
Detecting Feature Requests of Third-Party Developers through Machine

Learning: A Case Study of the SAP Community

Martin Kauschinger

Technical University of Munich

martin.kauschinger@tum.de

Niklas Vieth

SAP Deutschland SE & Co. KG

niklas.vieth@sap.com

Maximilian Schreieck

University of Innsbruck

maximilian.schreieck@uibk.ac.at

Helmut Krcmar

Technical University of Munich

helmut.krcmar@tum.de

Abstract
The elicitation of requirements is central for the

development of successful software products. While

traditional requirement elicitation techniques such as

user interviews are highly labor-intensive, data-driven

elicitation techniques promise enhanced scalability

through the exploitation of new data sources like app

store reviews or social media posts. For enterprise

software vendors, requirements elicitation remains

challenging because app store reviews are scarce and

vendors have no direct access to users. Against this

background, we investigate whether enterprise software

vendors can elicit requirements from their sponsored

developer communities through data-driven techniques.

Following the design science methodology, we collected

data from the SAP Community and developed a

supervised machine learning classifier, which

automatically detects feature requests of third-party

developers. Based on a manually labeled data set of

1,500 questions, our classifier reached a high accuracy

of 0.819. Our findings reveal that supervised machine

learning models are an effective means for the

identification of feature requests.

Keywords: Data-Driven Requirements Engineering,

Enterprise Software, Machine Learning, Online

Community, Platform Ecosystem

1. Introduction

The accurate elicitation of requirements is central

for the development of successful software products

(Chakraborty et al., 2010; Meth et al., 2015).

Unfortunately, both researchers and practitioners have

observed that many software development projects fail

due to inaccurate or missing user requirements, which

often result in significant financial losses for the

development firm (Mathiassen et al., 2007; Rosenkranz

et al., 2014). Specifically, the communication and

interactions between the various stakeholders make the

requirements elicitation process complex and hard to

manage. Moreover, several studies have shown that

users often lack the ability to specify their requirements

correctly (Hansen & Lyytinen, 2010; Rosenkranz et al.,

2014).

Requirements elicitation refers to the identification

and extraction of conscious, unconscious and

subconscious requirements of all involved stakeholders

of a development project (Saiediana & Daleb, 2000).

Although requirements elicitation has been an important

topic in the information systems field for several

decades (Chakraborty et al., 2010; Rosenkranz et al.,

2014), its techniques have changed substantially in

recent years. Previously, requirements elicitation was

largely based on traditional elicitation techniques such

as on-site observations, user interviews, focus groups or

workshops (Byrd et al., 1992; Saiediana & Daleb,

2000). These traditional techniques require close and

frequent interactions between system analysts and users,

making them highly labor- and cost-intensive

(Chakraborty et al., 2010). More recently, researchers

and practitioners have acknowledged the rise of data-

driven requirements elicitation techniques (Maalej et al.,

2016; Meth et al., 2015). These data-driven techniques

integrate newly available data sources such as app store

reviews or social media posts into the elicitation process

(e.g., Halckenhaeußer et al., 2022; Hoffmann et al.,

2019; Kauschinger et al., 2021; Maalej & Nabil, 2015).

Moreover, data-driven techniques often rely on new

analytical technologies such as natural language

processing, text mining or machine learning to leverage

the full potential of these newly available data sources

(Maalej et al., 2016; Meth et al., 2015).

For enterprise software, requirements elicitation

remains challenging. On the one hand, enterprise

software vendors’ access to users has been cumbersome

for decades because vendors primarily engage with their

customers’ IT departments, leaving them disconnected

from the actual users of their software. In the past,

enterprise software was also deployed on-premises,

meaning that the vendors’ software is licensed and

running on proprietary systems of their customers. Such

licensing models further increased the disconnect

between vendors and users (Hoffmann et al., 2019;

Schreieck et al., 2019). On the other hand, enterprise

software vendors do not have access to the same data

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 950
URI: https://hdl.handle.net/10125/102747
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

mailto:martin.kauschinger@tum.de
mailto:niklas.vieth@sap.com
mailto:maximilian.schreieck@uibk.ac.at
mailto:helmut.krcmar@tum.de

sources for data-driven requirements elicitation as

vendors of consumer software. For instance, existing

research has shown that app reviews are a promising

source for data-driven requirements elicitation (e.g.,

Carreno & Winbladh, 2013; Maalej & Nabil, 2015).

Although there is a plethora of app reviews for

consumer software, for example on Android’s Play

Store (Statista, 2022), app reviews for enterprise

software are scarce. One reason for this scarcity is that

enterprise software vendors only recently started to

transition towards app store-centric platform

ecosystems. Another reason is that enterprise software

apps are far more complex so that their functionality is

best assessed by technical experts rather than users. This

reduces the number of potential reviewers significantly.

Besides, app reviews evaluate and rate the functionality

of individual apps. Hence, they more likely to contain

requirements for those particular apps than for the core

enterprise software system.

Another promising data source is usage data. While

the tracking of user behavior has become common for

many mobile apps and websites, enterprise software

vendors have difficulties in collecting usage data

because a large proportion of enterprise software is still

running on-premises, which prohibits the collection of

usage data by the vendor. For instance, in 2020, SAP

still generated more revenue with on-premises solutions

than with cloud solutions (SAP, 2022a). Yet, the

possibilities for the collection of user data are rising as

enterprise software vendors are continually

transforming their on-premises products into cloud-

based platform ecosystems that are running in their own

data centers (Hoffmann et al., 2019; Schreieck et al.,

2019).

In this paper, we investigate a new data source for

data-driven requirements elicitation, which is

specifically available for enterprise software vendors.

