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Abstract 
The elicitation of requirements is central for the 

development of successful software products. While 

traditional requirement elicitation techniques such as 

user interviews are highly labor-intensive, data-driven 

elicitation techniques promise enhanced scalability 

through the exploitation of new data sources like app 

store reviews or social media posts. For enterprise 

software vendors, requirements elicitation remains 

challenging because app store reviews are scarce and 

vendors have no direct access to users. Against this 

background, we investigate whether enterprise software 

vendors can elicit requirements from their sponsored 

developer communities through data-driven techniques. 

Following the design science methodology, we collected 

data from the SAP Community and developed a 

supervised machine learning classifier, which 

automatically detects feature requests of third-party 

developers. Based on a manually labeled data set of 

1,500 questions, our classifier reached a high accuracy 

of 0.819. Our findings reveal that supervised machine 

learning models are an effective means for the 

identification of feature requests. 
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1. Introduction  

The accurate elicitation of requirements is central 

for the development of successful software products 

(Chakraborty et al., 2010; Meth et al., 2015). 

Unfortunately, both researchers and practitioners have 

observed that many software development projects fail 

due to inaccurate or missing user requirements, which 

often result in significant financial losses for the 

development firm (Mathiassen et al., 2007; Rosenkranz 

et al., 2014). Specifically, the communication and 

interactions between the various stakeholders make the 

requirements elicitation process complex and hard to 

manage. Moreover, several studies have shown that 

users often lack the ability to specify their requirements 

correctly (Hansen & Lyytinen, 2010; Rosenkranz et al., 

2014).  

Requirements elicitation refers to the identification 

and extraction of conscious, unconscious and 

subconscious requirements of all involved stakeholders 

of a development project (Saiediana & Daleb, 2000). 

Although requirements elicitation has been an important 

topic in the information systems field for several 

decades (Chakraborty et al., 2010; Rosenkranz et al., 

2014), its techniques have changed substantially in 

recent years. Previously, requirements elicitation was 

largely based on traditional elicitation techniques such 

as on-site observations, user interviews, focus groups or 

workshops (Byrd et al., 1992; Saiediana & Daleb, 

2000). These traditional techniques require close and 

frequent interactions between system analysts and users, 

making them highly labor- and cost-intensive 

(Chakraborty et al., 2010). More recently, researchers 

and practitioners have acknowledged the rise of data-

driven requirements elicitation techniques (Maalej et al., 

2016; Meth et al., 2015). These data-driven techniques 

integrate newly available data sources such as app store 

reviews or social media posts into the elicitation process 

(e.g., Halckenhaeußer et al., 2022; Hoffmann et al., 

2019; Kauschinger et al., 2021; Maalej & Nabil, 2015). 

Moreover, data-driven techniques often rely on new 

analytical technologies such as natural language 

processing, text mining or machine learning to leverage 

the full potential of these newly available data sources 

(Maalej et al., 2016; Meth et al., 2015). 

For enterprise software, requirements elicitation 

remains challenging. On the one hand, enterprise 

software vendors’ access to users has been cumbersome 

for decades because vendors primarily engage with their 

customers’ IT departments, leaving them disconnected 

from the actual users of their software. In the past, 

enterprise software was also deployed on-premises, 

meaning that the vendors’ software is licensed and 

running on proprietary systems of their customers. Such 

licensing models further increased the disconnect 

between vendors and users (Hoffmann et al., 2019; 

Schreieck et al., 2019). On the other hand, enterprise 

software vendors do not have access to the same data 
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sources for data-driven requirements elicitation as 

vendors of consumer software. For instance, existing 

research has shown that app reviews are a promising 

source for data-driven requirements elicitation (e.g., 

Carreno & Winbladh, 2013; Maalej & Nabil, 2015). 

Although there is a plethora of app reviews for 

consumer software, for example on Android’s Play 

Store (Statista, 2022), app reviews for enterprise 

software are scarce. One reason for this scarcity is that 

enterprise software vendors only recently started to 

transition towards app store-centric platform 

ecosystems. Another reason is that enterprise software 

apps are far more complex so that their functionality is 

best assessed by technical experts rather than users. This 

reduces the number of potential reviewers significantly. 

Besides, app reviews evaluate and rate the functionality 

of individual apps. Hence, they more likely to contain 

requirements for those particular apps than for the core 

enterprise software system. 

