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Abstract 

The rapid adoption of innovative technologies 
confronts IT-Service-Management (ITSM) with 
incoming support requests of increasing complexity. 
As a consequence, job demands and turnover rates of 
ITSM support agents increase. Recent technological 
advances have introduced assistance systems that rely 
on hybrid intelligence to provide support agents with 
contextually suitable historical solutions to help them 
solve customer requests. Hybrid intelligence systems 
rely on human input to provide high-quality data to 
train their underlying AI models. Yet, most agents 
have little incentives to label their data, lowering data 
quality and leading to diminishing returns of AI 
systems due to concept drifts. Following a design 
science research approach, we provide a novel 
Human-in-the-Loop design and hybrid intelligence 
system for ITSM support ticket recommendations, 
which incentivize agents to provide high-quality 
labels. Specifically, we leverage agents’ need for 
instant gratification by simultaneously providing 
better results if they improve labeling automatically 
labeled support tickets.  
 
Keywords: Hybrid Intelligence, ITSM, IT support, 
AI, human-in-the-loop 

1. Introduction  

The IT services market has reached $57 billion in 
2021 and is projected to reach $82 billion in 2027 
(Statista, 2022). With new AI technologies and 
digitalization projects gaining popularity, the IT 
landscape in businesses has become increasingly more 
complex and heterogeneous. Thus, IT service 
management (ITSM) and its frontline support agents 
face higher customer expectations and a rapidly 
increasing number of more complex and 
heterogeneous customer requests (Kubiak & Rass, 

2018). Support agents are at the forefront of service 
provider-customer touchpoints. They provide 
frontline services (Keyser, Köcher, Alkire, Verbeeck, 
& Kandampully, 2019) to ensure the “availability of 
IT services and flawless business operations” (Kubiak 
& Rass, 2018, p. 63664). 

Providing high-quality services has become a 
critical success factor for IT service providers 
(Pentland, 1992). Thus, it falls upon support agents to 
provide frontline service to a company’s customers. 
They do so by drawing upon their experience or 
information material that they use as reference points 
to solve incoming customer problems (Das, 2003).  

Recent research in frontline service technologies 
has drawn upon the technological advances made in 
artificial intelligence and particularly hybrid 
intelligence (HI) (Dellermann, Ebel, Söllner, & 
Leimeister, 2019) to augment support agents in their 
problem-solving activities (Kubiak & Rass, 2018; 
Poser et al., 2022; Poser & Bitner, 2021; Schmidt, Li, 
Weigel, & Peters, 2021). HI systems are defined by 
combination of complementary capabilities of human 
(e.g.: flexibility, empathy, common sense, creativity) 
and artificial intelligence (e.g.: pattern recognition, 
probabilistic, speed, consistency) to achieve complex 
goals (Dellermann et al., 2019). Similar to adaptive 
automation (AA) systems (Scerbo, 2007), HI systems 
consist of an automation-based subsystem and an 
adaptive part that is influenced by humans. However, 
HI system research focuses explicitly on AI based 
systems, while simultaneously drawing on coinciding 
AA concepts, such as human-centered approach to 
reduce cognitive load and workload of human agents 
(Kaber, Riley, Tan, & Endsley, 2001). When 
confronted with incoming support tickets, which is a 
digital record of any customer issue or problem, 
existing (artificial) intelligent systems (Bailey & 
Barley, 2020) rely on pre-trained models and data 
repositories to provide information to support agents, 
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who can use it to make better decisions. These systems 
aid them in solving customer issues (Poser & Bitner, 
2021). The integration of intelligent frontline IT-
service systems that augment the work processes of 
support agents have been identified as important 
(Pentland, 1992; Poser & Bitner, 2021; Schmidt et al. 
2021). Mechanisms of providing high-quality input 
data for the system during operations have recently 
also gained research interest (Grønsund & Aanestad, 
2020).  