We examine the potential of sponsored developer

communities for data-driven requirements elicitation.

While developers outside of the enterprise software

domain often rely on autonomous developer

communities such as Stack Overflow or Stack Exchange

(Safadi et al., 2020), enterprise software vendors

typically nurture their own, self-hosted developer

communities such as the SAP Community, Salesforce’s

Trailblazer Community or ServiceNow’s Now

Community. The existing literature refers to such

communities as sponsored developer communities

because a for-profit organization, namely the enterprise

software vendor, is funding and governing the activities

of the community (Blohm et al., 2014; West &

O'Mahony, 2008). Since these sponsored developer

communities are self-hosted, enterprise software

vendors have convenient access to the data that is shared

in the community. Compared to vendors of consumer

software, this is a major advantage because data from

autonomous communities is hard to come by. Against

this background, we explore whether enterprise

software vendors can leverage their sponsored

developer communities as an additional data source for

data-driven requirements elicitation. In particular, we

analyze whether it is possible to automatically detect

feature requests in the questions of community members

through a binary machine learning classifier. The

motivation for such a classifier is that sponsored

developer communities typically contain millions of

posts, but only a few are relevant for the elicitation of

requirements. For example, existing research has shown

that a significant proportion of posts are focusing on

errors or bugs (Beyer et al., 2020; Maalej & Nabil,

2015). Consequently, such a machine learning classifier

has the potential of narrowing down the number of

relevant questions so that requirements engineers and

system analysts can evaluate the identified feature

request in-depth. Therefore, we propose the following

research question: How effective is a supervised

machine learning classifier in detecting feature requests

in sponsored developer communities?

To answer our research question, we collected data

from the SAP Community and generated a manually

labeled data set of 1,500 questions. Following the design

science paradigm, we developed a supervised and

binary machine learning classifier. We observed the

highest prediction accuracy (0.8187) for the classifier

when we extracted features with the pre-trained

SBERT-Model and classified them with the Naïve

Bayes algorithm. Our findings reveal that supervised

machine learning models are an effective means for the

identification of feature requests.

The remainder of this paper is structured as follows.

In the next section, we clarify the theoretical

background on requirements engineering and enterprise

software. We then turn to the methodology where we

explain the labeling process and our design science-

oriented research approach. Thereafter, we present the

results of our study before we interpret them and outline

avenues for future research.

2. Theoretical Background

2.1 Requirements Engineering

The purpose of requirements engineering is the

optimization of a development project toward the needs

of its stakeholders. Thereby, much of the existing

literature has characterized requirements engineering as

a “staged sequence of activities and/or task objectives”

(Chakraborty et al., 2010, p. 214). For instance, Browne

and Ramesh (2002) argue that requirements engineering

can be divided into three stages: information gathering,

Page 951

representation, and verification. However, several

researchers have noted that, in reality, requirements

engineering is often chaotic and non-linear (e.g.,

Chakraborty et al., 2010; Davidson, 2002). We adopt

this non-normative view and define requirements

engineering as a “systematic and disciplined approach

to the specification and management of requirements

with the goal of understanding the stakeholders’ desires

and needs” (Glinz, 2020, p. 17). In line with this

definition, a requirement can either be (1) a need of a

stakeholder, (2) a capability or property that the system

should have or (3) a documented representation of a

need, capability or property (Glinz, 2020).

According to our non-normative view,

requirements engineering comprises four types of

requirements development techniques (Mathiassen et

al., 2007). The first type are requirements elicitation

techniques, which focus on the collection and

consolidation of requirements from available sources

(Glinz, 2020). Requirements elicitation is the main

focus of our study and its techniques either follow a

traditional approach (e.g., interviews or workshops) or a

data-driven approach (e.g., mining app store reviews or

social media data). The second type refers to

requirements prioritization techniques, which are

resource-based analyses and comparisons of elicited

requirements. The goal of those techniques is to select

and prioritize the most important requirements, while

considering that software development is constrained by

limited resources, for instance in terms of cost and time

(Mathiassen et al., 2007). The third type are

requirements experimentation techniques. Those

techniques are software-centric and involve design

variations of the software artifact as a means for the

communication with users. Often, prototypes of the

software artifact are shown to users, so that

requirements can be refined and developers receive

direct feedback on their prototype (Ravid & Berry,

2000). The fourth type are requirements specification

techniques, which pertain to the documentation of

explicit and agreed-upon requirements for continued

development. Hence, those techniques are

documentation-centric and use textual or graphical

representations such as notation schemes or box

structures (Mathiassen et al., 2007).

While the previous paragraph embedded

requirements elicitation in the larger scope of

requirements engineering, this paragraph synthesizes

related work on data-driven requirements elicitation as

it is the main topic of our study. In particular, we

identified several papers that paved the way for our

study. First, Meth et al. (2015) designed a requirements

mining system and were among the first to use natural

language processing for requirements elicitation.

However, the authors focused on the processing of

traditional data sources such as specification documents

or interview transcripts. In our paper, we mine

requirements in a new data source, namely sponsored

developer communities. Second, Maalej and Nabil

(2015) tested several machine learning models to

classify app reviews into four categories: bug reports,

feature requests, user experiences, and ratings. In our

study, we also use machine learning to classify natural

language documents, but we focus explicitly on feature

requests as they are more likely to contain the

requirements of developers and users. Third, Hoffmann

et al. (2019) developed a conceptual model which

explains how data-driven requirements elicitation can

close the gap between enterprise software vendors and

their users. Our paper builds upon this model and

investigates a specific use case.