Another promising data source is usage data. While 

the tracking of user behavior has become common for 

many mobile apps and websites, enterprise software 

vendors have difficulties in collecting usage data 

because a large proportion of enterprise software is still 

running on-premises, which prohibits the collection of 

usage data by the vendor. For instance, in 2020, SAP 

still generated more revenue with on-premises solutions 

than with cloud solutions (SAP, 2022a). Yet, the 

possibilities for the collection of user data are rising as 

enterprise software vendors are continually 

transforming their on-premises products into cloud-

based platform ecosystems that are running in their own 

data centers (Hoffmann et al., 2019; Schreieck et al., 

2019). 

In this paper, we investigate a new data source for 

data-driven requirements elicitation, which is 

specifically available for enterprise software vendors. 

We examine the potential of sponsored developer 

communities for data-driven requirements elicitation. 

While developers outside of the enterprise software 

domain often rely on autonomous developer 

communities such as Stack Overflow or Stack Exchange 

(Safadi et al., 2020), enterprise software vendors 

typically nurture their own, self-hosted developer 

communities such as the SAP Community, Salesforce’s 

Trailblazer Community or ServiceNow’s Now 

Community. The existing literature refers to such 

communities as sponsored developer communities 

because a for-profit organization, namely the enterprise 

software vendor, is funding and governing the activities 

of the community (Blohm et al., 2014; West & 

O'Mahony, 2008). Since these sponsored developer 

communities are self-hosted, enterprise software 

vendors have convenient access to the data that is shared 

in the community. Compared to vendors of consumer 

software, this is a major advantage because data from 

autonomous communities is hard to come by. Against 

this background, we explore whether enterprise 

software vendors can leverage their sponsored 

developer communities as an additional data source for 

data-driven requirements elicitation. In particular, we 

analyze whether it is possible to automatically detect 

feature requests in the questions of community members 

through a binary machine learning classifier. The 

motivation for such a classifier is that sponsored 

developer communities typically contain millions of 

posts, but only a few are relevant for the elicitation of 

requirements. For example, existing research has shown 

that a significant proportion of posts are focusing on 

errors or bugs (Beyer et al., 2020; Maalej & Nabil, 

2015). Consequently, such a machine learning classifier 

has the potential of narrowing down the number of 

relevant questions so that requirements engineers and 

system analysts can evaluate the identified feature 

request in-depth. Therefore, we propose the following 

research question: How effective is a supervised 

machine learning classifier in detecting feature requests 

in sponsored developer communities? 

To answer our research question, we collected data 

from the SAP Community and generated a manually 

labeled data set of 1,500 questions. Following the design 

science paradigm, we developed a supervised and 

binary machine learning classifier. We observed the 

highest prediction accuracy (0.8187) for the classifier 

when we extracted features with the pre-trained 

SBERT-Model and classified them with the Naïve 

Bayes algorithm. Our findings reveal that supervised 

machine learning models are an effective means for the 

identification of feature requests.  

The remainder of this paper is structured as follows. 

In the next section, we clarify the theoretical 

background on requirements engineering and enterprise 

software. We then turn to the methodology where we 

explain the labeling process and our design science-

oriented research approach. Thereafter, we present the 

results of our study before we interpret them and outline 

avenues for future research. 

2. Theoretical Background 

2.1 Requirements Engineering 

The purpose of requirements engineering is the 

optimization of a development project toward the needs 

of its stakeholders. Thereby, much of the existing 

literature has characterized requirements engineering as 

a “staged sequence of activities and/or task objectives” 

(Chakraborty et al., 2010, p. 214). For instance, Browne 

and Ramesh (2002) argue that requirements engineering 

can be divided into three stages: information gathering, 
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representation, and verification. However, several 

researchers have noted that, in reality, requirements 

engineering is often chaotic and non-linear (e.g., 

Chakraborty et al., 2010; Davidson, 2002). We adopt 

this non-normative view and define requirements 

engineering as a “systematic and disciplined approach 

to the specification and management of requirements 

with the goal of understanding the stakeholders’ desires 

and needs” (Glinz, 2020, p. 17). In line with this 

definition, a requirement can either be (1) a need of a 

stakeholder, (2) a capability or property that the system 

should have or (3) a documented representation of a 

need, capability or property (Glinz, 2020).  