HI systems often rely on high-quality data to train 
their prediction models (Dellermann et al., 2019). 
Relevant and new data needs to be continuously 
validated (Jiang, Gradus, & Rosellini, 2020) and 
audited by domain experts, such as service agents not 
just during model initialization, but continuously 
during system use (Grønsund & Aanestad, 2020). Yet, 
human-in-the-loop (HiL) configurations for support 
agents, who are already over-worked and subject to 
high turnover rates, provide little incentive to them 
other than an outlook that the work is important. 
Support agents might ask themselves - why should we 
label data on top of our already stressful daily 
business? Thus, our research goal is to design a HI 
system that incorporates a support-agent friendly HiL 
mechanism to provide immediate utilitarian value to 
support agents in exchange for high-quality data 
labeling. Moreover, we want to leverage the human 
need for instant gratification and utilitarian value to 
motivate support agents to diligently label tickets 
continuously during operations. Thus, we address the 
following research question:  

RQ: How do we design a HiL-interaction point 
that simultaneously provides immediate value for the 
human actor and long-term benefits for the HI-
System? 

2. Design science research approach 

We followed the design science research (DSR) 
approach by (Peffers et al., 2007) for designing and 
evaluating design requirements and principles, see 

Figure 1. We thus formulate practice-based design 
requirements that describe the problem-space and 
derive appropriate design principles (Chandra, Seidel, 
& Gregor, 2015). Based on this, we developed various 
design features which were then used to implement a 
fully operational system, which we tested in a two-fold 
study. 

This paper is embedded in a larger DSR project 
setting that has been ongoing for over two years. The 
overall purpose of the DSR project is to develop 
intelligent systems for ITSM to aid its IT support 
agents. The project includes two research institutes, 
two software implementation businesses, and three 
pilot partners that provide system requirements from 
practice and users to test the resulting system, 
conducting consortium research (Österle & Otto, 
2010). The three pilot partners all provide professional 
IT support services. The authors regularly meet with 
over 24 stakeholders (a floating number between 15-
39 people), including support agents, management and 
work council representatives, developers, and 
researchers in roundtable workshop settings (every 6-
8 weeks) to review newly developed tools. 

Recurring problems that arose during the design 
of the intelligent frontline support system with all 
three pilot partners were a) “how can we ensure that 
the system is learning” b) “how can we motivate 
agents to continuously provide labels?” and c) “how 
can we support agents with a system that helps them 
solve the ticket”. All three questions have 
unanimously been agreed upon by both management 
and support agents and are the basis for the design 
science research at hand. Thus, the research design is 
categorized as problem-centered initialization (Peffers 
et al., 2007) and each initially identified problem will 
be explored further in this paper in the next section.  

Technical support augmentations have been 
redesigned at a business process level (Poser & 
Bittner, 2021). This paper focuses on the context of IT 
support services and the system design to provide 
support agents with historical support tickets based on 
the incoming support request data. The matched 

Figure 1. DSR Approach adapted from (Peffers, Tuunanen, Rothenberger, & Chatterjee, 
2007). 
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support ticket functions as reference material to 
provide agents with input for solving the incoming 
customer issue. Overall our design science research 
approach was based on questions in a domain of 
interest and characterized by “creating/obtaining 
sources of data germane to relevant phenomena in the 
domain and cleansing, extracting, annotating data 
streams” (Maass, Parsons, Purao, Storey, & Woo, 
2018, p. 1253). For this paper, we gained access to 
17120 real-world historical support tickets from 2019 
to 2020 by one of our partners. As expected with real-
world data (Cai & Zhu, 2015), data quality was poor 
and needed to be cleansed accordingly. The tickets 
were subjected to an initial data cleansing (e.g., empty 
tickets, non-requests, etc.), resulting in 10494, and 
manual filtering of 1st-level frontline tickets leaving us 
with 2835 tuples. We worked with support tickets that 
had an ID, title, problem description and solution text 
field, and answer history. Thus, we used our cleanse 
semi-structured data set as training for our HI system 
to create predictions, following an algorithmic 
modeling approach (Breiman, 2001; Shmueli, 2010).  