2.2 Enterprise Software

Over the past decades, many enterprise software

vendors like Microsoft or SAP have transformed their

on-premise solutions into cloud solutions. A

fundamental advantage of cloud solutions is that they

allow ubiquitous and convenient access to a shared pool

of configurable computing resources (Basole & Park,

2019). Compared to on-premise solutions, which

require additional hardware components to scale

upwards, cloud solutions scale efficiently in both

directions. With the shift towards cloud-based

enterprise software solutions, many enterprise software

vendors have transformed their product-centric software

solutions into platform ecosystems, where third parties

can develop complementary software applications

(Foerderer et al., 2019; Schreieck et al., 2021). Such

platform ecosystems typically comprise a platform

owner which provides an extensible platform core,

third-party developers who create complementary

software applications, and end-users who use the

platform and its applications (Ghazawneh &

Henfridsson, 2013). Although on-premise solutions

were extensible, too, more scalable platform ecosystems

emerge from cloud-based solutions. For instance, while

software extensions for on-premise solutions were

deeply intertwined with the enterprise software system,

cloud solutions provide a standardized integration layer

which makes the coupling of third-party applications

secure and convenient (Schreieck et al., 2019).

Moreover, the resulting platform ecosystems are often

similar to those in other software contexts, as the

marketplaces for applications are in the limelight of the

ecosystems. Examples of cloud-based enterprise

software platforms are SAP’s Business Technology

Platform (formerly known as the SAP Cloud Platform

and the SAP HANA Cloud Platform), Microsoft Azure

or ServiceNow’s Now Platform.

Page 952

Third-party firms and their developers play an

important role for the success of enterprise software

vendors (Sarker et al., 2012). In fact, third-party firms

often fill functional white spaces in the product portfolio

of the enterprise software vendor, for instance through

third-party applications. Thereby, third-party

developers are responsible for the implementation of

requirements, which is either done through

customizations of the base enterprise software system or

the development of custom applications, often called

third-party applications. As enterprise software and its

customization is complex, third-party developers often

consult topic and product experts for guidance, for

example by asking questions in sponsored developer

communities (Huang et al., 2018). This is especially the

case when third-party developers are uncertain about

how to implement a specific requirement. The

customization of enterprise software is limited to the

functionalities that the base enterprise software system

provides, and those are often standardized so that they

fit multiple use cases and customers. Hence, enterprise

software cannot comprise functionality for each and

every use case. We assume that questions in sponsored

online communities about missing functionalities can be

interpreted as feature requests that indicate requirements

of third-party developers, and ultimately of users.

Sometimes, third-party developers might express their

feature requests explicitly, for instance with quotes such

as “it would be nice if functionality Y could be included

in a future release”. We define feature requests as high-

level descriptions of desired functionality.

3. Methodology

The purpose of this paper is to investigate whether

enterprise software vendors can leverage data from their

sponsored developer communities for data-driven

requirements elicitation. In the next subsections, we

explain our research design, our case company and the

generation of our labeled data set.

3.1 Research Design

We used a design science research approach for the

development of our machine learning classifier (Hevner

et al., 2004; Pfeffers et al., 2007). Design science

research is concerned with the development of

successful IT artifacts (Pfeffers et al., 2007) and is

typically characterized as an iterative build-and-

evaluate process (Hevner et al., 2004). Specifically, we

followed Pfeffers et al. (2007) who describe that

rigorous design science research consists of six steps:

problem identification, definition of objectives, design,

demonstration, evaluation and communication. In Table

1, we describe the actions that we carried out in each

step.

3.2 Case Description

Our case company is the enterprise software vendor

SAP. Founded in 1972, SAP has released various

enterprise software products, which predominantly

focus on enterprise resource planning. While products

such as SAP R3 or SAP NetWeaver were on-premise

Table 1: Design science research methodology

Problem:

• For enterprise software vendors, requirements elicitation is challenging because they lack access to users.

• Traditional requirements elicitation techniques are labor-intensive and do not scale.

• Enterprise software vendors cannot rely on the same data sources for data-driven requirements elicitation

as other software vendors (e.g., app reviews).

Objective:

• Investigate whether sponsored developer communities of enterprise software vendors are a potential

source for mining software requirements.

• Develop a machine learning classifier that automatically detects feature requests of third-party

developers.

Design:

• Manually label an initial set of questions to validate that sponsored developer communities contain

feature requests.

• Select a suitable sample of 1,500 questions and recruit three SAP experts as labelers.

• Perform preprocessing steps to optimally prepare the data for the classifier.

• Test various feature extraction techniques.

• Train the supervised machine learning model with various classification algorithms.

Demonstration:
• Provide the classifier with a set of test questions that the algorithm has not seen before.

• Confirm that the classifier can automatically detect feature requests of third-party developers.

Evaluation:

• Evaluate the accuracy, precision, recall and F1 measure of the classifier.

• Identify the best-performing classifier and assess its optimization parameters.

• Test and compare different combinations for preprocessing, feature extraction techniques and

classification algorithms.

Communication: • Submit the study to an academic conference.

Page 953

solutions, SAP launched its first cloud-based solution in

2013, the SAP HANA Cloud Platform.

We have chosen SAP as our case company for

multiple reasons. First, SAP is the largest vendor of

enterprise software worldwide. Hence, we assume that

SAP’s ecosystem comprises a high number of third-

party developers and users. Additionally, our study is

more likely to have a high impact, when the results are

relevant for a large ecosystem. Second, the SAP

Community was launched in 2003 and since then, it has

become a well-established sponsored developer

community with more than three million users (SAP,

2022b). Compared to other software vendors, whose

sponsored developer communities are relatively new,

the SAP Community has become, and still is, an

important knowledge resource for the entire SAP

ecosystem (Huang et al., 2018). We thus assume that

third-party developers frequently consult the SAP

Community to benefit from the expertise of others.