According to our non-normative view, 

requirements engineering comprises four types of 

requirements development techniques (Mathiassen et 

al., 2007). The first type are requirements elicitation 

techniques, which focus on the collection and 

consolidation of requirements from available sources 

(Glinz, 2020). Requirements elicitation is the main 

focus of our study and its techniques either follow a 

traditional approach (e.g., interviews or workshops) or a 

data-driven approach (e.g., mining app store reviews or 

social media data). The second type refers to 

requirements prioritization techniques, which are 

resource-based analyses and comparisons of elicited 

requirements. The goal of those techniques is to select 

and prioritize the most important requirements, while 

considering that software development is constrained by 

limited resources, for instance in terms of cost and time 

(Mathiassen et al., 2007). The third type are 

requirements experimentation techniques. Those 

techniques are software-centric and involve design 

variations of the software artifact as a means for the 

communication with users. Often, prototypes of the 

software artifact are shown to users, so that 

requirements can be refined and developers receive 

direct feedback on their prototype (Ravid & Berry, 

2000). The fourth type are requirements specification 

techniques, which pertain to the documentation of 

explicit and agreed-upon requirements for continued 

development. Hence, those techniques are 

documentation-centric and use textual or graphical 

representations such as notation schemes or box 

structures (Mathiassen et al., 2007).  

While the previous paragraph embedded 

requirements elicitation in the larger scope of 

requirements engineering, this paragraph synthesizes 

related work on data-driven requirements elicitation as 

it is the main topic of our study. In particular, we 

identified several papers that paved the way for our 

study. First, Meth et al. (2015) designed a requirements 

mining system and were among the first to use natural 

language processing for requirements elicitation. 

However, the authors focused on the processing of 

traditional data sources such as specification documents 

or interview transcripts. In our paper, we mine 

requirements in a new data source, namely sponsored 

developer communities. Second, Maalej and Nabil 

(2015) tested several machine learning models to 

classify app reviews into four categories: bug reports, 

feature requests, user experiences, and ratings. In our 

study, we also use machine learning to classify natural 

language documents, but we focus explicitly on feature 

requests as they are more likely to contain the 

requirements of developers and users. Third, Hoffmann 

et al. (2019) developed a conceptual model which 

explains how data-driven requirements elicitation can 

close the gap between enterprise software vendors and 

their users. Our paper builds upon this model and 

investigates a specific use case. 

2.2 Enterprise Software 

Over the past decades, many enterprise software 

vendors like Microsoft or SAP have transformed their 

on-premise solutions into cloud solutions. A 

fundamental advantage of cloud solutions is that they 

allow ubiquitous and convenient access to a shared pool 

of configurable computing resources (Basole & Park, 

2019). Compared to on-premise solutions, which 

require additional hardware components to scale 

upwards, cloud solutions scale efficiently in both 

directions. With the shift towards cloud-based 

enterprise software solutions, many enterprise software 

vendors have transformed their product-centric software 

solutions into platform ecosystems, where third parties 

can develop complementary software applications 

(Foerderer et al., 2019; Schreieck et al., 2021). Such 

platform ecosystems typically comprise a platform 

owner which provides an extensible platform core, 

third-party developers who create complementary 

software applications, and end-users who use the 

platform and its applications (Ghazawneh & 

Henfridsson, 2013). Although on-premise solutions 

were extensible, too, more scalable platform ecosystems 

emerge from cloud-based solutions. For instance, while 

software extensions for on-premise solutions were 

deeply intertwined with the enterprise software system, 

cloud solutions provide a standardized integration layer 

which makes the coupling of third-party applications 

secure and convenient (Schreieck et al., 2019). 

Moreover, the resulting platform ecosystems are often 

similar to those in other software contexts, as the 

marketplaces for applications are in the limelight of the 

ecosystems. Examples of cloud-based enterprise 

software platforms are SAP’s Business Technology 

Platform (formerly known as the SAP Cloud Platform 

and the SAP HANA Cloud Platform), Microsoft Azure 

or ServiceNow’s Now Platform. 
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Third-party firms and their developers play an 

important role for the success of enterprise software 

vendors (Sarker et al., 2012). In fact, third-party firms 

often fill functional white spaces in the product portfolio 

of the enterprise software vendor, for instance through 

third-party applications. Thereby, third-party 

developers are responsible for the implementation of 

requirements, which is either done through 

customizations of the base enterprise software system or 

the development of custom applications, often called 

third-party applications. As enterprise software and its 

customization is complex, third-party developers often 

consult topic and product experts for guidance, for 

example by asking questions in sponsored developer 

communities (Huang et al., 2018). This is especially the 

case when third-party developers are uncertain about 

how to implement a specific requirement. The 

customization of enterprise software is limited to the 

functionalities that the base enterprise software system 

provides, and those are often standardized so that they 

fit multiple use cases and customers. Hence, enterprise 

software cannot comprise functionality for each and 

every use case. We assume that questions in sponsored 

online communities about missing functionalities can be 

interpreted as feature requests that indicate requirements 

of third-party developers, and ultimately of users. 