Hence, this paper is structured as follows: 
Following the here presented initial motivation, 
section 3 sheds light on three main design 
requirements derived from extant research and used to 
inform design principles (Gregor, Kruse, & Seidel, 
2020). We thus follow a theory-driven approach 
(Drechsler & Hevner, 2016). Section 4 depicts the 
iterative machine learning steps, the so-called system 
pipeline, employed to solve the problem at hand and 
further explains how the system initializes its 
underlying model and works during operations. Since 
the system output is essentially a prediction, the 
pipeline is an ensemble of different methods and 
models that simultaneously represents a kernel 
predictive model (Prat, Akoka, Comyn-Wattiau, & 
Storey, 2022).  

Then, section 5 demonstrates how the system 
integrates a human-in-the-loop (HiL) design to 
address all design requirements and presents its design 
principles. The paper concludes with tentative 
formative and summative evaluations (Venable, Pries-
Heje, & Baskerville, 2016). First, we conduct an 
artificial evaluation in section 6 using simulation to 
show the learning capabilities of a multi-armed bandit 
prediction model. Second, we evaluate the HiL 
perceived utility using domain expert evaluations of 
relabeling 45 tickets to determine whether suggestions 
improved. Lastly, in section 7, we conducted a 
relevance check with system stakeholders in a 
workshop setting with 16 potential users. The paper 
concludes with a discussion and outlook on future 
work. 

3. Theoretical foundation and problem 
identification 

Based on the problem-initialized issues 
mentioned by our pilot partners, we moved towards a 
theory-driven design and identified relevant literature 
that provides the grounding for deriving intelligent 
frontline support technology design requirements, 
(Prat et al., 2022).  

3.1 HI systems and HiL interaction 

Hybrid intelligence systems stress the often 
overlooked limitations of AI systems (e.g. Data 
quality/availability) and the importance of humans as 
both value recipients and data validators (Dellermann 
et al., 2019; Grønsund & Aanestad, 2020). While AI 
systems are better at pattern recognition (Akata et al., 
2020), they often lack real-world and domain 
knowledge, ultimately still leaving problem-solving 
decisions to human actors (Grønsund & Aanestad, 
2020). HI systems rely on the combination of AI and 
human intelligence, and the interaction between AI 
systems and human collaborators on how to build 
adaptive systems (Akata et al., 2020).  

Hybrid intelligence systems employ human-in-
the-loop mechanisms to leverage intuition and real-
world knowledge of domain experts to eventually 
augment work (Dellermann et al., 2019). Recent IS 
research calls for analyzing and designing novel HiL 
configurations. To improve the algorithms, humans 
need to audit data and use the HI system to produce 
more data, both forms of data editing are required to 
continue training the models (Grønsund & Aanestad, 
2020). This coincides with the initial training of a 
predictive model and model use, with the latter 
coinciding with our system use (Shmueli, 2010). Thus, 
for our HI support system, we derive the following 
design requirement:  

 
DR1-HiL: Intelligent frontline support 

technologies should utilize and leverage human-in-
the-loop mechanisms to bridge both their model 
training and system use phase. 

3.2 IT-frontline technology and HI 
systems 

Once a customer encounters an issue with an IT 
product, they can turn to IT frontline service providers 
for help (Kajko-Mattsson, 2004). Customer issues or 
problems are externalized as support tickets, which are 
assigned to IT, support agents. Based on Technical 
Support Work Theory, support agents engage in 
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problem-solving activities based on the experience of 
the individual support agent, their available resources, 
and the problem type (Das, 2003). To solve an 
incoming customer request, the support agent can 
either deflect and route the ticket to a more suitable 
expert or attempt to solve it, for which Das (2003) 
differentiates between three forms of activities. 1) 
Locate and retrieve information - the support agent 
finds an almost identical problem within their 
available knowledge database and solves the ticket 
with little to no modification to the retrieved solution. 
2) Adapt solution suggestions – the support ticket is 
similar to a previously solved issue and the support 
agent can retrieve information on how the historic 
issue was solved. However, the suggested solution is 
considered a reference solution and needs to be 
adapted by the support agent. The historical solution 
can also help the agent abductively diagnose the issue. 
3) Generate new solutions. If the issue is completely 
new, the support agent needs to find a novel and 
innovative solution to a new problem by 
experimenting and reasoning (Das, 2003; Poser 
& Bitner, 2021). The first two are the subject of this 
paper.  