Furthermore, we also conclude that the SAP

Community is a rich data source for mining software

requirements. Third, SAP is a prime example of an

enterprise software vendor. Although traditional

enterprise software vendors such as SAP and Oracle

differ to some extent from cloud-native vendors such as

Salesforce and ServiceNow, our approach is

transferable to all software vendors who maintain self-

hosted and sponsored developer communities. Hence,

our case company allows us to generalize our results to

other enterprise software vendors. Fourth, SAP has

launched the SAP Customer Influence Portal, which

was formerly known as the SAP Idea Place (Kiron,

2012). In this portal, customers can suggest ideas for

product improvements and vote on the ideas of others.

We comprehend this portal as a means to collect

requirements from users and third-party developers.

However, this does not compromise the results of our

study, because there is a substantial difference between

the provisioning of such a portal and the automatic

extraction of requirements in sponsored developer

communities. While the Customer Influence Portal

expects users and third-party developers to actively

submit their improvement suggestions in the portal,

sponsored developer communities can be passively

mined for feature requests, for example with natural

language processing techniques and machine learning

models. Hence, a major advantage of the latter is that it

does not require additional input or actions from users

or third-party developers. Moreover, users and third-

party developers might also be hesitant to submit

improvement ideas due to time constraints or low

chances of success. We conducted a pre-test for our

study and identified that questions that contain feature

requests were often answered by SAP employees who

suggested submitting the idea in the SAP Customer

Influence Portal. As explained next, we use this to our

advantage when we selected the sample of our study.

The following thread is an example of such a

suggestion: https://answers.sap.com/questions/1325214

6/add-custom-field-to-template.html.

3.3. Data

We started our data collection process with the

development of a web scraper. Specifically, our scraper

extracted all existing discussion threads from the SAP

Community that were posted before November 2020. In

total, we collected about 2.6 million discussion threads,

which comprise exactly the same amount of questions,

5.3 million answers and 4.7 million comments. For the

training of our classifier, we exclusively relied on the

questions as they are more likely to contain feature

requests. Another reason is that our goal is to predict

feature requests in newly posted questions and for those,

answers and comments are not yet available. Typically,

answers and comments contain solutions to technical

issues and are therefore less relevant for the training of

the classifier. However, as explained next, we used

textual data from answers and comments to support the

selection of an appropriate sample.

Supervised machine learning classifiers require a

labeled data set from which the classifier can infer the

outcome of a variable based on a given input. As we

collected a vast amount of data, we had to reduce our

data set to a sufficiently small sample that can be labeled

by hand. Figure 1 provides an overview on our sample

selection process. First, we investigated the statistical

distributions for questions, answers, and comments.

Thereby, we found that the SAP Community has gone

through three major design changes. To avoid any biases

that might result from these design changes, we limited

our sample to questions that were posted in the most

recent design of the community. Consequently, we

excluded all questions that have been posted before

2016 and thereby reduced our sample to 337,000

questions. Second, we excluded all non-English

questions as the classification of natural language

documents is language-sensitive. Thereby, we narrowed

our sample down to 285,000 questions. Third, we used

an active machine learning approach to select our final

sample of 1,500 questions. The central idea of active

machine learning is to optimize the learning curve of a

classifier by training it with the most informative cases

(Dzyabura & Hauser, 2011; Hemmer et al., 2022). In

particular, active machine learning is concerned with the

optimal selection of data points that are given to the

labelers for evaluation (Sener & Savarese, 2018). This

selection is crucial because data labeling is time

consuming and expensive, but it also determines the

accuracy of the trained classifier. Active machine

Page 954

https://answers.sap.com/questions/13252146/add-custom-field-to-template.html
https://answers.sap.com/questions/13252146/add-custom-field-to-template.html

learning approaches often adopt pooling strategies

which balance manually selected and informative data

points with randomly selected data points (Cuong et al.,

2014; Sener & Savarese, 2018). In the SAP Community,

the majority of questions does not contain feature

requests and hence, our classifier would perform rather

inaccurate, if we train it with a random sample of 1,500

questions. Against this background, we used active

machine learning and divided our remaining sample into

two equally-sized pools (Batista et al., 2005; Maalej &

Nabil, 2015). For the first pool, we wanted to maximize

the likelihood that the questions contain feature

requests. To do so, we had to identify questions that

have a high probability for containing a feature request

upfront. We retrieved the entire discussion threads for

the existing sample and filtered for (a) threads that

contain the word combination “feature request” in

answers or comments and (b) for threads that mention

the “Customer Influence Portal” in answers or

comments. We assigned questions to the first pool if at

least one filter criterion returned a hit. The logic behind

this approach is to use the existing answers and

comments in the community as a first assessment of

whether the question contains a feature request or not.

At the same time, this filtering approach does not cause

any biases as the labeling and the classifier training are

done on the questions exclusively. In the second pool,

we considered all remaining questions which have not

been identified by any of the filter criteria from pool

one. Finally, we randomly selected 750 questions from

each pool and ended up with an optimized but balanced

final sample of 1,500 questions. Additionally, we ensure

scientific rigor by using a sophisticated labeling

approach which validates whether the questions actually

contain a feature request or not.

We used a managed-labeler approach to label our

final sample of 1,500 questions. A key reason for this

approach is that the assessment of whether a question

contains a feature request requires solid knowledge

about SAP’s products and their functionality. Hence,

our labelers needed to be SAP experts to make an

accurate assessment. Additionally, we wanted to have

three labelers so that we can rely on the majority label

when the assessments are discordant. We recruited our

labelers as follows. Labeler one is part of the authors and

has worked for our case company SAP for multiple

years and in varying roles. Labeler two and three were

recruited via the freelancer platform Fiverr. Both have a

university degree and several years of experience with

SAP’s technology.