Sometimes, third-party developers might express their 

feature requests explicitly, for instance with quotes such 

as “it would be nice if functionality Y could be included 

in a future release”. We define feature requests as high-

level descriptions of desired functionality. 

3. Methodology 

The purpose of this paper is to investigate whether 

enterprise software vendors can leverage data from their 

sponsored developer communities for data-driven 

requirements elicitation. In the next subsections, we 

explain our research design, our case company and the 

generation of our labeled data set. 

3.1 Research Design 

We used a design science research approach for the 

development of our machine learning classifier (Hevner 

et al., 2004; Pfeffers et al., 2007). Design science 

research is concerned with the development of 

successful IT artifacts (Pfeffers et al., 2007) and is 

typically characterized as an iterative build-and-

evaluate process (Hevner et al., 2004). Specifically, we 

followed Pfeffers et al. (2007) who describe that 

rigorous design science research consists of six steps: 

problem identification, definition of objectives, design, 

demonstration, evaluation and communication. In Table 

1, we describe the actions that we carried out in each 

step. 

3.2 Case Description 

Our case company is the enterprise software vendor 

SAP. Founded in 1972, SAP has released various 

enterprise software products, which predominantly 

focus on enterprise resource planning. While products 

such as SAP R3 or SAP NetWeaver were on-premise 

Table 1: Design science research methodology 

Problem: 

• For enterprise software vendors, requirements elicitation is challenging because they lack access to users. 

• Traditional requirements elicitation techniques are labor-intensive and do not scale. 

• Enterprise software vendors cannot rely on the same data sources for data-driven requirements elicitation 

as other software vendors (e.g., app reviews). 

Objective: 

• Investigate whether sponsored developer communities of enterprise software vendors are a potential 

source for mining software requirements. 

• Develop a machine learning classifier that automatically detects feature requests of third-party 

developers. 

Design: 

• Manually label an initial set of questions to validate that sponsored developer communities contain 

feature requests. 

• Select a suitable sample of 1,500 questions and recruit three SAP experts as labelers.  

• Perform preprocessing steps to optimally prepare the data for the classifier. 

• Test various feature extraction techniques. 

• Train the supervised machine learning model with various classification algorithms.  

Demonstration: 
• Provide the classifier with a set of test questions that the algorithm has not seen before. 

• Confirm that the classifier can automatically detect feature requests of third-party developers. 

Evaluation: 

• Evaluate the accuracy, precision, recall and F1 measure of the classifier. 

• Identify the best-performing classifier and assess its optimization parameters. 

• Test and compare different combinations for preprocessing, feature extraction techniques and 

classification algorithms. 

Communication: • Submit the study to an academic conference. 
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solutions, SAP launched its first cloud-based solution in 

2013, the SAP HANA Cloud Platform.  

We have chosen SAP as our case company for 

multiple reasons. First, SAP is the largest vendor of 

enterprise software worldwide. Hence, we assume that 

SAP’s ecosystem comprises a high number of third-

party developers and users. Additionally, our study is 

more likely to have a high impact, when the results are 

relevant for a large ecosystem. Second, the SAP 

Community was launched in 2003 and since then, it has 

become a well-established sponsored developer 

community with more than three million users (SAP, 

2022b). Compared to other software vendors, whose 

sponsored developer communities are relatively new, 

the SAP Community has become, and still is, an 

important knowledge resource for the entire SAP 

ecosystem (Huang et al., 2018). We thus assume that 

third-party developers frequently consult the SAP 

Community to benefit from the expertise of others. 

Furthermore, we also conclude that the SAP 

Community is a rich data source for mining software 

requirements. Third, SAP is a prime example of an 

enterprise software vendor. Although traditional 

enterprise software vendors such as SAP and Oracle 

differ to some extent from cloud-native vendors such as 

Salesforce and ServiceNow, our approach is 

transferable to all software vendors who maintain self-

hosted and sponsored developer communities. Hence, 

our case company allows us to generalize our results to 

other enterprise software vendors. Fourth, SAP has 

launched the SAP Customer Influence Portal, which 

was formerly known as the SAP Idea Place (Kiron, 

2012). In this portal, customers can suggest ideas for 

product improvements and vote on the ideas of others. 

We comprehend this portal as a means to collect 

requirements from users and third-party developers. 