To improve frontline service encounters between 
IT service agents and customers, the infusion of 
frontline service technologies has become quasi-
omnipresent (Giebelhausen, Robinson, Sirianni, & 
Brady, 2014; Keyser et al., 2019; van Doorn et al., 
2017). In light of recent advancements in artificial and 
hybrid intelligence-based (HI) systems (Dellermann et 
al., 2019), many IT frontline encounters are 
augmented (Keyser et al., 2019) to improve operations 
(Kubiak & Rass, 2018; Poser & Bitner, 2021). They 
augment support agents in information retrieval 
endeavors and provide more relevant solution 
suggestions to augment agents in their problem-
solving activities (Das, 2003). Thus, we derive the 
following design requirement for our HI support 
system:  

 
DR2-TSWT: Intelligent frontline support 

technologies should augment the problem-solving 
activities of support agents. 

3.3. Support agents and immediate 
gratification 

Frontline support technologies typically rely on 
IT support tickets to train their underlying models 
(Kubiak & Rass, 2018), to ultimately augment 
customer interaction (van Doorn et al., 2017). Thus, 
support ticket quality is crucial for support agents, 
especially for supervised machine learning approaches 
that require properly labeled data (Jiang et al., 2020). 

HI systems often turn to Human-in-the-Loop (HiL) 
mechanisms asking employees to label their data 
during the initial training phase and operations 
(Wiethof & Bittner, 2021). The latter is particularly 
important to allow incremental learning to avoid data-
drift, which describes a discrepancy between past 
training data and future test data (Mallick, Hsieh, 
Arzani, & Joshi, 2022; Tsymbal, 2004). In the context 
of IT frontline services, this task falls on support 
agents in hopes to leverage their domain knowledge. 
Yet, support agents are under immense operational 
pressure (Schmidt et al., 2021). Even without the 
advantages of intelligent frontline support 
technologies, the data quality of tickets has thus been 
rather challenging (Salah, Maciá-Fernández, Díaz-
Verdejo, & Sánchez-Casado, 2016) and conventional 
systems provide no direct incentive for the person, 
who is supposed to label the tickets (Kubiak & Rass, 
2018). Thus, labeling tickets should directly be linked 
to some form of utilitarian value, which means that 
the agents need to realize that their action leads to 
utility not only for others but for themselves (Shaw, 
1994). Furthermore, people have a certainty bias 
(Kahneman & Tversky, 1979; Weber & Chapman, 
2005), which leads to a preference for instant 
gratification (Wolfe & Patel, 2017). Thus, for our HI 
support system we derive the following design 
requirement:  

 
DR3-UtilGrat: Human-in-the-loop interactions 

of intelligent frontline support technologies should 
consider the context of IT support agents and provide 
immediate and utilitarian value for the agent to 
motivate the ticket labeling activity. 

 
While others have focused on individual data-

driven techniques to analyze IT services (Kubiak 
& Rass, 2018), this paper focuses on a) the particular 
design of HI service support systems and provides a 
reference pipeline to guide future implementations and 
b) an IT-enabled HiL mechanism to address the data-
drift conundrum of supervised machine learning 
approaches.  

4. Hybrid intelligence system design & 
development  

The following two subsections provide a 
processual perspective of the AI model pipeline, 
which is used to accommodate the ITSM system 
context and mitigate shortcomings of real-world data. 
Lastly, we derive design principles by means of 
abstraction (Prat et al., 2022). The proposed pipeline 
consists of a model training phase, described in 
Section 4.1, and operations phase, described in Section 
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4.2, where the latter includes its HiL access points. The 
initial training phase is necessary to set up the model 
before using it in an organizational context in which 
the system will adapt to the new and context-specific 
data by learning based on IT-Agent feedback. 