We used the tool Labelbox to collect the

assessments from our labelers. Moreover, the labeling

task was a binary evaluation, meaning that our labelers

were presented with a question and they had to assess

whether the question contains a feature request or not.

Existing answers and comments were not shown to the

labelers as our goals was to train the classifier on the

questions only. The inclusion of answers and comments

2,600,000 questions

337,000 questions

285,000 questions

Final Sample:

1,500 questions

Year >= 2016

Lang = en

Pool 1: 750 questions Pool 2: 750 questions

 Feature Request OR
 Customer Influence

Figure 1: Sample selection

Table 2: Definition of feature requests

No feature request Feature request

• The developer is confronted with a bug or an error

message and asks for help to resolve the problem.

• The developer asks for a step-by-step guide to

implement functionality.

• The developer knows that the desired functionality is

realizable through customization (for instance by

reading the documentation) but does not know how.

• The developer assumes that a particular functionality is not

yet implemented.

• The developer does not know if something is possible but

could not find information in other discussion threads or in

the product documentation.

• The developer has identified a function gap in the standard

product.

• The developer asks if a feature is included in a future release.

• Example 1: “Hello Experts, please I need your help on

how to calculate WIP on SAP. Steps and Tcode.

Regards.”

• Example 2: “Hello Experts, when I am configuring

SAP Hana Cloud Connector, the following error is

raised. Please give me some ideas to solve this issue

[IMAGE].”

• Example 1: “Hi, a customer wants to track when a user

deletes or add a relationship on account level. This can't be

traced in the change functionality. Is there a possibility to

track this history data via another functionality or by

reporting? Many thanks for your advice. Regards.”

• Example 2: “Hi Team, like iOS and Android Schedule

setting under Server > Configuration > Schedule. Do we

have anything for Windows Laptop? Regards.”

Page 955

in the labeling task might have biased our results as it

possible to draw conclusions from them. To ensure a

common understanding for feature requests, we created

a detailed labeling guide and distributed it among our

labelers. The labeling guide contained a detailed

definition of feature requests and several edge cases

together with arguments for their assessment. Table 2

summarizes the definition of feature requests as

described in the labeling guide and provides several

examples. The detailed labeling guide is available from

the authors upon request.

Finally, we performed several preprocessing steps

to optimally prepare our data for the classifier training.

First, we replaced URLs, code snippets and images with

tags because machine learning classifiers have

difficulties in interpreting their raw data correctly.

Second, we removed remaining HTML-tags and

whitespaces that resulted from the usage of our web

scraper. Third, we performed the following natural

language processing techniques: lowercasing, removal

of punctation, numbers, possessive endings and stop-

words, and lemmatization. While step one and two were

necessary to reduce noise in our data, we considered

step three to be optional as there are mixed empirical

results on the usage of such additional preprocessing

techniques (e.g., Maalej & Nabil, 2015). Hence, we

tested the performance of the classifier with and without

the additional preprocessing techniques of step three.

Text-based machine learning classifiers require a

fixed amount of numerical features as structured input

(Kowsari et al., 2019). Hence, we needed to extract

these features from the unstructured text before we

could train the classifier. Since we are following the

design science research methodology, we tested and

evaluated three common feature extraction techniques:

Bag-of-Words (BoW), Term Frequency Inverse

Document Frequency (TF-IDF) and document

embeddings with the pre-trained language model

SBERT (Kowsari et al., 2019). SBERT is a modification

of the popular BERT model (Devlin et al., 2018), which

benefits from a significantly reduced extraction time,

while it maintains the high accuracy from BERT.

SBERT has been trained on the full sentences of the

Stanford Natural Language Inference corpus and the

Multi-Genre Natural Language Inference corpus

(Reimers & Gurevych, 2019). As any other pre-trained

language model, SBERT can be fine-tuned to specific

domains such as ours.

Next, we started with the model training.

Specifically, we tested the performance of three binary

classification algorithms which have shown promising

results in similar contexts: Naïve Bayes (NB), Random

Forest (RF) and Support Vector Machines (SVM) (e.g.,

Kühl et al., 2020; Maalej & Nabil, 2015). For all three

algorithms, we used the standard threshold for binary

machine learning classifiers of 0.5. Hence, the trained

classifier only makes a positive prediction when the

probability for a positive prediction is higher than for a

negative prediction. We used Python’s scikit-learn

library to train the classifiers and randomly selected

1275 questions as the training set, and 225 question as

the test set.

Finally, we used several measures to evaluate the

performance of our classifiers. First, we use accuracy

(ACC), which describes the number of correct

predictions relative to the total number of predictions.

Second, we use precision (P), which measures the

number of correctly predicted positives relative to all

positive predictions (true positives and false positives).

Third, we rely on the recall rate (R) to measure the

proportion of actual positives that were identified

correctly. In mathematical terms, the recall rate is

described as the number of true positives in relation to

the number of true positives and false negatives. Finally,

we calculate the F1 measure which is the harmonic mean

of recall and precision (Jiao & Du, 2016).

4. Results

In this section, we first report the results of the

labeling process before we turn to the performance

measures of our machine learning classifiers. Regarding

the labeling, we conducted two analyses. First, we

investigated the statistical distribution for each labeler

and calculated a consensus label based on the

assessments of our labelers. For instance, if two labelers

assessed that a question contains a feature request and

one labeler assessed that the question does not contain a

feature request, the consensus label adopts the opinion

of the majority and classifies the question as a feature

request. Based on this consensus labeling approach, our

final sample consisted of 606 questions with feature

request and 894 questions without feature request.