However, this does not compromise the results of our 

study, because there is a substantial difference between 

the provisioning of such a portal and the automatic 

extraction of requirements in sponsored developer 

communities. While the Customer Influence Portal 

expects users and third-party developers to actively 

submit their improvement suggestions in the portal, 

sponsored developer communities can be passively 

mined for feature requests, for example with natural 

language processing techniques and machine learning 

models. Hence, a major advantage of the latter is that it 

does not require additional input or actions from users 

or third-party developers. Moreover, users and third-

party developers might also be hesitant to submit 

improvement ideas due to time constraints or low 

chances of success. We conducted a pre-test for our 

study and identified that questions that contain feature 

requests were often answered by SAP employees who 

suggested submitting the idea in the SAP Customer 

Influence Portal. As explained next, we use this to our 

advantage when we selected the sample of our study. 

The following thread is an example of such a 

suggestion: https://answers.sap.com/questions/1325214

6/add-custom-field-to-template.html. 

3.3. Data 

We started our data collection process with the 

development of a web scraper. Specifically, our scraper 

extracted all existing discussion threads from the SAP 

Community that were posted before November 2020. In 

total, we collected about 2.6 million discussion threads, 

which comprise exactly the same amount of questions, 

5.3 million answers and 4.7 million comments. For the 

training of our classifier, we exclusively relied on the 

questions as they are more likely to contain feature 

requests. Another reason is that our goal is to predict 

feature requests in newly posted questions and for those, 

answers and comments are not yet available. Typically, 

answers and comments contain solutions to technical 

issues and are therefore less relevant for the training of 

the classifier. However, as explained next, we used 

textual data from answers and comments to support the 

selection of an appropriate sample. 

Supervised machine learning classifiers require a 

labeled data set from which the classifier can infer the 

outcome of a variable based on a given input. As we 

collected a vast amount of data, we had to reduce our 

data set to a sufficiently small sample that can be labeled 

by hand. Figure 1 provides an overview on our sample 

selection process. First, we investigated the statistical 

distributions for questions, answers, and comments. 

Thereby, we found that the SAP Community has gone 

through three major design changes. To avoid any biases 

that might result from these design changes, we limited 

our sample to questions that were posted in the most 

recent design of the community. Consequently, we 

excluded all questions that have been posted before 

2016 and thereby reduced our sample to 337,000 

questions. Second, we excluded all non-English 

questions as the classification of natural language 

documents is language-sensitive. Thereby, we narrowed 

our sample down to 285,000 questions. Third, we used 

an active machine learning approach to select our final 

sample of 1,500 questions. The central idea of active 

machine learning is to optimize the learning curve of a 

classifier by training it with the most informative cases 

(Dzyabura & Hauser, 2011; Hemmer et al., 2022). In 

particular, active machine learning is concerned with the 

optimal selection of data points that are given to the 

labelers for evaluation (Sener & Savarese, 2018). This 

selection is crucial because data labeling is time 

consuming and expensive, but it also determines the 

accuracy of the trained classifier. Active machine 
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learning approaches often adopt pooling strategies 

which balance manually selected and informative data 

points with randomly selected data points (Cuong et al., 

2014; Sener & Savarese, 2018). In the SAP Community, 

the majority of questions does not contain feature 

requests and hence, our classifier would perform rather 

inaccurate, if we train it with a random sample of 1,500 

questions. Against this background, we used active 

machine learning and divided our remaining sample into 

two equally-sized pools (Batista et al., 2005; Maalej & 

Nabil, 2015). For the first pool, we wanted to maximize 

the likelihood that the questions contain feature 

requests. To do so, we had to identify questions that 

have a high probability for containing a feature request 

upfront. We retrieved the entire discussion threads for 

the existing sample and filtered for (a) threads that 

contain the word combination “feature request” in 

answers or comments and (b) for threads that mention 

the “Customer Influence Portal” in answers or 

comments. We assigned questions to the first pool if at 

least one filter criterion returned a hit. The logic behind 

this approach is to use the existing answers and 

comments in the community as a first assessment of 

whether the question contains a feature request or not. 

At the same time, this filtering approach does not cause 

any biases as the labeling and the classifier training are 

done on the questions exclusively. In the second pool, 

we considered all remaining questions which have not 

been identified by any of the filter criteria from pool 

one. Finally, we randomly selected 750 questions from 

each pool and ended up with an optimized but balanced 

final sample of 1,500 questions. Additionally, we ensure 

scientific rigor by using a sophisticated labeling 

approach which validates whether the questions actually 

contain a feature request or not. 