4.1. Model initialization 

Figure 2 presents the model initialization pipeline 
based solely on AI mechanisms. In a very first step, a 
database of 200 manually labeled customer tickets is 
created, which is then used to train an automatic 
labeling model using a bi-directional Long Short-
Term Memory (LSTM) neural network (Yu, Si, Hu, & 
Zhang, 2019). This label classification model is later 
used to propose automatic labeling of new incoming 
tickets which can be edited by the support agent.  

During the model initialization, the manually 
labeled tickets are simultaneously used for the LSTM 
classification training and clustered based on the 
OPTICS clustering algorithm (Ankerst, Breunig, 
Kriegel, & Sander, 1999) to determine textually close 
tickets.  

Next, based on the previously created grouping, 
the self-learning initial system determines a system 
reward scale between zero and one for further 
reinforcement-learning purposes: The closer a 
suggested ticket is to an incoming ticket with regards 
to the cluster, the higher the reward for the system. 
Based on this scale, the system initializes a prediction 
system that determines a set of possible historical 
ticket solutions. This set is immediately evaluated 
using the system rewarding scale, providing timely 
feedback for the system. Thus, the second step in the 
pipeline is a self-learning phase in which the 
prediction system is constantly adapted. Once this 
cycle hits a sufficient threshold, a final prediction 
model and an automatic labeling model are created by 
the system. These models are then utilized in the HI-
system pipeline, described in the following section. 

The prediction system is based on a multi-armed 
bandit, which is a type of reinforcement learning. 
Multi-armed bandits use an exploration-exploitation 

mechanism to decide the best prediction within a 
closed set of possible solutions. Such multi-armed 
bandit models, are frequently used in online-learning 
recommendation contexts (Mary, Gaudel, & Preux, 
2015). In contrast to offline learning, online learning 
allows for the system to constantly adapt itself to new 
incoming data (Li, Zhou, & Cao, 2021). As ITSM is 
constantly exposed to new problems and therefore new 
and unseen data, we deemed online learning to be 
adequate  

for this task and therefore opted for a multi-armed 
bandit algorithm. This allows us to provide immediate 
online feedback predictions to the user, depending on 
their labelling input. 

4.2. Operations 

The pipeline on the operational level, depicted in 
Figure 3, implements the HiL-touchpoint and consists 
of two main blocks: the machine learning loop and the 
human loop. The machine loop starts with the labeling 
and prediction models that were built during the 
initialization phase, described in section 4.1. In a first 
step, an incoming customer ticket is automatically 
labeled to determine the problem at hand. This 
labeling is then used by the prediction model to select 
a set of four ticket suggestions based on the initial 
system reward scale. This set of historical tickets is 
then presented to the support agent. 

 Here, the pipeline creates two nexus points: On 
the one hand, support agents can evaluate the 
helpfulness of the suggested tickets and give direct 
feedback to the prediction model. On the other hand, 
the agent can choose to edit the ticket. If the labels are 
edited, the prediction model compares the newly 
labeled ticket to historical tickets again and presents 
the support agent with a new set of ticket suggestions. 
This loop can be repeated until the support agent is 
satisfied with the result and can solve the customer 
ticket. 

This HiL-touchpoint has the short-term advantage 
that the support agent is incentivized to edit the labels 
because it results in better ticket suggestions. From a 

Figure 2: HIS Pipeline for Self-Learning Model Initialization to Build Prediction and Labeling Model. 
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long-term perspective, the updated labelling leads to 
an updated data repository. Once a significant number 
of tickets has been re-labelled by expert support 
agents, the updated data repository is used to re-train 
the system, starting with the automatic labelling 
model, leading to more precise data clustering and a 
better multi-armed bandit model. This ensures a long-
lasting higher-quality data repository that is constantly 
updated with new tickets and thus adapted to the 
dynamically changing requirements in IT-Support and 
counteracting potential data shift issues.  