Figure 2 specifies the outcome of the labeling for each

pool as well as for the final sample. Second, we

calculated Cohen’s Kappa and Fleiss‘ Kappa to receive

a more rigorous evaluation of our labels. While Cohen’s

Kappa is a statistical measure for the agreement between

Final sample:
1,500 questions

Feature requests: 606
No feature request: 894

Pool 1: Filtered
 750 questions

Feature request: 461
No feature request: 289

Pool 2: Random
 750 questions

Feature request: 175
No feature request: 575

Figure 2: Final sample

Page 956

two labelers (Cohen, 1960), Fleiss‘ Kappa is a measure

that assesses the agreement between multiple labelers

(Fleiss, 1981; Powers, 2012). With a value of 0.43, the

Fleiss‘ Kappa metric reveals an overall moderate

agreement between our labelers. Additionally, we report

Cohen’s Kappa values for our labelers in Figure 3. We

annotate feature requests as “FR” and no feature

requests as “NFR”. As specified in Figure 3, the

agreement of our labelers ranges from 67.00 to 76.53%,

resulting in a fair to moderate agreement according to

Cohen’s Kappa. We also investigated several questions

on which our labelers disagreed in-depth. Most of these

questions had room for interpretation, meaning that they

could be interpreted and labeled either way. Hence, we

concluded that our consensus labeling approach was a

suitable means to balance this room for interpretation.

Next, we turn to the results of our classifier. As

outlined in the methodology section, we investigated the

influence of additional preprocessing steps (PP), feature

extraction techniques (FE) and classification algorithms

(CA). Hence, we trained a classifier for each possible

combination of those factors. In Table 3, we report the

performance metrics for these combinations.

Specifically, we report the overall accuracy (ACC) of

the classifier, its execution time (ET) in seconds, as well

as precision (P), recall (R) and F1 measures for the

feature request category. Overall, the classifiers perform

reasonably well with accuracies ranging from 0.5495 to

0.8187.

5. Interpretation and Future Research

The purpose of this study was to investigate

whether enterprise software vendors can use data from

their sponsored developer communities for data-driven

requirements elicitation. Specifically, we trained a

supervised machine learning model for the automatic

detection of feature requests of third-party developers.

Overall, our study shows promising results. The best

performing classifier reached a high accuracy of 0.8187

while extracting features with the pre-trained SBERT

model and using the Naïve Bayes classification

algorithm. This means that the classifier was able to

identify 81,87% of all feature and non-feature requests

correctly. We thus conclude that enterprise software

vendors can use supervised machine learning classifiers

to automatically detect feature requests in their

sponsored developer communities. The aforementioned

classifier also shows the highest recall value for the

feature request category. For our study, this is a crucial

measure because a high recall value indicates a

minimization of false negative predictions. Assuming

that an appropriate threshold value has been used, this is

most desirable because a minimization of false negative

predictions means that the classifier reduces the number

of “missed” feature requests. In contrast, false positive

predictions are more tolerable because those are

questions that were falsely classified as feature request.

The reason is that false positive predictions can be

sorted out by a system analyst or requirements engineer

in a manual review. However, the chances of correcting

false negative predictions are relatively low—it is rather

Total Agreement: 76.53%

Cohen's Kappa: 0.5230

Moderate Agreement

Total Agreement: 73.27%

Cohen's Kappa: 0.4325

Moderate Agreement

Total Agreement: 67.00%

Cohen's Kappa: 0.3297

Fair Agreement

Figure 3: Cohen's Kappa

Table 3: Classifier performance metrics

 FR

PP FE CA ACC P R F1 ET

No

BoW

NB 0.5495 0.5333 0.7912 0.6372 7

RF 0.7912 0.7573 0.8571 0.8041 236

SVM 0.7802 0.7802 0.7802 0.7802 346

TF-IDF

NB 0.6374 0.6168 0.7253 0.6667 6

RF 0.7967 0.7700 0.8462 0.8063 261

SVM 0.7363 0.7216 0.7692 0.7447 330

SBERT

NB 0.8187 0.7900 0.8681 0.8272 483

RF 0.8132 0.7938 0.8462 0.8191 1285

SVM 0.8022 0.7778 0.8462 0.8105 713

Yes

BoW

NB 0.6703 0.7183 0.5604 0.6296 11

RF 0.7692 0.7692 0.7692 0.7692 252

SVM 0.7857 0.8095 0.7473 0.7771 450

TF-IDF

NB 0.6264 0.6075 0.7143 0.6566 9

RF 0.8022 0.8090 0.7912 0.8000 266

SVM 0.7088 0.6979 0.7363 0.7166 339

SBERT

NB 0.7143 0.6931 0.7692 0.7292 301

RF 0.7253 0.7030 0.7802 0.7396 1118

SVM 0.7088 0.6827 0.7802 0.7282 539

Page 957

unlikely that a requirements engineer will scroll through

the entire community and stumble over a “missed”

feature request. Hence, we see our machine learning

classifier as a means to filter out relevant questions of

the community and present those to system analysts and

requirements engineers for further evaluation.

Besides that, all of our classifiers performed

reasonably well. The accuracy of the classifiers ranges

from 0.5495 to 0.8187, whereby most of them were in

the 0.7 to 0.8 range. We observed the lowest accuracy

when we used no additional preprocessing, feature

extraction with Bag-of-Words and the Naïve Bayes

classification algorithm. Apart from that, the pre-trained

SBERT model performed significantly better without

optional preprocessing steps (see section 3.3). However,

this is not entirely surprising because the SBERT model

has been trained on full sentences and preprocessing

steps such as lemmatization or the removal of stop-

words eliminate valuable information from the model.