We used a managed-labeler approach to label our 

final sample of 1,500 questions. A key reason for this 

approach is that the assessment of whether a question 

contains a feature request requires solid knowledge 

about SAP’s products and their functionality. Hence, 

our labelers needed to be SAP experts to make an 

accurate assessment. Additionally, we wanted to have 

three labelers so that we can rely on the majority label 

when the assessments are discordant. We recruited our 

labelers as follows. Labeler one is part of the authors and 

has worked for our case company SAP for multiple 

years and in varying roles. Labeler two and three were 

recruited via the freelancer platform Fiverr. Both have a 

university degree and several years of experience with 

SAP’s technology.  

We used the tool Labelbox to collect the 

assessments from our labelers. Moreover, the labeling 

task was a binary evaluation, meaning that our labelers 

were presented with a question and they had to assess 

whether the question contains a feature request or not. 

Existing answers and comments were not shown to the 

labelers as our goals was to train the classifier on the 

questions only. The inclusion of answers and comments 

2,600,000 questions

337,000 questions

285,000 questions

Final Sample: 

1,500 questions 

Year >= 2016

Lang =  en 

Pool 1: 750 questions Pool 2: 750 questions 

 Feature Request  OR
 Customer Influence 

 

Figure 1: Sample selection 

Table 2: Definition of feature requests 

No feature request Feature request 

• The developer is confronted with a bug or an error 

message and asks for help to resolve the problem. 

• The developer asks for a step-by-step guide to 

implement functionality. 

• The developer knows that the desired functionality is 

realizable through customization (for instance by 

reading the documentation) but does not know how. 

• The developer assumes that a particular functionality is not 

yet implemented. 

• The developer does not know if something is possible but 

could not find information in other discussion threads or in 

the product documentation. 

• The developer has identified a function gap in the standard 

product. 

• The developer asks if a feature is included in a future release. 

• Example 1: “Hello Experts, please I need your help on 

how to calculate WIP on SAP. Steps and Tcode. 

Regards.” 

• Example 2: “Hello Experts, when I am configuring 

SAP Hana Cloud Connector, the following error is 

raised. Please give me some ideas to solve this issue 

[IMAGE].” 

• Example 1: “Hi, a customer wants to track when a user 

deletes or add a relationship on account level. This can't be 

traced in the change functionality. Is there a possibility to 

track this history data via another functionality or by 

reporting? Many thanks for your advice. Regards.” 

• Example 2: “Hi Team, like iOS and Android Schedule 

setting under Server > Configuration > Schedule. Do we 

have anything for Windows Laptop? Regards.” 
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in the labeling task might have biased our results as it 

possible to draw conclusions from them. To ensure a 

common understanding for feature requests, we created 

a detailed labeling guide and distributed it among our 

labelers. The labeling guide contained a detailed 

definition of feature requests and several edge cases 

together with arguments for their assessment. Table 2 

summarizes the definition of feature requests as 

described in the labeling guide and provides several 

examples. The detailed labeling guide is available from 

the authors upon request. 

Finally, we performed several preprocessing steps 

to optimally prepare our data for the classifier training. 

First, we replaced URLs, code snippets and images with 

tags because machine learning classifiers have 

difficulties in interpreting their raw data correctly. 

Second, we removed remaining HTML-tags and 

whitespaces that resulted from the usage of our web 

scraper. Third, we performed the following natural 

language processing techniques: lowercasing, removal 

of punctation, numbers, possessive endings and stop-

words, and lemmatization. While step one and two were 

necessary to reduce noise in our data, we considered 

step three to be optional as there are mixed empirical 

results on the usage of such additional preprocessing 

techniques (e.g., Maalej & Nabil, 2015). Hence, we 

tested the performance of the classifier with and without 

the additional preprocessing techniques of step three.  

Text-based machine learning classifiers require a 

fixed amount of numerical features as structured input 

(Kowsari et al., 2019). Hence, we needed to extract 

these features from the unstructured text before we 

could train the classifier. Since we are following the 

design science research methodology, we tested and 

evaluated three common feature extraction techniques: 

Bag-of-Words (BoW), Term Frequency Inverse 

Document Frequency (TF-IDF) and document 

embeddings with the pre-trained language model 

SBERT (Kowsari et al., 2019). SBERT is a modification 

of the popular BERT model (Devlin et al., 2018), which 

benefits from a significantly reduced extraction time, 

while it maintains the high accuracy from BERT. 