4.3. HiL-as-Nexus (solution space) 

The worth of customer touchpoints has long been 
researched in service research, where customer 
journeys are constituted by service encounters, which 
are enabled by touchpoints (Hogan, Almquist, & 
Glynn, 2005; Kronqvist & Leinonen, 2019). From a 
HI perspective, recent attention has moved towards 
human-in-the-loop configuration, where experts are 
involved in augmenting algorithms (Grønsund 
& Aanestad, 2020; Wiethof & Bittner, 2021). We 
argue that touchpoints have to augment frontline 
service encounters (Keyser et al., 2019), the aim is to 
design an intelligent system that augments support 
agent problem-solving capabilities (DR2), which 
keeps on learning after its initial development (DR1) 
and focuses on the touchpoints of support agents to 

provide an incentive to engage in the HiL activities 
(DR3). To accommodate all three design 
requirements, we propose the design of a HiL agent 
touchpoint within the context of the operations 
pipeline as a novel design principle. Furthermore, we 
argue that the HiL Nexus Point acts as an enabler for 
humans to act as boundary spanners (Tushman, 1977). 
We argue that the HiL-enabled act of labeling is 
strongly tied to several key features of the HI system. 
It ties together model improvement of the HI system, 
maintaining data quality and ensuring ticket labeling 
over time and model suggestions, where the human-in- 

the-loop takes on the simultaneous role as both 
system beneficiary and data auditor (Grønsund 
& Aanestad, 2020). We call the different touchpoints 
that are present in the HiL a nexus point, where the 
system converges process- and role-wise, and 
simultaneously spans data, prediction model, time, and 
user needs. Thus, we formulate our design principle as 
follows:  

 
DP-HilNxp: HiL Nexus Point- Intelligent IT-

frontline technologies should design human-in-the-
loop interaction points as locus points that 
simultaneously provide support agents with immediate 
utilitarian value and improves labeling quality to 
ultimately improve the system models in the long term. 

 
The HiL Nexus principle thus integrates all three 

design requirements (DR1; DR2; DR3). 

5. Human-in-the-loop demonstration  

This section demonstrates how we used the design 
principles to guide us in the instantiation of our system 
(Gregor et al., 2020). Thus, we present our resulting 6 
design features (df1 – df6) (Prat et al., 2022) to 
indicate how support agents would interact with our 
HiL nexus point (Grønsund & Aanestad, 2020), 
depicted in Figure 4. During the design of the 
prototype and the interface, we made sure to 

Figure 3. Operational Pipeline including HiL-
touchpoint. 

Figure 4. Demonstration of HiL instantiation with design features df1-df6. 
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implement an intuitive and user-friendly system to 
avoid unnecessary workload increase (Kaber et al., 
2001).  

The first things support agents see within our 
system are pre-labeled support tickets (df1:pre-
labeling) and initial solution suggestions 
(df2:automatic suggestions). However, the suggested 
tickets might not be ideal, because the automatic 
labeling might be inaccurate. Thus, the support agent 
is incentivized to indicate its 1-star rating uses the 
appropriate pre-selected label highlights 
(df3:label_choice) to re-label the initial ticket 
(df4:label_editing). The label categories were defined 
previously by support agents. Next, the system 
provides revised solutions based on the newly 
highlighted tickets (df5:immediate_feedback) with 
better results. Lastly, the historical ticket suggestions 
provide necessary information for the agents to find a 
solution and solve the customer request, and save its 
feedback, as indicated by the newly gained 5-star 
ranking (df6:solution_materials).  