Despite our promising results, our study is not

without limitations. First, our best-performing classifier

was not able to successfully detect all feature requests

of the community. We manually investigated several

incorrect predictions and found that (a) false negative

assignments were more frequent for long questions with

a significant amount of context descriptions, and (b)

false positive assignments were more frequent for short

questions with limited context descriptions. We are,

however, convinced that an increase in training cases

would further enhance the accuracy of the classifier.

Second, we conducted a single case study which is

typically associated with limited generalizability. We

consider the results of our study to be reproducible

because SAP and its community are a prime example for

our context. Other sponsored developer communities

such as ServiceNow’s Now Community have a similar

purpose and hence, our study is likely to be replicable

with a data set from those communities.

Our study opens up two major avenues for future

research. First, while we used sponsored developer

communities to mine enterprise software requirements,

future research can explore the elicitation of bugs to

improve the maintenance of software products. Second,

future research can explore different types of feature

requests in sponsored developer communities.

Acknowledgements

The authors gratefully acknowledge the

computational resources provided by the Leibniz

Supercomputing Centre and the Rechnerbetriebsgruppe

from Technical University of Munich. This work was in

part funded by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) – project no.

444990299.

References

Basole, R. C., & Park, H. (2019). Interfirm Collaboration

and Firm Value in Software Ecosystems: Evidence from

Cloud Computing. IEEE Transactions on Engineering

Management, 66(3), 368-380.

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2005).

Balancing Strategies and Class Overlapping. International

Symposium on Intelligent Data Analysis (IDA 2005),

Madrid, Spain.

Beyer, S., Macho, C., Di Penta, M., & Pinzger, M. (2020).

What Kind of Questions Do Developers Ask on Stack

Overflow? Empirical Software Engineering, 25, 2258-

2301.

Blohm, I., Kahl, V., Leimeister, J. M., & Krcmar, H. (2014).

Enhancing Absorptive Capacity in Open Innovation

Communities. In J. M. Leimeister & B. Rajagopalan

(Eds.), Virtual Communities. M.E. Sharpe Publisher.

Browne, G. J., & Ramesh, V. (2002). Improving Information

Requirements Determination: A Cognitive Perspective.

Information & Management, 39(8), 625-645.

Byrd, T. A., Cossick, K. L., & Zmud, R. W. (1992). A

Synthesis of Research on Requirements Analysis and

Knowledge Acquisition Techniques. MIS Quarterly,

16(1), 117-138.

Carreno, L. V. G., & Winbladh, K. (2013). Analysis of User

Comments: An Approach for Software Requirements

Evolution. 35th International Conference on Software

Engineering (ICSE), San Francisco, USA.

Chakraborty, S., Sarker, S., & Sarker, S. (2010). An

Exploration into the Process of Requirements Elicitation:

A Grounded Approach. Journal of the Association for

Information Systems, 11(4), 212-249.

Cohen, J. (1960). A Coefficient of Agreement for Nominal

Scales. Educational and Psychological Measurement,

20(1), 37-46.

Cuong, N. V., Lee, W. S., & Ye, N. (2014). Near-Optimal

Adaptive Bool-Based Active Learning with General Loss.

30th Conference on Uncertainty in Artificial Intelligence

(UAI14), Quebec, Canada.

Davidson, E. J. (2002). Technology Frames and Framing: A

Socio-Cognitive Investigation of Requirements

Determination. MIS Quarterly, 26(4), 329-358.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018).

BERT: Pre-Training of Deep Bidirectional Transformers

for Language Understanding. NAACL-HLT 2019,

Minneapolis, USA.

Dzyabura, D., & Hauser, J. R. (2011). Active Machine

Learning for Consideration Heuristics. Marketing Science,

30(5), 801-819.

Fleiss, J. L. (1981). Statistical Methods for Rates and

Proportions (2. ed.). Wiley.

Foerderer, J., Kude, T., Schuetz, S. W., & Heinzl, A. (2019).

Knowledge Boundaries in Enterprise Software Platform

Development: Antecedents and Consquences for Platform

Governance. Information Systems Journal, 29(1), 119-

144.

Page 958

Ghazawneh, A., & Henfridsson, O. (2013). Balancing

Platform Control and External Contribution in Third-Party

Development: The Boundary Resources Model.

Information Systems Journal, 23(2), 173-192.

Glinz, M. (2020). A Glossary of Requirements Engineering

Terminology. International Requirements Engineering

Board. Retrieved August 31st, 2022 from

https://www.ireb.org/en/cpre/cpre-glossary/.

Halckenhaeußer, A., Mann, F., Foerderer, J., & Hoffmann,

P. (2022). Comparing Platform Core Features with Third-

Party Complements - Machine-Learning Evidence from

Apple iOS. 55th Hawaii International Conference on

System Sciences, Virtual Conference.

Hansen, S., & Lyytinen, K. (2010). Challenges in

Contemporary Requirements Practice. 43rd Hawaii

International Conference on System Sciences, Koloa,

Hawaii.

Hemmer, P., Kühl, N., & Schöffer, J. (2022). Utilizing Active

Machine Learning for Quality Assurance: A Case Study of

Virtual Car Rendering in the Automotive Industry. 55th

Hawaii International Conference on System Sciences,

Virtual Conference.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004).

Design Science in Information Systems Research. MIS

Quarterly, 28(1), 75-105.

Hoffmann, P., Mateja, D., Spohrer, K., & Heinzl, A. (2019).

Bridging the Vendor-User Gap in Enterprise Cloud

Software Development through Data-Driven

Requirements Engineering. 40th International Conference

on Information Systems, Munich, Germany.