SBERT has been trained on the full sentences of the 

Stanford Natural Language Inference corpus and the 

Multi-Genre Natural Language Inference corpus 

(Reimers & Gurevych, 2019). As any other pre-trained 

language model, SBERT can be fine-tuned to specific 

domains such as ours. 

Next, we started with the model training. 

Specifically, we tested the performance of three binary 

classification algorithms which have shown promising 

results in similar contexts: Naïve Bayes (NB), Random 

Forest (RF) and Support Vector Machines (SVM) (e.g., 

Kühl et al., 2020; Maalej & Nabil, 2015). For all three 

algorithms, we used the standard threshold for binary 

machine learning classifiers of 0.5. Hence, the trained 

classifier only makes a positive prediction when the 

probability for a positive prediction is higher than for a 

negative prediction. We used Python’s scikit-learn 

library to train the classifiers and randomly selected 

1275 questions as the training set, and 225 question as 

the test set.  

Finally, we used several measures to evaluate the 

performance of our classifiers. First, we use accuracy 

(ACC), which describes the number of correct 

predictions relative to the total number of predictions. 

Second, we use precision (P), which measures the 

number of correctly predicted positives relative to all 

positive predictions (true positives and false positives). 

Third, we rely on the recall rate (R) to measure the 

proportion of actual positives that were identified 

correctly. In mathematical terms, the recall rate is 

described as the number of true positives in relation to 

the number of true positives and false negatives. Finally, 

we calculate the F1 measure which is the harmonic mean 

of recall and precision (Jiao & Du, 2016).  

4. Results 

In this section, we first report the results of the 

labeling process before we turn to the performance 

measures of our machine learning classifiers. Regarding 

the labeling, we conducted two analyses. First, we 

investigated the statistical distribution for each labeler 

and calculated a consensus label based on the 

assessments of our labelers. For instance, if two labelers 

assessed that a question contains a feature request and 

one labeler assessed that the question does not contain a 

feature request, the consensus label adopts the opinion 

of the majority and classifies the question as a feature 

request. Based on this consensus labeling approach, our 

final sample consisted of 606 questions with feature 

request and 894 questions without feature request. 

Figure 2 specifies the outcome of the labeling for each 

pool as well as for the final sample. Second, we 

calculated Cohen’s Kappa and Fleiss‘ Kappa to receive 

a more rigorous evaluation of our labels. While Cohen’s 

Kappa is a statistical measure for the agreement between 

Final sample: 
1,500 questions 

Feature requests: 606
No feature request: 894

Pool 1: Filtered
  750 questions

Feature request: 461 
No feature request: 289 

Pool 2: Random
 750 questions

Feature request: 175
No feature request: 575

 

Figure 2: Final sample 
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two labelers (Cohen, 1960), Fleiss‘ Kappa is a measure 

that assesses the agreement between multiple labelers 

(Fleiss, 1981; Powers, 2012). With a value of 0.43, the 

Fleiss‘ Kappa metric reveals an overall moderate 

agreement between our labelers. Additionally, we report 

Cohen’s Kappa values for our labelers in Figure 3. We 

annotate feature requests as “FR” and no feature 

requests as “NFR”. As specified in Figure 3, the 

agreement of our labelers ranges from 67.00 to 76.53%, 

resulting in a fair to moderate agreement according to 

Cohen’s Kappa. We also investigated several questions 

on which our labelers disagreed in-depth. Most of these 

questions had room for interpretation, meaning that they 

could be interpreted and labeled either way. Hence, we 

concluded that our consensus labeling approach was a 

suitable means to balance this room for interpretation. 

Next, we turn to the results of our classifier. As 

outlined in the methodology section, we investigated the 

influence of additional preprocessing steps (PP), feature 

extraction techniques (FE) and classification algorithms 

(CA). Hence, we trained a classifier for each possible 

combination of those factors. In Table 3, we report the 

performance metrics for these combinations. 

Specifically, we report the overall accuracy (ACC) of 

the classifier, its execution time (ET) in seconds, as well 

as precision (P), recall (R) and F1 measures for the 

feature request category. Overall, the classifiers perform 

reasonably well with accuracies ranging from 0.5495 to 

0.8187. 

5. Interpretation and Future Research 

The purpose of this study was to investigate 

whether enterprise software vendors can use data from 

their sponsored developer communities for data-driven 

requirements elicitation. Specifically, we trained a 

supervised machine learning model for the automatic 

detection of feature requests of third-party developers. 