The design features allow the support agent to be 
incentivized to check and relabel faulty support tickets 
and be rewarded with immediate better suggestions 
(DR3). Furthermore, high-quality solution materials 
help support agents in their problem-solving activities 
(DR2), more precisely in 1) locating useful 
information and 2) providing several suggestions that 
can be potentially adapted to find a solution for the 
customer request (Das, 2003). Finally, the HiL nexus 
point is deeply integrated into the inner workings of 
both model training and 4 system operations (DR1). 
Thus, the HiL touchpoint satisfied all three design 
requirements. 

6. Evaluation  

To evaluate the learning mechanism of the 
prediction model, we use the average system reward 
during the self-learning phase. As the prediction 
model is based on a multi-armed bandit algorithm, the 
average reward shows the average closeness of 
suggested tickets to the incoming ticket. This measure 
depicts whether the model is learning throughout the 
training process: If the average reward increases, the 
model is able to find and suggest historical tickets that 
are close to the incoming ticket. Figure 5 presents the 
development of the average system reward over the 
number of iterations as a weighted average reward 
over the four suggested slots, and for the highest slot 
(best ticket suggestion). As seen in the plot in Figure 
5, both system rewards show increasing growth with 
decreasing marginal returns over the number of 
iterations and thus indicate learning within the system 
during the initial training phase. It is to note that the 

average reward for the highest slot shows stronger 
growth, which indicates that one out of four slots is 
more similar to the incoming ticket. In the context of 
IT frontline support technologies, this is a preliminary 
satisfactory result, because it indicates that our system 
is able to adapt and learn, as is intended with multi-
armed bandits, which is in line with an initial proof-
of-concept. This result shows that the initial set-up 
with a small amount of manually labeled data 
performs sufficiently well to build a self-learning 
system. We predict that in an organizational context, 
the system will rapidly adapt to new data as it will be 
fed with tickets labeled by support agents and receive 
an immediate evaluation of the suggested tickets. 

The HiL touchpoint was evaluated with regards to 
the ticket editing and suggestion evaluation 
mechanisms, by simulating work environments during 
operations. Thus, two annotators with expert domain 
knowledge initiated in a mock operations environment 
and evaluated the tickets in two steps: First, they 
evaluated the suggestions and whether they were 
helpful based on the automatic labeling only. In a 
second step, they edited the labeled tickets first, were 
presented the new set of four suggestions, and 
evaluated the suggestions the system made based on 
the annotator-labeled ticket. A total of 45 tickets were 
annotated and evaluated. Fifteen tickets showed clear 
signs of improving the suggestions after round 1, with 
a mean average rating increase of 0.9. For the highest 
slot, the mean average rating increase was 2.23. This 
coincided with a post-evaluation interview, in which 
both annotators perceived that usually, only one out 
the four ticket suggestions appeared to be useful, and 
only seldomly did they perceive two or more ticket 
suggestions useful.  

Furthermore, both annotators responded 
positively to the immediate feedback, whereas A1 
states that “immediate suggestion makes labeling 
meaningful” and that “when I felt like the incoming 
ticket text was specific enough to be able to assign 
labels, […] the resulting suggestion was much more 

Figure 5. Learning rates over iterations. 
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likely to be better” (A1). Moreover, they reported that 
the re-labeling process is “quick” and intuitive. These 
factors lead to a high motivation to re-label and 
evaluate tickets, which were “not like the usual 
labeling tasks” (A2). We, therefore, expect a quick 
growth of expert annotated data once the system is 
used in an organizational context.  

18 tickets were not rated, since one annotator did 
not find any new ticket suggestion relevant, and 4 
ticket ratings have gotten lower ratings. 13 tickets 
remained the same. During post-evaluation interviews, 
the annotators explained that they felt that many of the 
ticket suggestions did not fit the new support request 
and suspect that the original 200 labeled tickets did not 
include many relevant support requests. Although 
functional, the annotators did not choose to add any 
newly annotated ticket into the repository, even 
though the data set includes its suggestions. Albeit the 
total number of evaluated instances is comparably 
low, the results indicate that manual re-labeling by 
support agents can have a positive impact on the 
quality of suggested historical tickets. Our results 
suggest that the newly labeled tickets can improve 
suggestion quality, but due to the breadth of different 
customer request types, the number of high-quality 
tickets needs to be carefully annotated.  