Huang, P., Tafti, A., & Sunil, M. (2018). Platform Sponsor

Investments and User Contributions in Knowledge

Communities: The Role of Knowledge Seeding. MIS

Quarterly, 42(1), 213-240.

Jiao, Y., & Du, P. (2016). Performance Measure in

Evaluating Machine Learning Based Bioinformatics

Predictors for Classifications. Quantitative Biology, 4(4),

320-330.

Kauschinger, M., Schreieck, M., Boehm, M., & Krcmar, H.

(2021). Knowledge Sharing in Digital Platform

Ecosystems - A Textual Analysis of SAP's Developer

Community. 16th International Conference on

Wirtschaftsinformatik, Virtual Conference.

Kiron, D. (2012). SAP: Using Social Media for Building,

Selling and Supporting. Retrieved August 31st, 2022 from

https://sloanreview.mit.edu/article/sap-using-social-

media-for-building-selling-and-supporting/.

Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S.,

Barnes, L., & Brown, D. (2019). Text Classification

Algorithms: A Survey. Information, 10(4).

Kühl, N., Mühlthaler, M., & Goutier, M. (2020). Supporting

Customer-Oriented Marketing with Artificial Intelligence:

Automatically Quantifying Customer Needs from Social

Media. Electronic Markets, 30, 351-367.

Maalej, W., & Nabil, H. (2015). Bug Report, Feature

Request, or Simply Praise? On Automatically Classifying

App Reviews. 23rd International Requirements

Engineering Conference, Ottawa, Canada.

Maalej, W., Nayebi, M., Johann, T., & Ruhe, G. (2016).

Toward Data-Driven Requirements Engineering. IEEE

Software, 33(1), 48-54.

Mathiassen, L., Tuunanen, T., Saarinen, T., & Rossi, M.

(2007). A Contingency Model for Requirements

Development. Journal of the Association for Information

Systems, 11(2), 569-597.

Meth, H., Mueller, B., & Maedche, A. (2015). Designing a

Requirement Mining System. Journal of the Association

for Information Systems, 16(9), 799-837.

Pfeffers, K., Tuunanen, T., Rothenberger, M. A., &

Chatterjee, S. (2007). A Design Science Research

Methodology for Information Systems Research. Journal

of Management Information Systems, 24(3), 45-77.

Powers, D. M. W. (2012). The Problem with Kappa. 13th

Conference of the European Chapter of the Association for

Computational Linguistics, Avignon, France.

Ravid, A., & Berry, D. M. (2000). A Method for Extracting

and Stating Software Requirements that a User Interface

Prototype Contains. Requirements Engineering, 5(4), 225-

241.

Reimers, N., & Gurevych, I. (2019). Sentence-BERT:

Sentence Embeddings using Siamese BERT-Networks.

EMNLP 2019, Hong Kong, China.

Rosenkranz, C., Vranešić, H., & Holten, R. (2014).

Boundary Interactions and Motors of Change in

Requirements Elicitation: A Dynamic Perspective on

Knowledge Sharing. Journal of the Association for

Information Systems, 15(6), 306-345.

Safadi, H., Johnson, S. L., & Faraj, S. (2020). Core-

Periphery Tension in Online Innovation Communities.

Organization Science, Preprint.

Saiediana, H., & Daleb, R. (2000). Requirements

Engineering: Making the Connection Between the

Software Developer and Customer. Information and

Software Technology, 42, 419-428.

SAP. (2022a). 2021 Q4 Quarterly Statement. Retrieved

August 31st, 2022 from https://tinyurl.com/3bfp8cef.

SAP. (2022b). Welcome to the SAP Community. Retrieved

August 31st, 2022 from https://community.sap.com/.

Sarker, S., Sarker, S., Sahaym, A., & Bjorn-Andersen, N.

(2012). Exploring Value Cocreation in Relationships

Between an ERP Vendor and its Partners: A Revelatory

Case Study. MIS Quarterly, 36(1), 317-338.

Schreieck, M., Wiesche, M., & Krcmar, H. (2021).

Capabilities for Value Co-creation and Value Capture in

Emergent Platform Ecosystems: A Longitudinal Case

Study of SAP's Cloud Platform. Journal of Information

Technology, 36(4), 365-390.

Schreieck, M., Wiesche, M., Kude, T., & Krcmar, H. (2019).

Shifting to the Cloud - How SAP's Partners Cope with the

Change. 52nd Hawaii International Conference on System

Sciences, Grand Wailea, Hawaii.

Sener, O., & Savarese, S. (2018). Active Learning for

Convolutional Neural Networks: A Core-Set Approach.

International Conference on Learning Representations

(ICLR 2018), Vancouver, Canada.

Statista. (2022). Average Rating and Number of Reviews in

the Google Play Store. Retrieved August 31st, 2022 from

https://www.statista.com/statistics/1296490/ratings-and-

reviews-android-apps-by-category/.

West, J., & O'Mahony, S. (2008). The Role of Participation

Architecture in Growing Sponsored Open Source

Communities. Industry and Innovation, 15(2), 145-168.

Page 959

https://www.ireb.org/en/cpre/cpre-glossary/
https://sloanreview.mit.edu/article/sap-using-social-media-for-building-selling-and-supporting/
https://sloanreview.mit.edu/article/sap-using-social-media-for-building-selling-and-supporting/
https://tinyurl.com/3bfp8cef
https://community.sap.com/
https://www.statista.com/statistics/1296490/ratings-and-reviews-android-apps-by-category/
https://www.statista.com/statistics/1296490/ratings-and-reviews-android-apps-by-category/