Overall, our study shows promising results. The best 

performing classifier reached a high accuracy of 0.8187 

while extracting features with the pre-trained SBERT 

model and using the Naïve Bayes classification 

algorithm. This means that the classifier was able to 

identify 81,87% of all feature and non-feature requests 

correctly. We thus conclude that enterprise software 

vendors can use supervised machine learning classifiers 

to automatically detect feature requests in their 

sponsored developer communities. The aforementioned 

classifier also shows the highest recall value for the 

feature request category. For our study, this is a crucial 

measure because a high recall value indicates a 

minimization of false negative predictions. Assuming 

that an appropriate threshold value has been used, this is 

most desirable because a minimization of false negative 

predictions means that the classifier reduces the number 

of “missed” feature requests. In contrast, false positive 

predictions are more tolerable because those are 

questions that were falsely classified as feature request. 

The reason is that false positive predictions can be 

sorted out by a system analyst or requirements engineer 

in a manual review. However, the chances of correcting 

false negative predictions are relatively low—it is rather 

   

Total Agreement: 76.53% 

Cohen's Kappa: 0.5230 

Moderate Agreement 

Total Agreement: 73.27% 

Cohen's Kappa: 0.4325 

Moderate Agreement 

Total Agreement: 67.00% 

Cohen's Kappa: 0.3297 

Fair Agreement 

Figure 3: Cohen's Kappa  

Table 3: Classifier performance metrics 

    FR 

PP FE CA ACC P R F1 ET 

No 

BoW 

NB 0.5495 0.5333 0.7912 0.6372 7 

RF 0.7912 0.7573 0.8571 0.8041 236 

SVM 0.7802 0.7802 0.7802 0.7802 346 

TF-IDF 

NB 0.6374 0.6168 0.7253 0.6667 6 

RF 0.7967 0.7700 0.8462 0.8063 261 

SVM 0.7363 0.7216 0.7692 0.7447 330 

SBERT 

NB 0.8187 0.7900 0.8681 0.8272 483 

RF 0.8132 0.7938 0.8462 0.8191 1285 

SVM 0.8022 0.7778 0.8462 0.8105 713 

Yes 

BoW 

NB 0.6703 0.7183 0.5604 0.6296 11 

RF 0.7692 0.7692 0.7692 0.7692 252 

SVM 0.7857 0.8095 0.7473 0.7771 450 

TF-IDF 

NB 0.6264 0.6075 0.7143 0.6566 9 

RF 0.8022 0.8090 0.7912 0.8000 266 

SVM 0.7088 0.6979 0.7363 0.7166 339 

SBERT 

NB 0.7143 0.6931 0.7692 0.7292 301 

RF 0.7253 0.7030 0.7802 0.7396 1118 

SVM 0.7088 0.6827 0.7802 0.7282 539 
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unlikely that a requirements engineer will scroll through 

the entire community and stumble over a “missed” 

feature request. Hence, we see our machine learning 

classifier as a means to filter out relevant questions of 

the community and present those to system analysts and 

requirements engineers for further evaluation. 

Besides that, all of our classifiers performed 

reasonably well. The accuracy of the classifiers ranges 

from 0.5495 to 0.8187, whereby most of them were in 

the 0.7 to 0.8 range. We observed the lowest accuracy 

when we used no additional preprocessing, feature 

extraction with Bag-of-Words and the Naïve Bayes 

classification algorithm. Apart from that, the pre-trained 

SBERT model performed significantly better without 

optional preprocessing steps (see section 3.3). However, 

this is not entirely surprising because the SBERT model 

has been trained on full sentences and preprocessing 

steps such as lemmatization or the removal of stop-

words eliminate valuable information from the model. 

Despite our promising results, our study is not 

without limitations. First, our best-performing classifier 

was not able to successfully detect all feature requests 

of the community. We manually investigated several 

incorrect predictions and found that (a) false negative 

assignments were more frequent for long questions with 

a significant amount of context descriptions, and (b) 

false positive assignments were more frequent for short 

questions with limited context descriptions. We are, 

however, convinced that an increase in training cases 

would further enhance the accuracy of the classifier. 

Second, we conducted a single case study which is 

typically associated with limited generalizability. We 

consider the results of our study to be reproducible 

because SAP and its community are a prime example for 

our context. Other sponsored developer communities 

such as ServiceNow’s Now Community have a similar 

purpose and hence, our study is likely to be replicable 

with a data set from those communities. 

Our study opens up two major avenues for future 

research. First, while we used sponsored developer 

communities to mine enterprise software requirements, 

future research can explore the elicitation of bugs to 

improve the maintenance of software products. Second, 

future research can explore different types of feature 

requests in sponsored developer communities.  
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