rE(s), and last tags a last time fired value ΨE(s).

Command 2. connection
A connection command creates or updates a

connection from one active element to another active
element. Its Backus-Naur syntax is shown below.
<c_cmd> ::= (connection (time <aint>)

(from <ename>) (to <ename>)
[(amp <int>) (width <pint>)
(delay <pint>)])

Keyword time tags a time value s when the connec-
tion is created or updated. Keyword from tags a name
E of the active element that sends a pulse with these
updated values. Keyword to tags a name B of the active
element that receives a pulse with these updated values.
Keyword amp tags a pulse amplitude value AE,B(s)
that is assigned to this connection. Keyword width
tags a pulse width value ωE,B(s). Keyword delay tags
a transmission time τE,B(s).

When the AEM clock reaches time s, symbols E
and B are name values that must refer to an element
that already has been created or updated before or at
time s. Not all of the connection parameters have to
be in a connection command. If the connection does

not exist beforehand and the width and delay values
are not specified appropriately, then the amplitude is set
to 0: this “zero” connection has no effect on the AEM
computation. The connection exists indefinitely with the
same parameter values until a new connection command
is executed between from element E and to element B.
Command 3. fire

A fire command has the following syntax.
<f_cmd> ::= (fire (time <aint>) (name <ename>))

The fire command fires the active element indicated
by the name tag at the time indicated by the time tag.
This command can be used to fire input active elements.
Keyword 1. dT

Keyword dT represents a positive infinitesimal
amount of time. If m and n are integers and 0 ≤
m < n, then mdT < ndT. Also, dT > 0 and dT is

less than every positive rational number; and -dT < 0
and -dT is greater than every negative rational number.

dT coordinates almost simultaneous events that are
non-commutative or indeterminate: e.g. element A may
be receiving a pulse from element B at the same time
that a connection between them is removed.
Keyword 2. clock

Keyword clock evaluates to an integer, and is the
current AEM time. clock is an instance of <ename>.

If the current AEM time is 5, then (element
(time clock) (name clock) (threshold 1)

(refractory 1) (last -1)) executes as (element

(time 5) (name 5) (threshold 1) (refractory 1)

(last -1)).
After (element (time clock) (name clock)

(threshold 1) (refractory 1) (last -1) ) is
created, then this command is executed with the current
clock time. If this command is in the original AEM
program before the clock starts at 0, then the following
sequence of elements named 0, 1, 2, . . . are created.
(element (time 0) (name 0) (threshold 1) (refractory 1) (last -1))
(element (time 1) (name 1) (threshold 1) (refractory 1) (last -1))
(element (time 2) (name 2) (threshold 1) (refractory 1) (last -1))
. . .

Command 4. meta
A meta command executes a command <cmd>

when an active element fires within a window of time.
<m_cmd> ::= (meta (name <ename>) [<wtime>] <cmd>)
<wtime> ::= (window <aint> <aint>)

For example, E is the name of the active element
in (meta (name E) (window l w) (C (args t a)).
Keyword window tags a time interval, called a window
of time. l and w are extended integers that locate the
boundary points. If w > 0, the window of time is
[l, l+w]. If w < 0, the window is [l+w, l].

Command C executes each time that E fires during
the window of time. If the window is omitted, then
command C executes at any time that element E fires.
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