Finally, as a relevance check, we demonstrated 
both pipeline and prototype to 14 members of our 
research project since all members are experts in IT 
frontline services. They included 6 support agents, 3 
managers, 3 support system developers, 1 managing 
director, and 1 work council member across the 
research consortium. To gain further insights by 
stimulating a discussion between our experts we opted 
for conducting a focus group review of our system 
(Stewart & Shamdasani, 1990). Primary concerns 1) - 
3) were satisfactorily addressed and the HiL-nexus 
design was accepted with only minor concerns relating 
to the size of UI tiles. Most importantly, they 
confirmed that the HiL mechanism and the overall 
system design fully address the design requirements, 
which indicates a relevance check.  

7. Conclusion  

In summary, the paper designs two solution 
artifacts (Prat et al., 2022). First is the overall hybrid 
intelligence IT-frontline technology to augment 
frontline services. The second artifact is the human-in-
the-loop touchpoint that is nested as a subsystem 
within the HI system.  

For the literature on HI system design and 
particularly in the context of support services (Bailey 
& Barley, 2020; Kubiak & Rass, 2018; Poser 
& Bitner, 2021; Schmidt et al., 2021), we contribute to 

its body of design knowledge. Specifically, we focus 
on knowledge for instantiations, presenting the 
rationale behind design requirements, design 
principles, and design features (Prat et al., 2022).  

For IT support services, we contribute to the body 
of knowledge on frontline service technology 
infusions by providing a novel form of support agent 
integration (Keyser et al., 2019) to augment their 
work-related problem-solving activities (Das, 2003). 

Our HiL Nexus principle also contributes to the 
body of knowledge on HiL design and configurations 
(Grønsund & Aanestad, 2020; Wiethof & Bittner, 
2021). Our design knowledge provides justificatory 
insights into our HiL configuration. We argue that our 
HiL design provides both individual and 
organizational benefits, complementing the HI 
system’s main functionality. 

For practice, the paper provides several guidelines 
and insights. The paper is rooted in a real-world need 
as elicited by practitioners cooperating in a research 
development project (Österle & Otto, 2010). All three 
initial questions 1-3) were addressed. by the design of 
an integrated HI system, while also reporting details 
on design decisions of our system implementation, 
guiding future practitioners deciding to design and 
develop a similar pipeline. This pipeline can be 
adapted to different data and used as the basis for 
future work on improving ITSM processes by 
supporting and facilitating human decision-making 
concerning IT support. We further demonstrate how 
our novel HiL design should follow a key principle to 
allow for a suitable system that addresses all three 
design requirements. For more specific 
implementation instructions, our six design features 
guide how the principles can guide developers in 
instantiating an appropriate system.  

Future work should focus on further exploring our 
initial results, since our three evaluation constitutes a 
very first design cycle of an ongoing research 
endeavour (Hevner, 2007; Österle & Otto, 2010) as an 
initial proof-of-concept (Nunamaker, Briggs, Derrick, 
& Schwabe, 2015). A formative evaluation (Venable 
et al., 2016) of each pipeline activity would be subject 
to future research. More importantly, our limited 
evaluation needs to be expanded upon, preferably with 
studies following experimental designs. Thus, we plan 
to test different types of multi-armed bandits and 
parameterizations and improve data labeling both for 
initialization and simulating operations, as a first 
summative evaluation with more support tickets and 
support agents as annotators. Additionally, we plan for 
a naturalistic evaluation design of one year time to test 
our systems in day to day business of our pilot 
partners, as means for a proof-of-value (Nunamaker et 
al., 2015). Furthermore, research on adaptive 
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automation, specifically its adaptive strategies could 
also provide novel insights into HI system design 
(Scerbo, 2007). Nonetheless, our paper provides 
insights into the reasoning behind our HI support 
system and innovative HiL design and paves the way 
for future research endeavours. 
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